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Cells change their metabolism in response to internal and external conditions by regulat-
ing the trans-omic network, which is a global biochemical network with multiple omic
layers. Metabolic flux is a direct measure of the activity of a metabolic reaction that pro-
vides valuable information for understanding complex trans-omic networks. Over the past
decades, techniques to determine metabolic fluxes, including 13C-metabolic flux analysis
(13C-MFA), flux balance analysis (FBA), and kinetic modeling, have been developed.
Recent studies that acquire quantitative metabolic flux and multi-omic data have greatly
advanced the quantitative understanding and prediction of metabolism-centric trans-
omic networks. In this review, we present an overview of 13C-MFA, FBA, and kinetic mod-
eling as the main techniques to determine quantitative metabolic fluxes, and discuss their
advantages and disadvantages. We also introduce case studies with the aim of under-
standing complex metabolism-centric trans-omic networks based on the determination
of metabolic fluxes.

Introduction
Cellular metabolism controls the storage of nutrients, production of energy, and synthesis of cellular
component precursors. Cells change their metabolism to maintain metabolic homeostasis, or in
response to internal and external conditions by altering the metabolic reaction rates of metabolites [1–
3]. Metabolism has been investigated in various research areas such as biochemistry, bioengineering,
cellular physiology, and biomedicine.
Metabolic flux, the rate of turnover of metabolites through a metabolic reaction, is a direct measure

of the quantitative activity of the reaction, often irrespective of the concentration of that metabolite.
Metabolic fluxes provide valuable information on cellular metabolisms, such as the quantitative flow
of carbon and energy [4,5], which can be further used for unraveling key regulatory interactions [6–
9], understanding mechanisms of diseases [10–12], identifying drug targets [13–15] and designing
and optimizing strains for microbial bioproduction [16–19]. Since metabolic fluxes are not physical
entities that can be directly measured, researchers may measure a concentration of a metabolite that is
associated with a reaction of interest and attempt to capture the metabolic flux or activity involved.
However, changes in concentration do not necessarily dictate metabolic flux changes or their direc-
tion, because an increase in the concentration of a metabolite can indicate greater activity of reactions
consuming the metabolite, according to many reaction kinetics, or decreased activity of the same reac-
tions, according to the mass balance of the metabolite. Therefore, techniques have been developed to
determine quantitative metabolic fluxes, including 13C-metabolic flux analysis (13C-MFA), flux
balance analysis (FBA), and kinetic modeling [20–22]. These techniques have determined cellular
metabolic fluxes for various cells and organisms, such as bacteria, yeast, plants, Chinese hamster ovary
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(CHO) cells, cancer cell lines, and mammalian organs [23–27]. One goal of these techniques is to reveal quan-
titative metabolic fluxes in a cell for a specific condition, but with different assumptions and parameters to be
estimated.
Cellular metabolism is a complex biosystem for study. Cellular metabolism is realized by a global network

consisting of many molecules including metabolites, proteins, and transcripts, and the biochemical interactions
among these molecules. Global networks that span multiple omic layers are called ‘trans-omic’ networks [28–
34]. Comprehensive measurement techniques for each omic layer are now becoming available, such as metabo-
lomics and proteomics by mass spectrometry, and genomics and transcriptomics by next-generation sequencing
[35–39]. Multi-omic data can be used for constructing trans-omic networks based on prior knowledge of
molecular networks or statistical associations [28].
Metabolic flux through a specific reaction can be influenced by many reaction species including enzymes

and metabolites as substrates, products, and cofactors (Figure 1A). Post-translational modification and allosteric
enzyme regulation can direct enzyme activities, which in turn influence metabolic flux. Thus, in a trans-omic
network, a metabolic reaction with a metabolic flux can be a node in the reaction layer that connects metabo-
lites and enzymes that are associated with the reaction (Figure 1B) [40]. Mathematically, the connections of
metabolic fluxes with metabolite and enzyme concentrations are defined as mass balance and reaction kinetic
equations. Recent studies that acquire quantitative metabolic flux, metabolomic, and proteomic data have
greatly advanced quantitative understanding and prediction of metabolism-centric trans-omic networks.
Here we present an overview of 13C-MFA, FBA, and kinetic modeling as the main techniques for determin-

ing quantitative metabolic fluxes, and discuss their advantages and disadvantages. We also introduce case
studies toward an understanding of the complex metabolism-centric trans-omic networks based on metabolic
fluxes.

Techniques to determine metabolic fluxes
General mathematical formulation for metabolic systems
Prior to introducing techniques to determine metabolic fluxes, we describe the general mathematical formula-
tion of a metabolic system, including metabolites and metabolic fluxes. The dynamic behavior of this system is
represented by a set of ordinary differential equations (ODEs) describing the mass balances for the reacting
species in the system:

dc
dt

¼ S � v(E, c, u)

c(t0) ¼ c0,
(1)

A B

Figure 1. Complex regulation of metabolic flux.

(A) A regulatory structure of a metabolic reaction with a metabolic flux. Metabolic flux through a reaction can be influenced by

enzymes and metabolites as substrates, products, and cofactors. Post-translational modifications and allosteric regulations of

enzymes can also regulate enzyme activities, which in turn influence the metabolic flux. (B) A trans-omic network across the

transcript, enzyme, reaction, and metabolite layers. Metabolic flux can be represented as the size of nodes in the reaction

layer. Solid lines represent the conversion of metabolites through reactions, while dashed lines represent regulations.
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where S denotes the stoichiometric matrix, with the element Sij at row i and column j as the stoichiometric
coefficients of metabolite i in reaction j, and v is the vector of metabolic fluxes. The metabolic flux through a
reaction is described as a reaction kinetic equation and depends on the metabolite concentrations (c), enzyme
concentrations (E), and the kinetic parameters (θ) associated with the reaction; c0 is the initial conditions of the
metabolite concentrations at the time t0. This ordinary differential equation can be applied to metabolic
systems with short time scales where the time variations of enzyme concentrations can be negligible.
In the following sections, we present an overview of 13C-MFA, FBA, and kinetic modeling (Figure 2). All

three techniques to determine metabolic fluxes are based on Eq. (1), but with different assumptions and para-
meters. We also discussed the advantages and disadvantages of each technique (Table 1).

13C-metabolic flux analysis (13C-MFA)
The gold standard to determine cellular metabolic fluxes in microorganisms and mammalian cell lines in a
metabolic steady-state has been the 13C-MFA method [20,41]. With 13C-MFA, one or more labeled substrates
(e.g. 13C-glucose, 13C-glutamate) is administered to the cell, causing the labeling of intracellular metabolites
and macromolecules (e.g. proteins), and the isotopic labeling patterns of these molecules are then quantified
using analytical techniques such as mass spectrometry [42,43], and nuclear magnetic resonance (NMR) [44].
The labeling patterns are highly dependent on metabolic fluxes in cells; therefore, the metabolic fluxes that best
explain these patterns can be determined. In addition to isotopic labeling patterns, external fluxes (uptake or
secretion rates of metabolites) are also measured for the calculation of metabolic fluxes in microorganisms and
mammalian cell lines (Figure 2A).
In fundamental 13C-MFA, the following least-squares problem is solved for calculating cellular metabolic

fluxes:

Min:
v

P

k
wk(ymeas

k � yk)
2,

s:t:
dc
dt

¼ S � v ¼ 0,

x ¼ f (v, c),
y , x< v,

(2)

where yk denotes the k-th labeling pattern or external flux; the superscript ‘meas’ is the measured value; and wk

denotes the weighting of the k-th residual, which is often the inverse of the variance of the measured values.
Changes in metabolite concentrations over time (dx/dt) are equal to zero because cells are assumed to be in a
metabolic steady-state with 13C-MFA. The vector of functions (f ) to calculate labeling patterns from metabolic
fluxes and metabolite concentrations is defined based on mass balance equations for isotopomers. The function
f is usually non-linear [45–49], thus a non-linear optimization method is necessary to solve the least-squares
problem. Therefore, the scale of the metabolic network to which most of the 13C-MFA frameworks can be
applied is limited to the central carbon metabolic pathway.
The standard metabolic systems to which 13C-MFA is applied are cells maintained at metabolic steady-state

for a sufficient duration to reach an isotopic steady-state. The 13C-MFA framework for these metabolic systems
is currently routinely applied to quantify metabolic fluxes, especially in the field of metabolic engineering.
Isotopic labeling patterns in an isotopic steady-state are independent of metabolite concentrations, and meta-
bolic fluxes can be calculated from measured isotopic labeling patterns and external fluxes. Over the past
decades, advanced 13C-MFA frameworks have been developed to analyze fluxes in isotopic non-steady-state
[50,51] or metabolic non-steady-state systems [6,52–54]. In these systems, ODEs for isotopic labeling patterns
are not necessarily equal to zero and need to be solved numerically, which requires additional computational
costs than those for isotopic steady-state systems. Moreover, metabolic fluxes can change over time in a meta-
bolic non-steady-state system. Although a metabolic flux is inherently a non-linear function of time determined
by reaction kinetics based on mechanistic interactions between metabolites and enzymes, a metabolic flux in
13C-MFA frameworks for metabolic non-steady-state systems is expressed as an approximate function of time,
such as a piecewise linear function [6,55,56] or a B-spline function [54,57]. The development of these
13C-MFA frameworks enabled the determination of metabolic fluxes in photosynthetic microorganisms that
consume 13C-CO2 as the sole carbon source [58], as well as mammalian cell lines that dynamically respond to
hormones [6,54].
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An important characteristic of 13C-MFA is that metabolic fluxes are determined from mass balance equa-
tions of metabolites and their isotopomers, but not from reaction kinetics. Therefore, metabolic fluxes deter-
mined by 13C-MFA are dependent on the reaction stoichiometry of a metabolic network of interest, and are
independent of the regulation of enzyme and metabolite. Many unknown or unclear regulations would be
involved in cellular metabolisms, even in the well-studied central carbon metabolism in model organisms
[8,9,59], compared with those of the reaction stoichiometry [60]. The calculation of metabolic fluxes by

A B C

Figure 2. Three main techniques to determine metabolic fluxes.

(A) 13C-Metabolic flux analysis (13C-MFA). Metabolic fluxes are determined by minimizing the difference between simulated and

measured isotopic labeling patterns obtained from 13C-tracer experiments. (B) Flux balance analysis (FBA). Metabolic fluxes

are calculated by maximizing a cellular objective function, such as cellular growth rate. (C) Kinetic modeling, metabolic fluxes,

described as reaction kinetic equations, are determined by minimizing the difference between simulated and measured

metabolite concentrations and fluxes. All three techniques use the stoichiometry matrix for ODEs describing the mass balances

for the reacting species in the system (dc=dt ¼ S � v). Formulations of only the basic methods for each technique are shown,

and not those of advanced frameworks.
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13C-MFA depends on relatively reliable reaction stoichiometries. In addition, on a scale of the central carbon
metabolism, it is usually possible to obtain a sufficiently large number of isotopic labeling measurements to
determine metabolic fluxes. Ultimately, this large amount of measurement data translates into a high flux preci-
sion and enhanced confidence in the accuracy of the calculated metabolic flux [61]. However, the throughput
of calculating metabolic fluxes by 13C-MFA is low compared with that of FBA, because of data availabilities
and computational costs. In addition, the scale of metabolic networks for which fluxes can be calculated by
13C-MFA is limited to the central carbon metabolism. Other disadvantages of 13C-MFA are the requirements
for substantial optimization of tracer experiments (e.g. appropriate isotopic tracers) and the selection of meta-
bolites and isotopomers to be measured, which greatly affect the flux precision.
The mathematical formulation of 13C-MFA does not include information on the regulation of metabolic

flux, such as enzyme concentrations, enzyme post-translational modifications, and allosteric regulations.
Therefore, for the integration of metabolic flux with other omic layers (e.g. metabolite and enzyme layers) to
construct a metabolism-centric trans-omic network, reaction kinetics should be introduced to explicitly define
relationships between metabolic flux and molecules in other omic layers.

Flux balance analysis (FBA)
The first method for biological predictions using constraint-based modeling of genome-scale metabolic models
(GEMs) is FBA [21,24,62]. The mathematical formulation of FBA is based on the hypothesis that the metabolic
fluxes in a cell are the result of maximization or minimization of a metabolic objective, subject to the con-
straints imposed by genotypes and environments (Figure 2B). A common cellular objective to determine
steady-state metabolic fluxes in wild-type microorganisms by FBA is the maximization of the cellular growth
rate [63,64]. Metabolic fluxes calculated by maximizing the cellular growth rate are consistent with those in
wild-type microorganisms determined by 13C-MFA [65,66].
For FBA, cellular metabolic fluxes in a steady-state can be determined by solving the following linear opti-

mization problem:

Max:
v

dTv,

s:t:
dc
dt

¼ S � v ¼ 0,

vlb � v � vub:

(3)

Column vector d of Equation 3 denotes the linear coefficients representing the weight of the fluxes in the
objective function. In a GEM, cell growth is expressed as a reaction in which the cellular contents (e.g. protein,
RNA, and lipids) and energy (e.g. ATP) are consumed in a specific ratio, and the coefficient corresponding to
the metabolic flux through this reaction is 1 when the cellular growth rate is maximized. v lb and vub denote
the lower and upper bounds of metabolic fluxes, respectively, and define reaction reversibility (i.e. vlbj ¼ 0 if

Table 1 A comparison of techniques to determine metabolic flux
13C-metabolic flux analysis Flux balance analysis Kinetic modeling

Scale of metabolic
network

Central carbon metabolism Genome-scale metabolism Small scale — central
carbon metabolism

Metabolic system Steady-state Steady-state Dynamic

Advantages • Independent of reaction kinetics
and regulations
• The most standard technique to
determine metabolic fluxes

• Independent of reaction
kinetics and regulations
• Large scale
• Low computational cost

• Mechanistic
• Dynamic
• Detailed prediction

Disadvantages • High computational cost
• Tracer experiments and isotopic
measurements required
• Unavailable for prediction

• Dependent on biological
objective function

• High computational cost
• Difficult parameterization
• Much experimental data
required

Characteristics of the basic methods for each technique are shown and not that of advanced frameworks.
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reaction j is irreversible). These metabolic flux boundaries can be also used for defining nutrient availability,
fixing external fluxes to measurement values, and specifying reactions associated with deleted genes (i.e.
vlbj ¼ vubj ¼ 0).
Although FBA only considers metabolism, several advanced modeling frameworks have recently been

reported that incorporate protein concentrations (or transcript concentrations) into FBA [67–69]. Advanced
FBA frameworks of a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) [70] and
MetabOlic Modeling with ENzyme kineTics (MOMENT) [71] impose constraints on the upper bounds of
metabolic fluxes by the product of enzyme concentrations and their activities (i.e. turnover rate). In addition to
constraints on metabolic fluxes, detailed descriptions of the protein expression process are incorporated in an
integrated model of metabolism and macromolecular expression (ME-Model) [72,73], as well as Expression
and Thermodynamics-enabled FLux models (ETFL) [74], and Resource Balance Analysis (RBA) [75,76]. Other
advanced FBA frameworks include Gene Inactivity Moderated by Metabolism and Expression (GIMME) [77]
and Integrative Network Inference for Tissues (INIT) [78], in which metabolic fluxes are determined by maxi-
mizing high-expression reaction use over that of low expression reactions. Integration of protein expression and
metabolism in these modeling frameworks enabled the reproduction of the overflow metabolism (e.g. Crabtree
effect in yeast) [70] and the construction of tissue-specific GEMs [78], which could not be achieved by simply
applying FBA to GEMs.
Since FBA can be formulated as a linear optimization problem, using FBA to calculate metabolic fluxes requires

a low computational cost. Therefore, metabolic networks applied to by FBA can include thousands of reactions
and even genome-wide metabolic fluxes. Additionally, FBA can provide quantitative flux predictions of microor-
ganisms with various genotypes and environmental conditions. This method has been used in various ways, such
as for computational strain design in metabolic engineering [18,79–81], and the prediction of essential genes of
pathogenic bacteria and cancer cells [15,82,83]. However, metabolic fluxes calculated by FBA rely on the validity
of the hypothesis that the cellular metabolic fluxes in a cell are the result of optimization of a cellular objective
function. Although previous reports showed that metabolic fluxes calculated by maximizing the cellular growth
rate were consistent with those in wild-type microorganisms determined by 13C-MFA [65,66], this does not imply
the theoretical correctness of solving the system as an optimization problem. The maximization of cellular growth
would not be appropriate for especially mutant strains, non-growing cells, or mammalian cells. Therefore, the reli-
ability of the metabolic fluxes calculated by FBA should be carefully considered.
The original FBA is applied to GEMs where Boolean logic is used to describe gene-protein-reaction associa-

tions, and metabolic enzymes simply determine active or inactive states of the reactions (e.g. constraining meta-
bolic flux through a reaction associated with deleted genes to zero). Therefore, when we attempt to
quantitatively understand the metabolism-centric trans-omic network using the original FBA, introducing new
relationships between metabolic flux and molecules in other omic layers through reaction kinetics should be
included. On the other hand, advanced modeling frameworks, including GECKO, MOMENT, ME-model,
ETFL, and RBA, impose constraints on metabolic flux by enzyme concentrations and their activities, and the
quantitative relationship between metabolic flux and molecules in other omic layers is included in the modeling
framework itself. Therefore, a model constructed by the advanced modeling frameworks can be regarded as a
trans-omics network that considers both metabolic flux and enzymes.

Kinetic modeling
The kinetic modeling of metabolism attempts to provide a mechanistic description of enzymatic activities regu-
lating metabolic fluxes and mass balances for all reactions and metabolites in the network (Figure 2C)
[22,23,84]. Kinetic models explicitly describe metabolic fluxes as a function of metabolite and enzyme concen-
trations, enabling dynamic and quantitative investigations of metabolomic, fluxomic, and proteomic data.
A basic optimization problem to calculate metabolic fluxes and kinetic parameters in a kinetic model can be

described by

Min:
u

P

k
wk(ymeas

k � yk)
2,

s:t:
dc
dt

¼ S � v(E, c, u),

c(t0) ¼ c0,
y , c< v:

(4)
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Equation 4 considers a parameter estimation to minimize the weighted residual sum of squares between the
measured and simulated metabolite concentrations and external fluxes. In some cases, algebraic equations or
additional ODEs are incorporated into this basic equation to reflect total concentrations of conserved moieties,
dynamics of enzyme concentrations, changes in cellular volume, constraints in thermodynamics, or to fix a
part of a parameter or variable. Unlike 13C-MFA and FBA, the metabolic flux is explicitly described as a reac-
tion kinetic equation of a function of enzyme concentrations E, metabolite concentrations x, and parameters θ.
There are various reaction kinetics used in kinetic modeling [23,85], including mass action, Michaelis–Menten
rate law, lin-log kinetics [86], convenience kinetics [87], and modular rate law [88]. The types of parameters
required for modeling depend on the reaction kinetics and can include enzymatic reaction turnover rates, equi-
librium constants, dissociation constants of substrates, products, and allosteric effectors bound to the enzyme,
and elasticity coefficients. Kinetic modeling can be also applied to non-steady-state conditions where metabolite
concentrations and metabolic fluxes change over time, and numerical solutions of ODEs are often required.
Reaction kinetic equations are explicitly described in kinetic modeling so that we can simulate dynamic

changes in metabolite concentrations and metabolic fluxes in response to perturbations in parameters and vari-
ables. Metabolic control analysis (MCA), one of the sensitivity analyses commonly used in metabolic modeling,
quantitatively evaluates the sensitivities of metabolite concentrations and metabolic fluxes to small perturba-
tions in parameters and enzyme concentrations [89–91]. Analyses of the Jacobian matrix of ODEs in a kinetic
model allow for the appraisal of the dynamic properties of the system such as the stability, oscillations, and
bifurcations [92,93]. These analyses have contributed to the identification of rate-limiting metabolic reactions
in a metabolic pathway for microbial bioproduction of useful compounds [16], the understanding of regulations
that enhance the stability of a metabolic system [92,93], and the evaluation of drug effects on metabolism [13],
which cannot be achieved with 13C-MFA or FBA alone.
The most challenging task for the kinetic modeling of metabolism is the estimation of parameters for

enlarged networks [94,95]. Reaction kinetics used for mechanistic kinetic modeling are usually non-linear func-
tions of parameters; thus, the estimation of parameters needs to be solved using a non-linear optimization
problem, in which optimization can be readily trapped in a local optimum. Moreover, a metabolic system can
be described by multiple model variants, and choosing the superior variant is also challenging [9,96,97].
Different model variants can vary in their reactions, regulations on metabolic fluxes, and kinetic rate laws. A
model that is too complex for the data cannot accurately estimate the parameters and the estimated parameters
would be sensitive to data errors, while a model that is too simple would not be able to estimate the parameters
that reproduce the data well. Therefore, kinetic modeling requires statistical model selection methods [96], such
as cross-validation and statistical criteria (e.g. Akaike information criterion (AIC) [98]). In spite of the above
difficulties, advanced frameworks of kinetic modeling have been developed, such as Structural Kinetic
Modeling (SKM) [92], Optimization and Risk Analysis of Complex Living Entities (ORACLE) [99], Mass
Action Stoichiometric Simulation (MASS) framework [100,101], Ensemble Modeling (EM) [102], General
Reaction and Assembly Platform (GRASP) [103], and Omics-Based Metabolic Flux Estimation without
Labeling for Extended Trans-omic Analysis (OMELET) [12], which offer novel capabilities for kinetic model
analysis.
When the enzyme concentration is explicitly included in the reaction kinetics, the kinetic model not only

calculates metabolic flux, but also provides mechanistic interactions among enzymes, metabolites, and meta-
bolic fluxes, which differs from 13C-MFA and FBA. Therefore, such kinetic models themselves can represents a
metabolism-centric trans-omics network.

Case studies that determine metabolic fluxes to
understand metabolism-centric trans-omic networks
In the following, we review several case studies that aim to understand metabolism-centric trans-omic networks
through the measurement of quantitative metabolic fluxes.

Approaches based on 13C-MFA to understand metabolism-centric trans-omic
networks
Gerosa et al. [104] determined metabolic fluxes in Escherichia coli during exponential growth on eight different
carbon sources, and inferred regulatory events in metabolisms that drive adaptation of metabolic fluxes
between two carbon courses (Figure 3A). Those authors obtained metabolic fluxes by applying 13C-MFA to a
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well-studied system of central carbon metabolism in E. coli. They also measured transcript amounts and metab-
olite concentrations using microarrays and targeted liquid chromatography-tandem mass spectrometry (LC–
MS/MS), respectively. The determined metabolic fluxes through 34 reactions were described by reaction kinetic
equations including the transcript amounts, substrate concentrations, and Gibbs energies as thermodynamic
potentials. By transforming the kinetic equations for each reaction, the authors calculated the contributions of
transcript, substrate, and thermodynamic regulatory effects to the differences in metabolic fluxes between two
carbon sources [105–107]. They also estimated the non-measurable activities of transcription factors (TFs) by
network component analysis [108], and calculated the contribution of TFs to the difference in transcript
amounts between the carbon sources. These analyses revealed that metabolic fluxes in the TCA cycle are

A B

Figure 3. Approaches based on 13C-MFA to understand metabolism-centric trans-omic networks.

(A) Gerosa et al. [104]. Metabolic fluxes in E. coli during exponential growth on eight different carbon sources were determined

by 13C-MFA, and regulatory events in metabolisms that drive adaptation of metabolic fluxes between two carbon courses were

inferred. (B) Ohno et al. [6]. Metabolic flux changes over time in cultured adipocytes with or without insulin were determined by

advanced 13C-MFA applicable to non-steady-state conditions, and regulatory events in the metabolism that drive

insulin-induced changes in metabolic flux in adipocytes were inferred.
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regulated by gene expression, while those in the glycolysis are regulated by substrates. Gerosa et al. [104] pre-
dicted that regulatory events with large contributions to metabolic fluxes would drive the dynamic changes in
metabolism during adaptation from one carbon source to another, and experimentally verified some of these
predictions. Multiple steady-state observations of 13C-resolved fluxes, metabolites, and transcripts were used to
infer which regulatory events induced the metabolic adaptations following environmental transitions, and this
was referred to as ‘pseudo-transition analysis.’ Since metabolic fluxes in a scale of the central carbon metabol-
ism and comprehensive transcriptomic and metabolomic data were connected via reaction kinetics, this study
can be regarded as integrating the transcript, metabolic flux, and metabolite to reveal differences in trans-omics
networks of E. coli between nutritional conditions. Metabolic fluxes determined by 13C-MFA allowed for the
mechanistic connection between metabolites and transcripts.
Ohno et al. [6] determined metabolic flux changes over time in cultured adipocytes with or without insulin,

and inferred regulatory events in the metabolism that drive insulin-induced changes in adipocyte metabolic
flux using these metabolic fluxes as well as metabolomic and phosphoproteomic data [6,109,110] (Figure 3B).
The authors refer to this approach as ‘kinetic trans-omic analysis.’ Conventional 13C-MFA is applicable to a
steady-state metabolism; however, the adipocyte glucose metabolism dynamically responds to insulin.
Therefore, the authors developed 13C-MFA under non-steady-state conditions by describing the metabolic
fluxes as piecewise linear functions in time [55,56]. These metabolic fluxes were subsequently described as reac-
tion kinetic equations of modular rate law [88], and the contributions of enzyme phosphorylation, allosteric
effectors, substrates and products, and other unaccounted regulators to insulin-induced changes in metabolic
fluxes were calculated. The authors assumed that changes in metabolic enzymes were almost constant and did
not contribute greatly to insulin-induced flux changes, because this study focused on relatively short time scales
of within 60 min after insulin treatment. In addition, measured enzyme phosphorylation and literature-based
allosteric regulation do not necessarily affect insulin-induced flux changes in adipocytes; thus, the authors used
AIC to select plausible enzyme phosphorylation and allosteric regulation to be included in the reaction kinetic
equations. This kinetic trans-omic analysis revealed that most reactions in the glucose metabolism, in which
metabolic fluxes largely change as a result of insulin, are regulated by substrates and products, whereas a few
reactions, including the glucose transporter and ATP-citrate lyase in the fatty-acid synthesis pathway, are regu-
lated by enzyme phosphorylation or allosteric effectors. Although the approach proposed by Ohno et al. [6] is
similar to that of Gerosa et al. [104], the former approach can be applied to dynamically changing metabolic
systems in response to external stimuli. Moreover, that approach handles uncertainty in the calculated meta-
bolic fluxes and kinetic parameters due to experimental and estimation errors.
Both studies describe the metabolic fluxes determined by 13C-MFA as reaction kinetic equations, which are

helpful for understanding trans-omics networks. Once precise metabolic fluxes are determined with 13C-MFA,
describing metabolic fluxes as reaction kinetic equations can be done independently for each reaction.
Therefore, lower computational costs are required for describing metabolic fluxes as reaction kinetic equations,
including those related to the calculation of kinetic parameters, selection of plausible enzyme phosphorylation
and allosteric regulations, and calculation of the contribution of regulatory events to flux differences between
conditions, compared with the kinetic modeling in which reaction kinetic equations for all reaction are simul-
taneously estimated directly from multi-omic data. However, the availability of data and high computational
cost for 13C-MFA limit the scale of metabolic networks for which fluxes can be determined, and the through-
put of determining fluxes is relatively low compared with that of FBA. In addition, 13C-MFA requires tracer
experiments using isotopes, which often require different experimental conditions than other omics measure-
ments. Moreover, the calculated kinetic parameters are independent on the stability of the metabolic system,
and detailed and quantitative prediction of metabolite concentrations and metabolic fluxes in a different
genetic or experimental condition could be challenging.

Approaches based on FBA to understand metabolism-centric trans-omic
networks
Hackett et al. [8] calculated feasible ranges of metabolic fluxes in yeast during exponential growth in 15 differ-
ent cultivation conditions and identified physiologically relevant regulations supporting the metabolic reactions
in yeast (Figure 4A). The authors referred to their method as systematic identification of meaningful metabolic
enzyme regulation (SIMMER). Feasible ranges for genome-wide metabolic fluxes were calculated using flux
variability analysis (FVA) [111], a method derived from FBA under constraints of the weighted residual sum of
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squares (RSS) between the measured and calculated uptake or secretion rates of metabolites added with the L1
norm of all metabolic fluxes below a certain value, as well as the constraint of the steady-state of the metabolic
system. Those authors identified physiologically relevant regulations supporting reactions using a Bayesian
approach with calculated metabolic flux ranges and measured metabolite and enzyme concentrations, and by
statistical variable selection using the Akaike information criterion with a correction for finite sample sizes
(AICc) [112,113]. Out of 46 reactions for which kinetic equations of convenience rate law [87] were described
using the metabolic flux ranges and measured enzyme and metabolite concentrations, 17 did not include any

Figure 4. Approaches based on FBA to understand metabolism-centric trans-omic networks.

(A) Hackett et al. [8]. Feasible ranges of metabolic fluxes in yeast during exponential growth in 15 different cultivation

conditions were calculated by FVA, a method derived from FBA, and physiologically relevant regulations supporting metabolic

reactions in yeast were identified. (B) Sánchez et al. [70]. The authors developed GECKO, a method that enhances a GEM to

account for enzymes so that each metabolic flux (v) could not exceed its maximum capacity, equal to the product of the

enzyme concentration (E) and the turnover number (kcat). GECKO was applied to a yeast GEM and found overflow metabolism

with limitation of metabolic flux by protein abundance.
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regulation and 29 were regulated by one to two allosteric regulators. Three previously unrecognized regulatory
interactions, such as the allosteric inhibition of pyruvate kinase by citrate, were validated biochemically. In add-
ition to revealing physiologically relevant regulations, the authors assessed the impact of physiological variation
in enzyme and metabolite concentrations on metabolic flux, by partitioning the total variability in flux across
conditions into the contributions of individual regulators. They found that substrates are the most important
determinant of fluxes in general, with enzymes and allosteric regulators having a comparably important role in
the case of physiologically irreversible reactions. Physiologically relevant interactions of metabolic enzymes and
metabolites with genome-wide metabolic fluxes can be identified with SIMMER via reaction kinetics, and this
study can be regarded as revealing a trans-omic network in yeast that integrates enzymes, reactions, and meta-
bolites under different yeast culture conditions. Metabolic flux ranges calculated by an FBA-derived method
cover genome-wide metabolic reactions, and the resulting trans-omic network is not limited to the central
carbon metabolism, although this is dependent on the coverage of metabolite and protein measurements.
Sánchez et al. [70] developed GECKO, a method that enhances a GEM to account for enzymes, so that each

metabolic flux cannot exceed its maximum capacity, which is equal to the product of the enzyme concentration
and the turnover number (Figure 4B). GECKO is an extension of FBA and can both simulate protein concen-
trations and incorporate measured protein concentrations as inputs. The authors applied GECKO to a yeast
GEM, and the resulting model consisted of 6741 reactions, 3388 metabolites, and 764 enzymes. Using the
GECKO model, the authors calculated feasible ranges of metabolic fluxes by FVA, with the objective function
value close to the optimal, and demonstrated that GECKO correctly describes an overflow metabolism (or
Crabtree effect) in which fermentative metabolism with the production of ethanol occurs under aerobic condi-
tions. They found that this overflow metabolism is caused by the replacement of enzymes in the oxidative
phosphorylation pathway with glycolytic enzymes when yeast cells grow above a critical specific growth rate.
The authors also showed phenotypes such as yeast coping with temperature stress and overexpressing a specific
pathway, which was consistent with experiments. GECKO models represent a kind of trans-omic network con-
sisting of enzyme and reaction layers, in that GECKO uses enzyme concentrations to limit the upper bounds of
metabolic fluxes. When the metabolic flux through a reaction reaches its upper bound in a GECKO model, the
enzyme concentration is the main regulator of the metabolic flux rather than the substrate and product metabo-
lites. The authors suggested that GECKO could be used for metabolic engineering, and in a later study by
another group, the key enzyme that regulates lysine production flux in E. coli was predicted by GECKO and
experimentally verified [114]. Although GECKO may only be effective for species rich in known enzyme turn-
over numbers, it is an approach that successfully incorporates concentrations of metabolic enzymes into the
FBA framework. The GECKO modeling is described as a linear optimization problem that can be solved with a
low computational cost.
Both studies used an FBA-based approach for calculating metabolic fluxes. Unlike 13C-MFA, metabolic

fluxes and their regulations can be discussed for entire metabolic pathways, including amino acid and nucleo-
tide metabolisms, as well as the central carbon metabolism. One difference between the approaches is that
Hackett et al. [8] first calculated metabolic flux ranges and then used reaction kinetics to integrate metabolic
enzymes, metabolites, and metabolic fluxes, while Sánchez et al. [70] incorporated enzyme concentrations to
limit the upper bounds of metabolic flux to calculate metabolic fluxes, and regulations by metabolites are not
explicitly described. The metabolic fluxes in both studies were not uniquely determined, due to insufficient
data, and the authors investigated their feasible ranges. In addition, various constraints and objective functions
are used in frameworks derived from FBA, and we should carefully consider whether assumptions adopted in
an FBA-derived framework are appropriate for understanding the specific trans-omic network of interest.

Approaches based on kinetic modeling to understand metabolism-centric
trans-omic networks
Bordbar et al. [13] constructed personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy
individuals based on metabolomic data from plasma and erythrocytes, and exchange fluxes and equilibrium
constants from experimental literature (Figure 5A). They used MASS [100,101] for the construction of the
kinetic models. Briefly, starting from a linear approximation of ODEs of metabolite concentrations around a
reference state, the Jacobian of the ODEs can be decomposed into the stoichiometric matrix of the metabolic
network, the diagonal matrix including phenomenological kinetic constants (pseudo-elementary rate constants,
PERCs), and the gradient matrix that incorporates the metabolite concentrations and equilibrium constants.
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The authors built a baseline model using the average metabolite concentrations of the human plasma and ery-
throcytes, constructed an ensemble of personalized kinetic models for each individual by substituting their
measured metabolite concentrations for the baseline levels, and calculating a personalized set of phenomeno-
logical kinetic constants by resolving the equations. The PERC is a bulk approximation of traditional enzymatic
parameters (e.g. KM, kcat, and enzyme concentrations) and depends on the DNA sequence. Thus, the authors
assessed the dependences of calculated PERCs in personalized models on genetic variants occurring in the gene
region of the metabolic genes (exon, intron, and promoter regions). They found statistical enrichment for all
genetic variant types (non-coding, synonymous exon, non-synonymous exon), suggesting that the PERC, in
part, depends on the genotype. In addition, temporal decomposition of the models elucidated that the first
timescale (∼millisecond) is the coordination of fast reactions near equilibrium, such as isomerases, and the
second time scale, where most individual variation was detected, is the coordination of fluxes into parts of key
erythrocyte pathways, including lower glycolysis, the oxidative pentose phosphate pathway, and glutathione

Figure 5. Approaches based on kinetic modeling to understand metabolism-centric trans-omic networks.

(A) Bordbar et al. [13]. Personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy individuals were

constructed using MASS, an advanced kinetic modeling framework, and dynamic simulations for understanding anti-viral drug

susceptibility were performed. (B) Uematsu et al. [12]. The authors developed OMELET, which estimates metabolic fluxes

based on the reaction kinetics and Bayesian theory from metabolite, enzyme, and transcript amounts. By applying OMELET to

the glucose metabolism in the liver of fasted mice, they revealed the difference in metabolic fluxes between wild-type mice and

obese-model ob/ob mice, and identified regulatory events that mainly contribute to the difference in metabolic flux.
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recycling. Finally dynamic simulations of the personalized models generated novel predictions about suscepti-
bility to hemolytic anemia induced by ribavirin, an anti-viral drug used against the hepatitis C virus. MASS is
an approach to construct a kinetic model in which metabolic fluxes and metabolites are connected by reaction
kinetic equations with PERCs depending on genetic variants. Therefore, MASS can be used to construct a
trans-omic network consisting of genome, protein (PERC), reaction, and metabolite layers. The linear approxi-
mation of ODEs around a reference state enables the construction of large-scale personalized kinetic models.
However, such simplified linear reaction kinetics would lead to inconsistency with mechanistic non-linear reac-
tion kinetics when the metabolic state is distant from the reference state [23,85,86], and accurate predictions of
the system behavior against relatively large metabolic perturbations could not be achieved by this approach.
Uematsu et al. [12] developed OMELET, which estimates metabolic fluxes based on the reaction kinetics and

Bayesian theory from metabolite, enzyme, and transcript amounts (Figure 5B). By applying OMELET to the
glucose metabolism in the livers of fasted mice, those authors revealed the difference in metabolic fluxes
between wild-type mice and obese-model ob/ob mice, and identified the main regulatory events that contribute
to the difference in metabolic flux. OMELET estimates the posterior probability of parameters including meta-
bolic fluxes using prior probabilities updated with the likelihoods of measured enzyme and transcript amounts.
The prior probability of metabolic fluxes is assumed to follow a multivariate normal distribution under a
pseudo-steady-state condition. Estimated enzyme and transcript amounts for the likelihoods are calculated
based on lin-log reaction kinetics [86] and enzyme turnover, respectively. Once metabolic fluxes are estimated
using OMELET, the contribution of regulators, such as enzymes, substrates, products, and allosteric effectors,
to differences in metabolic fluxes between conditions can be readily calculated based on the propagation of
uncertainty of the regulator amounts to metabolic flux. The authors integrated measured multi-omic data, esti-
mated metabolic fluxes, and calculated contributions to construct a quantitative trans-omic network. The nodes
in the trans-omic network are molecules of transcripts, proteins, reactions, and metabolites, and the edges are
regulations. The node sizes represent differences in amounts of molecules or metabolic fluxes between condi-
tions, while the edge sizes represent the contributions of regulations. The constructed trans-omic network
showed that increased metabolic flux through gluconeogenesis by obesity resulted primarily from increased
transcripts, whereas increased metabolic flux through the pyruvate cycle resulted from both increased tran-
scripts and changes in substrates of metabolic enzymes. Although OMELET is a kind of kinetic modeling, it
can quantitatively integrate several omic layers based on reaction kinetic equations. Such multi-omic integration
into one mathematical framework is still challenging. Additionally, OMELET can handle missing values in
omics data, which often occurs due to the low amounts or physical properties of molecules to be measured.
Kinetic modeling including such molecules increases the uncertainty of the parameters. In contrast, OMELET
does not require the description of reaction kinetics for all the reactions in the metabolic network of interest,
and only a subset of reactions is required to be described. This reduces the uncertainty of the parameters and
the error of the estimated metabolic fluxes, as well as the contribution of regulations, although this prevents
OMELET from predicting the change in metabolite amounts and metabolic fluxes from the perturbation.
Furthermore, based on Bayesian theory, OMELET can provide the uncertainty in the calculated metabolic
fluxes and the contribution of regulations depending on experimental errors.
Both studies constructed kinetic models in which kinetic parameters were calculated to reproduce the mea-

sured omics data well. Interactions among enzymes, metabolic fluxes, and metabolites are explicitly described
as reaction kinetic equations in kinetic models, thus kinetic modeling itself can be regarded as an approach to
construct a trans-omic network. An ideal kinetic model of a trans-omic network should be able to represent
many data and phenotypes under various genetic and environmental conditions, and predict novel regulatory
interactions and metabolic states; however, construction of such an ideal kinetic model is generally difficult,
especially due to the uncertainty of the regulatory interactions and kinetic parameters. Various kinetic model-
ing frameworks, including MASS by Bordbar et al. [13] and OMELET by Uematsu et al.[12], resolve some of
the challenges, but also lose some of the advantages of kinetic models [23]. Therefore, we should carefully con-
sider what insights we aim to attain from the trans-omics network using kinetic modeling, and select an appro-
priate kinetic modeling framework based on those goals.

Conclusion
We reviewed three techniques to determine quantitative metabolic fluxes, 13C-MFA, FBA, and kinetic modeling,
and introduced several studies which aimed at understanding metabolism-centric trans-omic networks. As
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mentioned, all three techniques and all approaches for understanding metabolism-centric trans-omic networks
have advantages and disadvantages. Therefore, we should carefully consider which techniques would be appro-
priate for the metabolic system of interest and what insights we aim to obtain from the trans-omics network.
The advancement of omics measurement technologies, modeling frameworks, and computational instru-

ments enables us to determine metabolic fluxes more comprehensively, precisely, and rapidly, in larger scale
metabolic networks, which in turn will facilitate an understanding of metabolism-centric trans-omic networks
and a prediction of their responses to arbitrary perturbations. Such advances will make the determination of
metabolic fluxes essential and standard in the study of metabolism-centric trans-omic network for many fields,
including microbial engineering, metabolic physiology, and systems medicine.
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