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Abstract: Usutu virus (USUV) is a neurotropic flavivirus closely related to West Nile virus (WNV).
Its enzootic cycle mainly involves mosquitoes and birds. Human infection can occur with occasional,
but sometimes severe, neurological complications. Since its emergence and spread in Europe over the
last two decades, USUV has been linked to significant avian outbreaks, especially among Passeriformes,
including European blackbirds (Turdus merula). Strikingly, no in vivo avian model exists so far to
study this arbovirus. The domestic canary (Serinus canaria) is a passerine, which is considered as
a highly susceptible model of infection by WNV. Here, we experimentally challenged domestic
canaries with two different doses of USUV. All inoculated birds presented detectable amounts of
viral RNA in the blood and RNA shedding via feathers and droppings during the early stages of
the infection, as determined by RT-qPCR. Mortality occurred in both infected groups (1/5 and 2/5,
respectively) and was not necessarily correlated to a pure neurological disease. Subsequent analyses
of samples from dead birds showed histopathological changes and virus tropism mimicking those
reported in naturally infected birds. A robust seroconversion followed the infection in almost all
the surviving canaries. Altogether, these results demonstrate that domestic canaries constitute an
interesting experimental model for the study of USUV pathogenesis and transmission.
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1. Introduction

Usutu virus (USUV) is a mosquito-borne virus classified together with the West Nile virus (WNV)
in the Japanese encephalitis virus (JEV) serogroup, of the family Flaviviridae, genus Flavivirus [1]. It has
become an endemic pathogen in many European countries and has been co-circulating with WNV,
in a similar mosquito–bird life cycle, with humans and other mammals being occasional hosts [2–5].
USUV infection in humans is often asymptomatic. Nonetheless, an increasing number of cases
with neurological complications, such as encephalitis or meningoencephalitis, have recently been
reported [3,6–11]. In terms of animal health, USUV has been responsible for several epornitics in
Europe since 1996 [12]. At least 99 European bird species, belonging to 36 different families [13–16],
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are currently known to be susceptible to USUV infection. However, only in a few of these avian
species a fatal disease linked to USUV has been described [17], including the European blackbird
(Turdus merula) [15,18–21], house sparrow (Passer domesticus) [22,23], grey owl (Strix nebulosa) [24], and
common scoter (Melanitta nigra) [14]. The reasons for this selective pathogenicity are, still, unknown
and avian models are critically needed to study the pathogenesis, transmission routes, and virulence
of USUV.

Experimental infections of avian species with USUV are scarce and restricted so far to the domestic
goose (Anser anser f. domestica) [25] and domestic chicken (Gallus gallus domesticus) [26], which were
reported to be resistant to USUV infection. No experimental infection has been conducted, so far, on a
passerine, although Passeriformes are suspected to be relevant hosts for the amplification of USUV [27],
as in the case of WNV [2]. The domestic canary (Serinus canaria) belongs to the same order (Passeriformes)
as the European blackbird, which is highly susceptible to USUV infection. This species is accustomed
to captivity and is more convenient to use in the laboratory than wild-caught European blackbirds [28].
Further, canaries are considered as an excellent model of infection by WNV [28]. Epidemiological
surveys carried out in Germany during the period between 2011 and 2013 and during 2017–2018
detected USUV genomic RNA in these birds, indicating that they can be naturally infected with the
virus [19,29,30]. However, whether USUV can be pathogenic for this species is still unknown. To
address this question, we experimentally challenged domestic canaries with two different doses of
USUV. We investigated clinical signs, RNAemia, RNA shedding, and seroconversion in the surviving
birds. In parallel, histopathological changes and virus distribution were examined in the lethally
infected birds.

2. Materials and Methods

2.1. Virus and Birds

Usutu virus strain UR-10-Tm belonging to the European lineage 2 (GenBank: KX555624) was used
in this experiment. It was isolated from a pool of organs including the brain, spleen, kidney, and heart
of a blackbird found dead during an episode of anomalous mortality, which occurred in 2010 in the
province of Pesaro Urbino (Italy).

The virus was amplified in African Green Monkey Vero cells (ATCC®CRL-1586; passage number
5) and titrated by the 50% tissue culture infective dose (TCID50) technique.

Fifteen ten-month-old male canaries were obtained from Smet’s breeding facility (Vivegnis, Liege,
Belgium; certification number: HK51603061). The birds were transported to the biosafety level 2
(BSL-2) experimental animal facility of the Department of Pathology, Faculty of Veterinary Medicine,
Liège, Belgium, where they were marked by a unique colored and numerated leg band and housed in
randomly-composed groups of five per cage with water and grains supplied ad libitum. One week
later, all birds were blood-sampled and tested for the presence of USUV and WNV antibodies prior
to the experimental infection (see section: Detection of antibodies to USUV). The animal care and
procedures performed in this experiment were approved and supervised by the Committee for Ethics
in Animal Experimentation of the University of Liege, Belgium (Identification code: 18-2024, date of
approval: 16/08/2018).

2.2. USUV Challenge

Birds were assigned to three groups: control (n = 5), group A (high dose, n = 5), and group
B (low dose, n = 5), then anesthetized via isoflurane inhalation. After weighting, groups A and B
were inoculated using the intraperitoneal route with either a high dose (106TCID50/individual) or a
low dose (103TCID50/individual) of USUV, respectively, dispersed in 100 µL of cell culture medium
(Dulbecco’s Minimum Essential Medium (DMEM) supplemented with 1% penicillin/streptomycin).
The control group was injected with an equivalent volume of the virus-free medium. After infection,
each group was maintained in a separate wire cage with a removable floor that was cleaned daily.
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2.3. Sample Collection

Following the challenge, birds were monitored twice daily for 15 days post-infection (dpi).
A 100 µL blood sample was collected from the jugular vein of each bird at 1, 3, 9 and 15 dpi to assess the
course of RNAemia and antibody response. The blood was then added to phosphate-buffered saline
(PBS) in a ratio of 1:5 and allowed to clot at 4 ◦C. All the birds were weighed and immature feathers
were collected according to the same sampling schedule to reduce stress and repetitive anesthesia.
Droppings were daily collected from the cages during the first week of infection and stored at −80 ◦C
until use. Birds that succumbed to the infection were necropsied and 50 ± 1 mg of the brain, eye tissues,
lung, liver, kidney, and intestines were harvested for PCR analysis. Other portions of these organs,
as well as the heart and spleen, were fixed in 4% formalin for histological and immunohistological
examinations. Approximately 10 ± 1 mg of immature feathers were, also, collected from each of
these birds.

2.4. Histopathology and Immunohistochemistry

Tissue samples preserved in formalin were embedded in paraffin wax, sectioned and then stained
with hematoxylin and eosin. Slides were also processed for immunohistochemistry (IHC) as described
in [23] using a mix of monoclonal anti-E protein 4E9 and 4G2 antibodies at a 1/200 dilution.

2.5. USUV Genome Detection

RNA was extracted from 125 µl of diluted serum and the viral genome load was measured
by RT-qPCR, as described in [23]. Tissues, feathers and droppings samples were examined using
the same protocol as [23]. Viral RNA copies (VRC) were calculated by absolute quantification
using a standard curve, which was constructed as described in [31] using the following
primers (T7 promoter-USUVF-TAATACGACTCACTATAGGAAGACATCGTTCTCGACTTTG and
USUVR-CAGCACCAGTCTGTGACCAG).

2.6. Detection of Antibodies to USUV

Serum samples were screened for antibodies using a competitive ELISA kit (ID Screen®West Nile
Competition Multi-species, Grabels, France) following the manufacturer’s instructions. This kit is able
to detect immunoglobulins M and G directed against the envelope protein of WNV, which contains
an epitope common to viruses from the JEV serocomplex, including USUV [32,33]. Blood samples
collected at day 15 pi were further tested for USUV-neutralizing antibodies, which primarily target
the USUV envelope glycoprotein [34], using a virus neutralization test in microtiter plates (SN) as
described in [35]. Neutralization titers were assigned based on the highest dilution of each serum
where the complete absence of cytopathic effects in the cell monolayer was observed.

2.7. Statistical Analyses

Survival curves were plotted and compared using the Log-Rank and the Gehan-Breslow Wilcoxon
tests (GraphPad Software, La Jolla, CA, USA).

Levels of RNAemia and virus shedding via droppings and feathers were checked for normality
using Shapiro–Wilk and Kolmogorov–Smirnov statistics. The logarithmic transformation was
performed to normalize the distribution of the data revealed as non-parametric. Data were then analyzed
using ANOVA implemented in Rstudio. p-values < 0.05 were considered statistically significant.

3. Results

3.1. Survival and Body Weight Changes

All the infected birds but one showed inactivity and fluffed feathers between days 5 and 9 pi.
Two out of five birds from group A and one from group B succumbed without showing specific signs
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prior to death. The survival curves (Figure 1) did not differ statistically between the infected groups, as
assessed by both the log-rank (Mantel-Cox) χ2 = 2.322, P = 0.3131, and the Gehan-Breslow Wilcoxon
tests χ2 = 2.305, P = 0.3158. For surviving canaries, no loss in body weight was observed (data not
shown). However, a loss in the initial body mass ranging from 15.9% to 19.6% was recorded in the
dead birds. No weight loss or fatality was detected in the control group.
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Figure 1. Kaplan–Meier survival curves for canaries intraperitoneally inoculated with 103TCID50

(n = 5) or 106TCID50 (n = 5) of the Usutu virus.

3.2. Necropsy and Histopathology Findings

At necropsy, dead canaries had splenomegaly and pallor of the liver. Histopathological
investigations revealed severe satellitosis, neuronal necrosis, apoptosis, and neuronophagia in the
brain of the canary 4 from group A (Figure 2a). The same lesions were milder in the other two dead
canaries (Figure S1). Other common lesions consisted of slight perivascular infiltrates of lymphocytes
and plasma cells in the lungs, moderate mononuclear inflammation and necrosis, consistently present
in the liver (Figure 2b and Figure S2) and very mild in the heart, and histiocytosis with moderate
lymphoid depletion in the spleen. Acinar cell necrosis and infiltration of lymphocytes and plasma cells
in the interstitium were found in the lachrymal glands of the canary 4 from group A (Figure 2c). The
same canary presented macroscopic hemorrhage in the proventriculus, in which severe inflammation
and necrosis were also seen microscopically (Figure 2d). Canary 4 from group B also presented similar
lymphoplasmacytic and histiocytic infiltrates in the lamina propria of the proventriculus (Figure S3).

3.3. Virus Detection by Immunohistochemistry

All three lethally infected canaries exhibited USUV antigen immunolabeled cardiomyocytes
(Figure 3a). In the liver of the canary which died at day 5 pi, numerous Kupffer cells were IHC-positive.
Likewise, in the lung (Figure 3b), lachrymal gland (Figure 3c), and small intestine (Figure 3d), positive
cells, presumably of a leukocytic origin, were randomly distributed. The brain, kidney, spleen, and
skin were negative for USUV antigen.
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Figure 2. Pathological findings in the canary number 4 experimentally infected with 106TCID50 of
Usutu virus: (a) Cerebral cortex. Satellitosis: multiple foci of neuroglia around degenerating/apoptotic
neurons. (b) Liver. Periportal hepatic inflammation: accumulation of lymphocytes, plasma cells,
heterophils, and macrophages mostly around the portal area. (c) Lachrymal gland. Necrotic epithelial
cells and massive lymphocytic and plasmacytic infiltrations within the interstitium. (d) Proventriculus.
Marked lymphoplasmacytic and histiocytic infiltrates in the lamina propria. Hematoxylin and eosin,
Scale bars: 50 µm.

3.4. Virus Detection by RT-qPCR

All birds, except controls, became infected with USUV, based on viral RNA detection by RT-qPCR
in the serum as early as 1 dpi (Table 1). Very high RNAemia levels were found in the dead canaries
during the course of their infection (Table 1). The USUV RNAemia showed a significant drop from
3.18–6.22 log10VRC/mL on day 1 pi to 0.7–2.8 log10VRC/mL on day 15 pi (P < 0.005) and did not
statistically differ between the infected groups (P = 0.56). No detectable RNAemia was found in the
control group on days 1, 3, 9, and 15 pi.
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using a mix of 4E9 and 4G2 anti-E protein monoclonal antibodies. Red-brown staining in antigen-positive
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Table 1. Usutu virus RNA (expressed in log10 viral RNA copies mL−1) detected by RT-qPCR in the
serum of experimentally infected canaries.

Days
Post-Infection.

Canary 1 3 5 7 9 15

Group A
(106TCID50)

1 5.36 ± 0.01 5.21 ± 0.11 4.73 ± 0.1 0.37 ± 0.01

2 7.01 ± 0.02 6.34 ± 0.03 7.01 ± 0.3

3 5.99 ± 0.06 5.23 ± 0.04 Insuff. 3.71 ± 0.24

4 6.34 ± 0.03 6.73 ± 0.01 7.95 ± 0.08

5 5.50 ± 0.12 5.69 ± 0.01 3.83 ± 0.02 1.64 ± 0.21

Group B
(103TCID50)

1 7.13 ± 0.03 6.34 ± 0.03 2.81 ± 0.25 1.76 ± 0.23

2 4.38 ± 0.01 5.80 ± 0.01 Insuff. 2.09 ± 0.29

3 6.01 ± 0.02 5.83 ± 0.04 2.37 ± 0.4 1.6 ± 1.38

4 7.13 ± 0.08 7.33 ± 0.01 8.20 ± 0.21

5 4.38 ± 0.03 5.96 ± 0.07 1.95 ± 0.52 2.00 ± 0.24
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In the virus-inoculated canaries, virus shedding was shown to occur from 2 to 5 dpi through the
droppings in group A and from the first day to day 4 pi in group B, reaching a maximum at 1 or 2 dpi
according to the group (Figure 4a). The detection of USUV RNA in immature feathers also lasted for
4 days, with a maximum of 4.02 log10 VRC/10mg recorded in group B (Figure 4b). No significant
differences could be found in RNA shedding via the above-cited routes between groups (P = 0.53
and P = 0.614 respectively). The sham-inoculated group did not shed viral RNA via the feathers or
droppings during the experiment.
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Figure 4. Viral RNA loads detected by RT-qPCR in (a) droppings and (b) immature feathers from
canaries infected intraperitoneally with the Usutu virus.

All samples collected from the dead canaries at necropsy were USUV-positive by RT-qPCR, with
high RNA amounts in their blood and tissues, as presented in Table 2.

Table 2. USUV RNA loads in domestic canaries which succumbed to the experimental infection with
USUV as determined by RT-qPCR and expressed in log10 viral RNA copies.

Bird
Samples

Blood Brain Liver Eye Feathers Lung Kidney Intestine

Group A

Canary 4 5.39 ± 0.31 7.15 ± 0.09 9.05 ± 0.19 7.18 ± 0.15 4.32 ± 0.09 9.12 ± 0.21 6.22 ± 0.14 6.62 ± 0.02

Canary 2 4.60 ± 0.81 6.19 ± 0.03 7.40 ± 0.50 3.73 ± 0.02 3.05 ± 0.62 7.26 ± 0.1 7.48 ± 0.03 3.86 ± 0.04

Group B

Canary 4 7.30 ± 0.41 7.77 ± 0.01 5.05 ± 0.41 3.91 ± 0.3 3.32 ± 0.11 3.41 ± 0.07 4.53 ± 0.13 7.54 ± 0.10
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3.5. Antibody Response to USUV

The absence of a previous USUV (and WNV) infection was ensured by negative ELISA results on
blood samples collected before starting the experiment. Serum samples from all the surviving canaries
15 days post-infection, with one exception, showed a positive reaction in the ELISA (Table 3). Similarly,
neutralizing antibodies to USUV were detected in all the surviving USUV-challenged canaries to 15 dpi,
except the canary 2 from group B (Table 3). The highest titer of neutralizing antibodies was recorded in
one canary from group A (1:80). On day 9 pi, the three birds with a sufficient amount of sera for SN
testing (canary 1 from group A and canaries 1 and 4 from group B) all presented an antibody titer of
1:20. Serum samples were in insufficient amounts for antibody response assessment on day 3. The
control group remained serologically negative for USUV infection until the end of the experiment.

Table 3. USUV-challenged canaries analyzed for antibodies against USUV on day 15 post-infection
using the serum neutralization technique.

Surviving Birds ELISA Neutralizing Antibodies

Group A (106TCID50)
1 + 1:80

2 + 1:20

3 + 1:40

Group B (103TCID50)

1 + 1:20

2 D <1:5

3 + 1:40

4 + 1:20

D: Doubtful.

4. Discussion

In the present study, we questioned the susceptibility of domestic canaries to USUV. To our
knowledge, this is the first report of experimental infection with this virus in a passerine. After their
injection with two different doses of USUV, three out of the ten infected birds succumbed to infection,
in contrast to a high mortality rate (5/5) reported after 5 days of their challenge with as few as 10
PFU of WNV [28]. This suggests that USUV is less pathogenic for domestic canaries than WNV. The
strain of USUV used in this infection could, however, be less virulent compared with the original
strain (before cell passaging) or other genetically distinct strains. Thus, additional experimental
infections should be conducted using different USUV strains to draw a general conclusion regarding
WNV superior lethality in canaries. In natural conditions, infection with USUV could have a greater
impact on this species, since needle infection may fail to recapitulate the full biological parameters
of mosquito-borne transmission occurring in nature [36]. In fact, mosquito saliva released during an
infectious blood meal was shown to increase the severity of infection for a variety of arthropod-borne
flaviviruses [37–39]. Besides, the intradermal injection of the virus could have better mimicked the
natural injection route of USUV by the feeding mosquito [40]. The amount of USUV inoculated by
mosquitoes into a host is currently unknown. Depending on the mosquito species, the dose of WNV
inoculated by one mosquito during a blood meal ranges between 103.4 and 105.9 PFUs [41]. Thus, the
103 TCID50 and 106 TCID50 challenge doses may have complied with the amount of USUV inoculated
in the birds during a mosquito bite. However, in this experiment, morbidity and mortality rates
did not statistically differ in a dose-dependent manner. In the three dead canaries, higher levels of
RNAemia compared to the surviving ones were recorded during the infection, which might explain
the fatal outcome in these birds, regardless of the infective dose. This result is similar to that described
in the study of VanDalen et al. (2013), in which higher viremia was detected in American robins
(Turdus migratorius) lethally infected with WNV, although inoculated with the lowest dose [42]. In
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addition, canaries inoculated with a higher dose of the virus did not develop significantly higher
RNA load in their blood, similar to Reisen et al. (2006) [43] and VanDalen et al. (2013) [42]. For virus
detection in the blood, we used the RT-qPCR technique, which is known to be more sensitive than
titration assays [44]. We did not attempt virus titer measurement from the blood of the canaries; hence,
their host competence (that is their aptitude to express sufficiently high viremia levels to infect naive
mosquito vectors after a blood meal) is still unclear. Additional groups including individuals subjected
to regular sample collection and weight measurement could have helped fill the gap in RNAemia and
body mass evolution during the entire period of infection. Mortality rates were also preliminary and
would need larger group sizes to be expressed in a relevant percentage.

Cloacal and/or oropharyngeal shedding of USUV was previously described following natural [45]
or experimental [26] infection. Here, relatively high RNA shedding via the droppings (ranging from
2.3 to 4.3 log10 VRC/50mg) was found during 5 days following the infection. The infectiousness of
the detected virus particles was not, however, assessed in cell culture. Nevertheless, the non-vector
borne transmission of WNV was experimentally demonstrated via contaminated food, water, or air
in birds [46–50] and similar alternative routes for USUV transmission deserve further investigations
using this avian model. RNA shedding via droppings was unexpectedly detected one day earlier
in the group inoculated with a low dose. This could be explained by the collection technique of
droppings from cages, which implied random sampling of canaries rather than a systematic sampling
of each bird. For this reason, the amount of RNA detected may have not indicated the mean RNA
shedding in the infected group. Cloacal swabs could offer a more standardized method to study
RNA shedding kinetics via droppings and permit its correlation with the RNAemia levels in future
experiments. The presence and persistence of viral load in feather pulp were found in many bird
species following flaviviral infection [44,51,52] and were suspected to contribute to direct transmission
via feather picking [44]. Detection and amplification of the Israel turkey meningoencephalitis virus
(a mosquito-borne flavivirus pathogenic for turkeys) from feathers was even proposed for evaluation
of proper administration of live vaccines [53]. Our work is the first to demonstrate possible USUV
RNA shedding via birds’ immature feathers in the early stages of infection. Whether feathers are able
to disseminate infectious viruses in the environment or not and whether RNAemia levels are correlated
to the amount of virus shed via feathers are still unsolved.

USUV pathogenesis in the lethally infected canaries entailed early onset of viremia, followed by
a rapid viral invasion of all systems, as the virus was detected by RT-qPCR in all organs examined,
including the brain, heart, liver, spleen, skin, and kidney. This systematic infection is similar to that
reported in naturally infected birds [13]. Gross lesions in the present study included splenomegaly, pallor
in the liver, and hemorrhage in the proventriculus, as described in spontaneous USUV infections [18].
Besides, similarly to those previously reported in naturally infected birds [18], severe inflammation
and necrosis in multiple organs, including the brain were microscopically observed in the canary dead
at day 5 pi. However, neurological manifestations and abundant USUV antigen were lacking. We
also commonly found negative IHC staining in brains from naturally infected birds in Belgium [15].
Thus, death resulted more likely from multi-systemic failure than a pure neurologic disease, in a
similar manner described for WNV infection in highly susceptible species [54,55]. Similarly, mild
microscopic lesions and USUV antigen distribution patterns in the other two lethally infected canaries
were inconsistent with the high RNA amounts in their organs and blood. Consequently, a part of the
RNA detected by RT-qPCR could have been simply circulating in the blood. The mechanism leading
to the death of these canaries remains unclear. However, the heart seems to be highly affected with
viral replication, as virus antigens were systematically detected by IHC in the myocardium.

The dissemination of USUV to the eye was here shown by RT-qPCR. This is consistent with the
detection of abundant USUV antigens within the retina previously reported in experimentally infected
goose embryos [25]. The necrotic and inflammatory changes in the lachrymal gland of one dead canary,
along with diffuse lymphoplasmacytic infiltration, could have resulted in a lack of secretory activity
and contributed to ocular disease. Visual impairment and ocular lesions were described following bird
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infection with other flaviviruses [56,57]. Vision assessment should be performed in future experimental
infections with USUV. Further, the lachrymal gland of birds is part of the head-associated lymphatic
tissue [58]. In the study by Chvala et al. (2004), USUV was detected in macrophages and dendritic cells
of naturally infected blackbirds [18]. Together, these results demonstrate that USUV may target the
immune cells in birds, which could play an important role in the spread of the virus in a wide variety
of tissues, as described for WNV [59] and Tembusu virus [60] (a mosquito-borne flavivirus pathogenic
for certain waterfowl birds).

Two weeks after the experimental infection, almost all the surviving canaries showed a humoral
response and specific neutralizing antibodies against USUV, which further demonstrates their
susceptibility to USUV infection. Nevertheless, a single specimen from the group infected with
the lower dose of USUV presented a doubtful serological response using the ELISA examination and
an undetectable neutralizing antibodies titer by our technique. This finding could be due to a certain
heterogeneity in the genetic background of the outbred canaries used in this experiment, which mimics
the very specific host-pathogen interaction that has been described in nature ([13], Supplementary
Materials Appendix 1). Experimental infections of several bird species with WNV have shown that the
rise of antibodies against WNV occurs between five and 10 dpi [61]. Studies addressing the time-course
of antibody response and sterilizing immunity against the USUV challenge should be conducted
using this avian model. In addition, whether neutralizing antibodies to USUV could confer resistance
to the infection by multiple flaviviruses from the JEV serocomplex, based on the cross-protection
between these viruses [62–64] should be assessed. This information could be useful in the design of a
broad-spectrum vaccine to protect birds against lethal infection (e.g., with WNV and USUV) and/or
limit viral amplification (e.g., of JEV or St. Louis encephalitis virus) in these reservoir hosts.

5. Conclusions

In summary, we established that canaries are susceptible to USUV infection and can shed viral RNA
via droppings and feathers. Further, we showed that USUV-associated mortality was not necessarily
correlated to a pure neurological disease. These findings match those observed in European blackbirds
and other Passeriformes when naturally infected with USUV. Further studies in canaries using other
USUV strains circulating in Europe might contribute to a larger understanding of USUV pathogenesis.
In addition, alternative transmission routes of USUV can be assessed using this avian model.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/2/164/s1,
Figure S1: Cerebral cortex of canary 4 (a, low dose) and canary 2 (b, high dose). Satellitosis: Foci of neuroglia
around degenerating/apoptotic neurons. Figure S2: Liver of canary 2 (high dose). (a) Periportal hepatitis (b) Focal
hepatitis and necrosis. Figure S3: Proventriculus of canary 4 (low dose). Lymphoplasmacytic and histiocytic
infiltrates in the lamina propria. Scale bars: 50 µm.
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