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Abstract

Twist1, a basic helix-loop-helix transcription factor, is expressed in mesenchymal precursor populations during
embryogenesis and in metastatic cancer cells. In the developing heart, Twist1 is highly expressed in endocardial cushion
(ECC) valve mesenchymal cells and is down regulated during valve differentiation and remodeling. Previous studies
demonstrated that Twist1 promotes cell proliferation, migration, and expression of primitive extracellular matrix (ECM)
molecules in ECC mesenchymal cells. Furthermore, Twist1 expression is induced in human pediatric and adult diseased
heart valves. However, the Twist1 downstream target genes that mediate increased cell proliferation and migration during
early heart valve development remain largely unknown. Candidate gene and global gene profiling approaches were used to
identify transcriptional targets of Twist1 during heart valve development. Candidate target genes were analyzed for
evolutionarily conserved regions (ECRs) containing E-box consensus sequences that are potential Twist1 binding sites. ECRs
containing conserved E-box sequences were identified for Twist1 responsive genes Tbx20, Cdh11, Sema3C, Rab39b, and
Gadd45a. Twist1 binding to these sequences in vivo was determined by chromatin immunoprecipitation (ChIP) assays, and
binding was detected in ECCs but not late stage remodeling valves. In addition identified Twist1 target genes are highly
expressed in ECCs and have reduced expression during heart valve remodeling in vivo, which is consistent with the
expression pattern of Twist1. Together these analyses identify multiple new genes involved in cell proliferation and
migration that are differentially expressed in the developing heart valves, are responsive to Twist1 transcriptional function,
and contain Twist1-responsive regulatory sequences.
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Introduction

The highly conserved basic helix-loop-helix (bHLH) transcription

factor Twist1 was first identified in Drosophila as a critical regulator

of mesoderm formation and specification [1]. In mouse and avian

embryos, Twist1 functions in mesenchymal precursors of the

developing pharyngeal arches, limb, cranial sutures, and heart valve

endocardial cushions (ECC) [2–4]. Within these cell populations

Twist1 promotes cell proliferation, migration, and expression of

primitive extracellular matrix (ECM), thus promoting an undiffer-

entiated state. In humans, highly metastatic and chemotherapeutic

resistant cancers including breast, glioma, prostate, melanoma, and

neuroblastoma express high levels of TWIST1 [5]. TWIST1

expression is also upregulated in human diseased aortic valves that

have increased expression of mesenchymal markers of valve

progenitor cells [4,5]. The correlation of Twist1 expression with

increased cell proliferation and migration of cancer cells, and also in

diseased heart valves, is likely to be related to its functions in

embryonic mesenchymal populations, including ECC mesenchy-

mal cells. However, the underlying mechanisms by which Twist1

promotes proliferation and migration of mesenchymal cells during

heart valve development and disease are largely unknown.

Mesenchymal valve progenitor cells of the ECCs are highly

proliferative, migratory, and express ECM genes that encode the

relatively unstructured and open matrix of the ECCs. As heart

valve development progresses the valve progenitor cells begin to

differentiate, which is marked by decreased proliferation, de-

creased migration, and expression of genes that encode the

complex stratified ECM of the mature valves [6]. Within the

mesenchymal cell population several factors, including Twist1,

that promote cell proliferation and migration have been identified

through both in vivo and in vitro studies [4,7–10]. Previous gene

expression profiling identified Twist1 as the most differentially

expressed gene during heart valve development with preferential

expression in early ECC mesenchymal cells at embryonic day

(E)12.5 and decreased expression in remodeling valve leaflets at

E17.5 in mice [10]. In chick ECC explants, Twist1 promotes cell

proliferation and migration consistent with a role in maintaining

mesenchymal cells in an undifferentiated state [8]. There is limited

information on the Twist1 target genes that mediate increased cell

proliferation, migration, and primitive ECM gene expression.

Expression of Tbx20, Periostin, MMP13, and Cdh11 are responsive

to Twist1 expression in ECCs, but it is not known whether they

are direct or indirect transcriptional targets in the ECC

mesenchymal cells [8]. Although Twist1 regulates cell proliferation

and migration during expansion of the ECC mesenchymal cell

population, the direct molecular mechanisms by which this occurs

remain largely unknown.
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Twist1 regulates gene expression primarily as a transcriptional

activator through binding as a homodimer or heterodimer to the

E-box DNA consensus sequence, CANNTG [11]. Twist1 forms

homodimers (Twist1-Twist1) or heterodimers with other bHLH

transcription factors, such as ubiquitously expressed E-proteins

(E12/E47) [11,12]. Previously identified Twist1 transcriptional

targets, including Periostin, N-cadherin, Collagen2a1, and Zyxin,

regulate adhesion-migration and ECM in various cell types

[4,13–15]. However, these targets do not account for all Twist1

function in ECC mesenchymal cells. Since Twist1 is highly

expressed during heart valve development and disease, identifying

the direct transcriptional targets will aid in understanding the

mechanisms through which Twist1 promotes cell proliferation,

migration, and primitive ECM gene expression.

We used a combination of approaches to identify direct

transcriptional targets of Twist1 in ECC mesenchymal cells.

Evolutionarily conserved regions (ECR) containing E-box consen-

sus sequences were identified in chicken Tbx20 and Cdh11 genes,

which were determined to be responsive to Twist1 in chick ECC

studies [8]. Additionally, microarray gene expression profiling was

performed on mouse preosteoblast cells (MC3T3-E1) transfected

with Twist1 siRNA to identify additional candidate target genes

containing ECRs. MC3T3-E1 cells express high levels of Twist1

and share significant gene expression with developing heart valves,

thus facilitating Twist1 target gene identification [10]. Differential

expression of candidate Twist1 target genes, including Sema3C,

Rab39b, and Gadd45a, in developing heart valves in a pattern

similar to Twist1 was confirmed in vivo in mice, and Twist1-

responsive regulatory elements were identified. Furthermore,

binding of Twist1 to candidate ECRs was confirmed in mouse

embryonic heart valves in vivo. Each of the identified target genes

has known functions in cell proliferation and migration, consistent

with a role in expansion of ECC mesenchymal cells during heart

valve development downstream of Twist1.

Materials and Methods

Ethics statement
All experiments with animals were carried out with experimen-

tal protocols and procedures reviewed and approved by the

Cincinnati Children’s Hospital Medical Center Biosafety Com-

mittee and Institutional Animal Care and Use Committee,

protocol numbers 9D01009 and 0B08062.

Genomic sequence analysis for ECRs
ECRs containing bHLH protein binding E-box consensus

sequences (CANNTG) were identified using a combination of

rVista2.0/ECR browser (http://rvista.dcode.org/ [16]), oPOS-

SUM (http://www.cisreg.ca/oPOSSUM/) [17], Trafac [18], and

DiRe (Distant Regulatory elements of co-regulated genes, http://

dire.dcode.org/ [19]) genome-wide analyses. ECR alignments

were generated for homologous sequences based on sequence

conservation in multiple species as identified by rVista analysis

(Figure S1, Figure S2, Figure S3, Figure S4). Tbx20boxA

(NW_001471633.1, bps 46990932 to 46991520 for luciferase

assays and NW_001030907.1, bps 18507205 to 18507355 for

ChIP) and Cdh11-Intron1 (NW_001471435.1, bps 4202820 to

4203373 for luciferase assays and NW_001030904.1, bps

30738937 to 30739030 for ChIP) ECRs were identified using

rVista2.0/ECR browser with chicken as the base genome. Sema3C-

Intron1 (NW_001030784.1, bps 1843993 to 1844225), Gadd45a-

promoter (NW_001030811.1, bps 8955961 to 8956176) and Rab39b-

39UTR (NW_001035174.1, bps 660467 to 660626) ECRs were

identified through a combination of rVista2.0/ECR browser,

Trafac, DiRE, and oPOSSUM analyses with mouse as a base

genome.

Plasmids, transfections, and dual luciferase assay
Chicken Tbx20boxA and Cdh11-Intron1 ECRs were amplified

from genomic DNA isolated from white leghorn chicken embryos

at E4.5 (Charles River, CT). 1 mg of chicken genomic DNA was

used for PCR with the following primer sets and annealing

temperatures: Tbx20boxA (59- TAC GAG GGG GCT GTG AGG

TCT -39 and 59- GCA AAG CAA GCA ATC GTG AA -39,

55uC, 32 cycles) and Cdh11-Intron1 (59- GGT TGG GGT TGT

TTA GGG TTT C -39 and 59- AGC CAT GTC TTC AGT

GTC GTT TTA -39, 56uC, 28 cycles). Mouse Sema3CIntron1,

Gadd45a-promoter, and Rab39b-39UTR ECRs were amplified from

mouse genomic DNA isolated from cultured MC3T3-E1 cells

(ATCC, CRL-2593) [20] with the following primer sets and

annealing temperatures: Sema3CIntron1 (59- GGA AAG TCA CCC

ATA AAA ATC AA -39 and 59- TAA ACA CAG CAT GCA

ATC TCA AA -39, 54uC, 35 cycles), Rab39b-39UTR (59- CTG

GAA TAT AAG ACA ATC -39 and 59-CTG CAA TAA GTG

GGT TTT -39, 55uC, 30 cycles), and Gadd45a-promoter (59- GCT

GAA TCA TGA AGC TGT AAC TG -39 and 59- GGT TCA

GGC AAT GCT TTT GT -39, 55uC, 30 cycles). Amplified DNA

was blunt ended with the Quick Blunting Kit (New England

Biolabs, NEB) and DNA sequences ligated into the firefly

luciferase vector, pGL3-promoter (pGL3p) linearized with SalI

(NEB) and dephosphorylated with calf intestinal alkaline phos-

phatase (NEB) according to manufacturer’s instructions. The ECR

fragment sequence and orientation within pGL3p was verified

through DNA sequencing.

Human embryonic kidney (HEK) 293 cells (ATCC, CRL-1573)

were transfected using FUGENE6 Transfection Reagent (Roche)

according to the manufacturer’s protocol and as previously

described [4]. HEK 293 cells were grown as previously described

on 60 mm plates (Fisher) for 24 hours to 40–50% confluency [4].

Cultures were co-transfected with 0.5 mg of the firefly luciferase

constructs containing the ECRs of interest and either 0.1 mg of

control empty vectors (pcDNA3.1 or pEMSV) or 0.1 mg of

expression plasmids pcDNA-Twist1 [3] (gift from Dr. Anthony

Firulli, Indiana University School of Medicine) and/or pEMSV-

E12 (gift from Dr. Jeffery Molkentin, Cincinnati Children’s

Hospital Medical Center, CCHMC). All samples were co-

transfected with 0.01 mg renilla luciferase (pRL-TK, promega)

reporter plasmid for normalization of transfection efficiency [4].

Transfected cells were incubated for 48 hours at 37uC with 5%

C02, then washed (1XPBS), and lysed (1X Passive Lysis Buffer,

Promega) according to the manufacturer’s protocol [4]. Cells were

subjected to one freeze thaw cycle to facilitate lysis, then thawed

and centrifuged at 13,000 rpm for 1 minute to collect cell debris.

Dual-luciferase (Promega) assays were performed according to the

manufacturer’s protocol with 20 ml of cell lysate supernatant used

to evaluate firefly luciferase and renilla luciferase levels using a

single sample reader Monolight luminometer (BD Pharmingen)

[4,21]. For all samples, firefly luciferase values were normalized

relative to renilla luciferase values. Average fold change and

standard error of the mean (SEM) were calculated from at least 3

independent co-transfection experiments performed in triplicate.

Statistical significance was determined by Student’s t-test (p#0.05).

Site-directed mutagenesis
Site-directed mutagenesis of Tbx20boxA, Cdh11-Intron1, and

Sema3C-Intron1 E-box consensus sequences was performed on each

ECR within pGL3p vector using QuickChange Site-Directed

Mutagenesis Kit (Stratagene) according to the manufacturer’s
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protocol [4,21]. E-box consensus sequences (CANNTG) were

mutated at 3 nucleotides (ATNNAG) [22]. The following primers

and annealing temperatures were used for E-box mutagenesis:

Tbx20boxAMut (59- GCC TGT CTA ATT AGT ATT AAG AAC

GGA GGG C -39 and 59- CGG ACA GAT TAA TCA TAA TTC

TTG CCT CCC G -39, 55uC, 12 cycles), Cdh11-Intron1Mut (59-

GGT ACA ATG AAA GAA TTT AGT AAA TGA AGC AGA

TAA GCC C-39 and 59- GGG CTT ATC TGC TTC ATT TAC

AAA TGT CTT TCA TTG TAC C-39, 62uC, 16 cycles), Sema3C-

Intron1Mut (5- AAA CAT CTC TAG GGT CTC CTC ATT

CAG TGT GGT AGA GGC AGA G -39 and 59- CTC TGC

CTC TAC CAC ACT GAA TGA GGA GAC CCT AGA GAT

GTT T -39, 55uC, 12 cycles). The predicted nucleotide changes

were verified through DNA sequencing for each reporter plasmid.

Mutated constructs (Tbx20boxA-Mut, Cdh11-Intron1Mut, and Se-

ma3C-Intron1Mut) were then used for dual-luciferase assays as

described above.

Chromatin immunoprecipitation (ChIP)
In vivo binding of Twist1 protein to DNA was detected by ChIP

assay in mouse E12.5 ECCs and E17.5 remodeling atrioventricular

(AV) valves. Litters were generated from timed matings of FVBN

wild-type (Taconic) mice where the presence of a copulation plug

was considered E0.5. Pregnant females were sacrificed with CO2

inhalation and embryos isolated. Tissue was dissected from 10–12

atrioventricular canal (AVC) E12.5 ECCs or E17.5 AV valves [10].

Dissected ECCs and AV valves were placed in DMEM medium

(Invitrogen) supplemented with 10% FBS (HyClone) and 1%

penicillin-streptomycin (pen-strep, Invitrogen). Tissue was treated

with a final concentration of 3.7% formaldehyde (Sigma) for

10 minutes to cross-link protein/chromatin complexes followed by

lysis by sonication (Virsonic 60, Virtis) 2 times for 10 seconds with a

5-minute refractory period and an output of 5. ChIP was then

performed according to manufacturer’s protocol (EZChIP, Milli-

pore) modified by use of protein A-agarose beads (Millipore)

[4,23,24]. Immunoprecipitation (IP) was performed with a Twist1

specific antibody (Sigma T6451, 5 mg) or control normal rabbit IgG

(Cell Signaling, 5 mg). Eluted DNA from ChIP samples was

evaluated by quantitative polymerase chain reaction (qPCR)

relative to normal rabbit IgG control [25]. qPCR amplification

reactions were performed with initial denaturation of 94uC for

3 min, 25 cycles of 94uC for 20 s, annealing temperature dependent

based upon the primer set for 30 s, 72uC for 30 s, and final

extension at 72uC for 2 min. PCR amplification was performed

using the following primers and annealing temperatures: Tbx20box-

AChIP (59- AAG CAT GGA TTG TTG AGG AAG T -39 and 59-

CTA AGA GAA AGC AGG CTA CAT AAG -39, 55uC),

Cdh11Intron1E-box1 (59- TGC GAC TGA TAA GAC TGC CAT

TG -39 and 59- GAA AGG CCC ATT GTG CTG CTA C -39,

55uC), Cdh11Intron1E-box2ChIP (59- GAA AGG CCC ATT GTG

CTG CTA C -39 and 59- CTG CCT GAG CCT CCT GAC TG -

39, 55uC), Sema3CIntron1ChIP (59- GGA AAG TCA CCC ATA

AAA ATC AA -39 and 59- TAA ACA CAG CAT GCA ATC TCA

AA -39, 56uC), Rab39b39UTRChIP (59- CTG GAA TAT AAG ACA

ATC -39 and 59-CTG CAA TAA GTG GGT TTT -39, 45uC), and

Gadd45a-promoterChIP (59- GCT GAA TCA TGA AGC TGT AAC

TG -39 and 59- GGT TCA GGC AAT GCT TTT GT -39, 55uC).

SEM and fold enrichment were calculated relative to IgG control,

set to 1, from 3 independent ChIP experiments performed in

triplicate [25]. Statistical significance was determined by Student’s t-

test (p#0.05).

siRNA knockdown
Double stranded siRNAs with a 39 dT overhang specific to

mouse Twist1 were designed using Block-it RNAi designer

(Invitrogen) [8]. To efficiently knockdown Twist1, MC3T3-E1

cells were transfected with a pool of 3 double stranded siRNAs

(total concentration of 200 nM) for each experiment. The siRNA

sequences were: mTwist1-1 (GCAAGAUUCAGACCCUCAA

and UUGAGGGUCUGAAUCUUGC), mTwist1-2 (GGUGU-

CUAAAUGCAUUCAU and AUGAAUGCAUUUAGACACC),

and mTwist1-3 (CCGCCAGAGAUUGUAGCAU and AUGA-

CAUCUAGGUCUCCGG). Scrambled siRNA (AAACAUGC-

CUAGAGAGAGC and GCUCUCUCUAGGCAUGUUU) was

used as a control. MC3T3-E1 cells were cultured in 60 mm dishes

for 24 hours in MEM-alpha medium (Invitrogen), 10% FBS, and

1% pen-strep and transfected at 50–60% confluency. Cells were

then washed 3 times with 1XPBS and incubated with 1 ml OPTI-

MEM (Invitrogen) during preparation of siRNA mixture for

transfection [8]. Lipofectamine 2000, OPTI-MEM, and 200 nM

siRNA were mixed according to manufacturer’s protocol and as

previously described [8]. The siRNA mixture (Lipofectamine

2000/OPTI-MEM/siRNA) was added to cells in OPTI-MEM

and incubated for 4–6 hours. The siRNA mixture/OPTI-MEM

was then removed and cells were incubated in MEM-alpha

media/10%FBS/1%pen-strep for an additional 48 hours. RNA

was isolated from all samples using Trizol Reagent (Invitrogen)

and additional purification was performed using RNeasy Mini Kit

(Qiagen) [10]. siRNA transfection efficiency in MC3T3-E1 cells

was evaluated utilizing Block-it Fluorescent Oligo (Invitrogen)

reagent transfected with Lipofectamine 2000 and imaged as

previously reported [7]. Percent transfection was calculated by

comparing the total number of fluorescently labeled cells to the

total nuclei in 10 fields of cells from 3 experiments. Transfection

efficiency was ,80% for three independent experiments (n = 3).

siRNA knockdown of Twist1 was approximately 80% as assessed

by qPCR.

Affymetrix microarray hybridization and gene expression
analysis

Total purified mRNA isolated from Twist1 siRNA (siTwist1)

or Scrambled siRNA (siScr) transfected MC3T3-E1 cells was

submitted in biological triplicate to Cincinnati Children’s Hospital

Medical Center Affymetrix Microarray core for gene expression

analysis [10]. RNA integrity of all six samples was confirmed using

an Agilent 2100 Bioanalyzer (Agilent Technologies) and RNA

6000 Nano Assay [10]. Double stranded cDNA was generated

from 400 ng of each sample (3-siScrambled and 3-siTwist1) using

the TargetAMP1-Round Aminoallyl-RNA Amplification kit

(Epicenter). Biotin-labeled cRNA was synthesized with the IVT

Labeling Kit (Affymetrix) then chemically fragmented and

hybridized to Mouse Genome 430 2.0 Array (Affymetrix) using

standard protocols. Arrays were washed and stained with Fluidics

Station 450 (Affymetrix), scanned with GeneChip Scanner 3000

(Affymetrix), with the scanned gene expression data exported as

.CEL files. Data were loaded into GeneSpring Gx 7.3 software

(Agilent Technologies) and quantile normalization was performed

with robust multichip average (RMA) analysis [10]. Statistical

analysis (ANOVA) identified 5637 probe sets with significantly

differential gene expression (p#0.05) 5637 and 65 genes with $2.0

fold decreased gene expression. The complete MIAME compliant

data set is can be accessed through the GEO database with the

accession number GSE30953.

Twist1 Target Genes in Heart Valve Development
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RNA isolation and quantitative RT-PCR
Tissue from 10–12 E12.5 AVC ECCs and E17.5 AV valves of

FVBN wild-type mouse embryos was isolated with tungsten

needles in 1XPBS then placed in Trizol Reagent for RNA

isolation as previously described [4,10]. RNA was isolated from

MC3T3-E1 cells at 80–90% confluency cultured in a 100 mm

tissue culture dish (Fisher) using Trizol Reagent [10,26]. cDNA

was generated using Superscript cDNA kit (Invitrogen) with

800 ng of RNA. qPCR was performed as previously described [7].

For each primer set, standard curves generated with cDNA from

MC3T3 cells were used to determine cycle threshold, and all

samples were normalized for input based on expression levels of

housekeeping control gene, L7 [10]. The following primer sets and

annealing temperatures were used for qPCR analysis of murine

candidate target genes: Rab39b (59- GGC TCG ATC TCC ACC

AAA CG -39 and 59- ACC AGT TCC GGC TCA TTG TG -39,

62.5uC), Tubb3 (59- TAG ACC CCA GCG GCA ACT AT -39 and

59- GTT CCA GGT TCC AAG TCC ACC -39, 62.5uC), Gadd45a

(59- TGC TGC TAC TGG AGA ACG AC-39 and 59- CGA CTT

TCC CGG CAA AAA CAA A -39, 62.5uC), Serpinb9b (59- AAG

GAG TCC TGT TTT CGC TTC -39 and 59- CTG AGT CAT

CTG CCA ACA ACT -39, 60.0uC), Pa2g4 (59- CAG CAG GAG

CAA ACT ATC GC -39 and 59- GGC ATC ACC TTT CTC

ACA CAA G -39, 61.0uC), Trib3 (59- TGC AGG AAG AAA CCG

TGG GAG -39 and 59- CTC GTT TTA GGA CTG GAC ACT

TG -39, 61.0uC), Nras (59- ACT GAG TAC AAA CTG GTG

GTG G -39 and 59- TCG GTA AGA ATC CTC TAT GGT GG

-39, 61.0uC), and Sema3C (59- ACA GCA GGA AAA GCA GAA

ACA GGA -39 and 59- CAG CAG CCG ACA CAT CTT ACA

ATC -39, 59.0uC). Primer specificity was determined by DNA

sequencing following ligation of amplified fragment into pGEM-T

(Promega) vector. Previously validated primers were used for

amplification of Twist1, Osteonectin, Col2a1, and Col5a1 [10,27].

Average fold change of qPCR values for E17.5 AV valves was

compared to E12.5 ECCs set to 1.0, then the SEM was calculated

from 3 independent experiments performed in triplicate. Statistical

significance was determined by Student’s t-test (p#0.05).

Probe generation and In situ hybridization (ISH)
The following primer sequences and annealing temperatures

were used to generate PCR fragments for anti-sense riboprobes for

ISH: Tubb3 (59- TCT GGC GCC TTT GGA CAC CTA TT -39

and 59- CAT GCG CCC ACG GAA GAC AGT -39, 64uC),

Rab39b (59- GCG AGC GCA GCA TCC ATC C -39 and 59-

CTT CAC CCC TCC CCA ACC CTC CTG -39, 54uC), and

Serpinb9b (59- AGT CCA GGC AAT GCA TAA ACA GC -39 and

59- GGG CCA CCA CCT AAG CAG AGA -39, 56.8uC). All

sequences were amplified by RT-PCR of MC3T3-E1 cell cDNA.

Gadd45a primers were previously described, and the Sema3C

plasmid (Sema3CpSport6) was a kind gift from Dr. Yutaka Yoshida,

CCHMC [28]. Twist1 ISH probe was a kind gift from Dr. James

Martin, Texas A&M Health Sciences Center [29]. All primers

PCR fragments were ligated into pGEM-T vector (Promega) using

Rapid T4 DNA Ligase (Roche, 11635) [4]. Amplification of

predicted sequences by each primer set was confirmed by DNA

sequencing. Digoxigenin (DIG)-labeled ISH antisense riboprobes

were generated as previously described with the following

modifications [30]. The Sema3CpSport6 plasmid was linearized

with SalI and probe synthesized with T7 polymerase. Serpinb9b and

Gadd45a plasmids were linearized with NotI and probes synthe-

sized with SP6 polymerase. Tubb3 and Rab39b plasmids were

linearized with NcoI and probes synthesized with SP6 polymerase.

The Twist1 plasmid was linearized with XbaI and probe

synthesized with T3 polymerase.

FVBN wild-type mouse E12.5 whole embryos and E17.5 hearts

were isolated and fixed in 4% paraformaldehyde (PFA, Electron

Microscopy Sciences), then embedded in paraffin wax as

previously described [31]. Paraffin-embedded samples were

sectioned at a thickness of 14 mm. ISH was performed as

previously described with the following modifications [7]. Sections

were treated with 20 mg/ml proteinase K/PBS for 10 minutes at

37uC. Hybridization was carried out as previously described. For

all ISH experiments, color reactions with tetrazolium/5-bromo-4-

chloro-3-indolyl phosphate (NBT/BCIP, Roche) on E12.5 em-

bryos and E17.5 heart sections were stopped at the same time for

each probe. Development of color reactions ranged from 4 to

16 hours.

Results

Twist1 binds and promotes gene expression from an ECR
located upstream of cTbx20

In ECCs Tbx20 gene expression is responsive to Twist1,

however, whether this relationship is direct or indirect has not

been reported previously [8]. rVista 2.0 analysis was performed for

Tbx20 gene sequence alignment using chicken as the base genome

in order to determine if Tbx20 contains candidate DNA sequences

directly regulated by Twist1. An ECR (conserved from human to

zebrafish) and containing a conserved E-box consensus sequence

was identified 215040 to 214862 base pairs (bps) upstream from

the cTbx20 transcriptional start site (+1 site), which will be referred

to as Tbx20boxA (Figure 1A). Additional ECRs were identified that

are located further away from the +1 site of Tbx20. However, these

ECRs are more than 20 Kb from the +1 site and do not contain E-

box consensus sequences.

Twist1 responsiveness of the Tbx20boxA ECR was determined

by co-transfection assays in HEK 293 cells. The Tbx20boxA

sequence was linked to the minimal SV40 promoter of pGL3p,

which contains a firefly luciferase reporter, to generate

Tbx20boxA/pGL3p. Co-transfection of Tbx20boxA/pGL3p with a

Twist1 expression plasmid results in approximately 2.75-fold

increase in reporter gene activity compared to Tbx20boxA/pGL3p

co-transfected with control empty vector (pCDNA, Figure 1B).

Co-transfection of Tbx20boxA/pGL3p with E12 alone has no

effect on reporter gene expression. However, co-transfection of

Tbx20boxA/pGL3p with both Twist1 and E12 expression vectors

results in approximately 3.25-fold increase in reporter gene

activation. These experiments confirm that Tbx20boxA has

enhancer activity when linked to a minimal SV40 promoter.

To confirm that the E-box consensus sequence is essential for

Twist1 to promote gene expression from Tbx20boxA/pGL3p, site-

directed mutagenesis was performed to generate Tbx20boxAMut/

pGL3p (CATATG to ATTAAG, Figure 1A). Co-transfection of

Tbx20boxAMut/pGL3p with Twist1 alone, E12 alone, or Twist1

and E12 together confirms that the E-box consensus sequence is

necessary for Twist1 to promote gene expression from

Tbx20boxA/pGL3p (Figure 1A,B). ChIP assays were utilized to

assess Twist1 direct binding to Tbx20boxA in vivo during murine

early (E12.5 ECC) and late (E17.5 AV valve) valve development

(Figure 1C). Immunoprecipitation with anti-Twist1 demon-

strates that Twist1 is bound to the Tbx20boxA sequence in

E12.5 ECCs evident by approximately 3.75-fold enrichment

compared to IgG control. However, no enrichment in Twist1

binding to Tbx20boxA was observed in E17.5 AV valves in which

Twist1 gene expression is downregulated (Figure 1C). Thus

Twist1 promotes gene expression from a novel enhancer

associated with Tbx20, Tbx20boxA, in an E-box dependent

manner in transfected cells. Furthermore, Twist1 directly binds

Twist1 Target Genes in Heart Valve Development
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to Tbx20boxA in ECC mesenchymal cells, but not remodeling

heart valves, in vivo.

Twist1 binds and promotes gene expression from an ECR
in Intron1 of Cdh11

The adhesion-migration molecule Cdh11 (OB-Cadherin) is highly

expressed in ECC mesenchymal cells [8]. Furthermore, in chick

ECC cultures Cdh11 expression is responsive to Twist1 expression.

Genomic alignment and transcription factor binding site analysis

was performed to identify ECRs containing E-box consensus

sequences in the Cdh11 gene using chicken as the base genome. An

ECR (conserved in human to zebrafish) containing two conserved

E-box consensus sequences was identified within the first intron of

chicken Cdh11 (Cdh11-Intron1, +36256 to +36552 bps from the +1

site, Figure 2A). Cdh11-Intron1 sequence was amplified from E4.5

chicken genomic DNA and linked to the minimal SV40 promoter

of the pGL3p luciferase reporter plasmid. In co-transfection

assays, Twist1 promotes gene expression from Cdh11-Intron1/

pGL3p approximately 2.75-fold versus Cdh11-Intron1/pGL3p with

empty vector, while co-transfection with E12 alone has no

observed effect on reporter gene expression (Figure 2B). Co-

transfection with Twist1 and E12 together results in activation of

approximately 3.25-fold that is not statistically different from co-

transfection with Twist1 alone. These data identify a novel Twist1-

responsive enhancer within the first intron of Cdh11, Cdh11-Intron1.

Since two E-box consensus sequences are present within Cdh11-

Intron1/pGL3p, Twist1 could bind and promote gene expression

from either or both E-box consensus sites (E-box1 or E-box2,

Figure 2A). To examine whether Twist1 preferentially activates E-

box1 or E-box2, site-directed mutagenesis was performed on E-

box1 (CATTTG to ATTTAG, Cdh11-Intron1Mut/pGL3p,

Figure 2A). Loss of E-box1 in Cdh11-Intron1Mut/pGL3p eliminates

reporter gene activity by Twist1, E12, or Twist1 with E12,

indicating that Twist1 transactivation is dependent upon an intact

E-box1 consensus sequence (Figure 2B).

To examine the ability of Twist1 to directly bind to the Cdh11-

Intron1 ECR in developing heart valves in vivo, ChIP was

performed in mouse E12.5 ECCs and E17.5 AV valves

(Figure 2C). Twist1 immunoprecipitation is enriched 6.5- to 8-

fold for a region of Cdh11-Intron1 that contains only E-box1, but no

Twist1 binding is detected for a region of Cdh11-Intron1 that

contains only E-box2, relative to the IgG control. Therefore,

Twist1 preferentially binds and promotes gene expression from the

Cdh11-Intron1 E-box1 sequence (Figure 2C). Twist1 immunopre-

cipitation is not enriched with Cdh11-Intron1 regions that contain

either E-box1 or E-box2 in E17.5 AV valves (Figure 2C).

Figure 1. Twist1 binds and promotes gene expression from an ECR associated with Tbx20 (Tbx20boxA). A. An E-box-containing ECR is
located 215040 to 214862 base pairs (bps) from the chicken Tbx20 transcriptional start site (+1). Cross-species genomic alignment of the E-box
consensus sequence (shaded grey) and mutated sequence (mutated bps indicated by *) are indicated. B. Tbx20boxA or Tbx20boxA-Mut plasmids were
co-transfected into HEK293 cells, with empty vector or with Twist1, E12, or Twist1 and E12 expression vectors followed by luciferase reporter assays.
Fold change over the empty vector control set to 1 is shown with standard error of the mean (SEM). C. ChIP assays were performed with anti-Twist1 in
mE12.5 ECCs and mE17.5 AV valves quantified by qPCR. Fold enrichment was evaluated by comparing anti-Twist1 IP of E12.5 ECCs or anti-Twist1 IP of
E17.5 valves versus IgG (negative control) set to 1. Statistical significance was determined by Student’s t-Test, p = #0.05 indicated by *. All
experiments were performed in biological and technical triplicate. Histograms are a compilation of n = 3 experiments.
doi:10.1371/journal.pone.0029758.g001
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Together, these data indicate that Twist1 directly binds to Cdh11-

Intron1 in E12.5 ECC mesenchymal cells and promotes gene

expression specifically through the E-box1 consensus site.

Identification of Twist1 candidate genes by siRNA-
mediated loss of function in MC3T3-E1 cells

In order to identify additional Twist1 target gene candidates, an

siRNA-mediated knockdown and gene expression profiling

approach was employed in transfected MC3T3-E1 preosteoblast

cells. MC3T3-E1 cells are a preosteoblast cell line that expresses

high levels of Twist1 and has extensive shared gene expression with

E12.5 ECCs [10,20]. Therefore, MC3T3-E1 cells were chosen as

an appropriate in vitro system for identification of Twist1 candidate

target genes. MC3T3-E1 cells were transfected with a combina-

tion of 3 siRNAs specific to Twist1 (siTwist1) or scrambled control

siRNA (siScr). Twist1 siRNA transfection resulted in approxi-

mately 80% Twist1 mRNA knockdown verified through qPCR

and loss of protein as determined by immunohistochemistry

(Figure 3A and data not shown). RNA was collected from

MC3T3-E1 cells transfected with siScr or siTwist1 and subjected

to gene expression profiling using Affymetrix Microarray analysis.

Gene expression data were normalized and prioritized according

to p-value (p#0.05) and fold change ($2.0 fold) comparing

MC3T3-E1 cells treated with either siTwist1 or siScr. A total of 65

genes were identified with decreased expression by at least 2-fold

in cells transfected with siTwist1 versus siScr.

The 65 genes with $2-fold decreased expression with

knockdown of Twist1 were subjected to PANTHER analysis for

biological function classification. The majority of the differentially

expressed genes are classified into biological functions that are

consistent with known Twist1 functions during development and

disease (Figure 3B, Table 1) including cell cycle-proliferation

Figure 2. Twist1 binds and promotes gene expression from an ECR within Intron1 of Cadherin-11 (Cdh11-Intron1). A. An E-box-
containing ECR is located +36256 to +36552 bps from the chicken Cdh11 transcriptional start site (+1). Cross-species genomic alignment of the E-box
consensus sequence (shaded grey) and mutated sequence (mutated bps indicated by *) are indicated. B. Cdh11-Intron1 or Cdh11-Intron1Mut plasmids
were co-transfected into HEK293 cells with empty vector or with Twist1, E12, or Twist1 and E12 expression vectors and luciferase reporter assays
performed. Fold change over the empty vector control set to 1 is shown with SEM. C. ChIP assays were performed with anti-Twist1 in mE12.5 ECCs
and mE17.5 AV valves and quantified by qPCR. Fold enrichment was evaluated by comparing anti-Twist1 IP of mE12.5 ECCs or anti-Twist1 IP of
mE17.5 valves versus IgG (negative control) set to 1. Statistical significance was determined by Student’s t-Test, p = #0.05 indicated by *. All
experiments were performed in biological and technical triplicate. Histograms are a compilation of n = 3 experiments.
doi:10.1371/journal.pone.0029758.g002
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(29%), cell signaling (15%), adhesion-migration (12%), and

extracellular matrix (11%). The remaining genes were classified

into an ‘‘other’’ (33%) category, consisting of biological classifica-

tions such as ion transport, calcium binding, biotin metabolism,

and chemotaxis. Thus Twist1 knockdown in MC3T3-E1 pre-

osteoblast cells results in gene expression changes consistent with

known Twist1 regulation of cell proliferation, adhesion-migration,

signaling, and ECM gene expression.

Gene expression changes of candidate Twist1 target genes were

validated by determination of transcript expression levels of the

nine most differentially expressed genes by qPCR of RNA isolated

from MC3T3-E1 cells treated with siTwist1 versus siScr. Each of

the nine genes chosen for further analysis has been categorized as

related to functions regulated by Twist1 (Table 1). Decreased

expression of Sema3c, Tubb3, Gadd45a, Rab39b, Serpinb9b, Pa2G4,

Col5a1, Trib3, and Nras with loss of Twist1 was confirmed in

MC3T3-E1 cells. The differential expression of these Twist1

candidate target genes was validated by qPCR of RNA isolated

from MC3T3-E1 cells transfected with siTwist1 or siScr. Sema3C,

Tubb3, Gadd45a, Rab39b, Serpinb9b, Col5a1, Trib3, and Nras

expression were significantly decreased in siTwist1 versus siScr

treated MC3T3-E1 cells (Figure 4A). Expression analysis of the

previously identified Twist1 target gene Col2a1 was included as a

control for differential expression (Figure 4A,B). Differential

expression of one candidate gene from the microarray, Pa2G4,

was not validated in MC3T3-E1 cells. These data indicate that the

differential expression of multiple candidate Twist1 target genes

identified through microarray gene profiling was validated in

MC3T3-E1 cells.

Although a substantial number of genes are expressed in both

the developing heart valves and MC3T3-E1 cells, a subset of genes

are differentially expressed between preosteoblast cells and heart

valve progenitors, that terminally differentiate into distinct cell

types [10]. Therefore, expression of candidate Twist1 target genes

in the developing heart was examined in vivo. To examine

expression of candidate target genes during early versus late heart

valve development, qPCR was performed using RNA isolated

from mouse E12.5 ECCs, that express high levels of Twist1,

compared to RNA isolated from E17.5 AV remodeling valve

leaflets, with negligible Twist1 expression (Figure 4A,B). Expres-

sion of Sema3C, Tubb3, Rab39b, Serpinb9b, PA2G4, and Trib3 were

significantly decreased in E17.5 AV valves versus E12.5 ECCs

(Figure 4B). Two genes with decreased expression in MC3T3 cells

treated with siTwist1, Col5a1 and Nras, showed no differential

expression in E17.5 AV valves versus E12.5 ECCs, which may

reflect gene regulatory differences in valve progenitor cells and

preosteoblast lineages. Pa2G4 gene expression changes detected by

microarray were not confirmed in Twist1 siRNA treated MC3T3-

E1 cells, but Pa2G4 has decreased gene expression in late

developing heart valves. These differences could be due to

transcript variants of Pa2G4 differentially detected by microarray

and qPCR, or Pa2G4 may not be directly regulated by Twist1 and

thus was not analyzed further. Together these studies demonstrate

that multiple candidate Twist1 target genes identified by

microarray analysis in MC3T3 cells also are expressed during

early heart valve development and are decreased during heart

valve remodeling, similar to Twist1.

To determine whether the candidate Twist1 target genes exhibit

expression patterns similar to Twist1 during heart valve develop-

ment in E12.5 ECCs and E17.5 remodeling valve leaflets in vivo,

ISH was performed with the five most differentially expressed

genes associated with cell proliferation and migration identified

from microarray gene expression profiling (Figure 5). Sema3C,

Tubb3, Rab39b, Serpinb9b, and Gadd45a genes assessed by ISH are

responsive to Twist1 in MC3T3-E1 cells and are differentially

expressed coincident with Twist1 in mouse valve development as

determined by qPCR. Transcript expression and localization of

Twist1 candidate target genes, Sema3C (Figure 5A,B), Tubb3

(Figure 5C,D), Rab39b (Figure 5E,F), Serpinb9b (Figure 5G,H), and

Gadd45a (Figure 5I,J) is evident in ECCs, that express high levels of

Twist1 (Figure 5K,L). In addition, expression of each is decreased

during later valve development (E17.5 mitral valves), when Twist1

expression is low. Sema3C, Tubb3, Rab39b, Serpinb9b, and Gadd45a

also have sparse expression in the interventricular septum (IVS) of

the E12.5 heart (Figure 5A,C,E,G,I). Although nearly absent from

the E17.5 mitral valves, Sema3C and Serpinb9b are expressed in the

IVS and in AVC myocardium (Figure 5B). Additionally, Tubb3

retains expression at E17.5 in the distal tips of the mitral valve

leaflets (Figure 5D). Sema3C, Serpinb9b, and Tubb3 may have

Twist1-dependent and independent expression since they exhibit

unique and overlapping expression patterns compared to Twist1

(Figure 5K,L). Thus expression of the Twist1 downstream

candidate genes Sema3C, Tubb3, Rab39b, Gadd45a, and Serpinb9b

is similar toTwist1 during heart valve development.

Twist1 directly binds to ECRs associated with Sema3C,
Gadd45a, and Rab39b

DiRe, Trafac, rVista2.0, and oPOSSUM analyses were

employed to identify ECRs containing E-box consensus sequences

Figure 3. Knockdown of Twist1 results in decreased expression
of genes associated with mesenchymal cell functions. A. qPCR of
Twist1 and Osteonectin expression confirms knockdown of Twist1 in
MC3T3-E1 pre-osteoblast cells transfected with siTwist1 versus siScr
controls. Fold change relative to siScr transfected cells, set to 1, 6 SEM
is shown. Statistical significance was determined by Student’s t-Test,
p = #0.05 indicated by *. All experiments were performed in biological
and technical triplicate. Histograms are a compilation of n = 3
experiments. B. Twist1 candidate target genes from gene expression
profiling with $2.0 fold decreased grouped by functional classifications
are represented in a pie graph.
doi:10.1371/journal.pone.0029758.g003
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Table 1. Fold change and functional classification of Twist1 candidate target genes with the most decreased gene expression in
siTwist1 vs. siScr transfected MC3T3-E1 cells.

Adhesion-Migration

Ref Seq Gene ID Gene Name Fold Change

NM_013657 Sema3C Semaphorin 3C 24.95

NM_023279 Tubb3 Tubulin, beta 3 24.27

NM_010717 Limk1 LIM-domain containing, protein kinase 22.74

NM_145953 Cth Cystathionase (cystathionine gamma-lyase) 22.60

NM_010833 Msn Moesin 22.19

NM_008659 Myo1c Myosin IC 22.16

NM_001081053 Itga10 Integrin, alpha 10 22.12

NM_053083 Loxl4 Lysyl oxidase-like 4 22.06

NM_011693 Vcam1 Vascular cell adhesion molecule 1 22.09

Extracellular Matrix

NM_015734 Col5a1 Procollagen, type V, alpha 1 22.99

NM_011434 Sod1 Superoxide dismutase 1, soluble 22.42

NM_007729 Col11a1 Procollagen, type XI, alpha 1 22.40

NM_025711 Aspn Asporin 22.30

NM_010917 Nid1 Nidogen 1 22.21

NM_010721 Lmnb1 Lamin B1 22.17

NM_008695 Nid2 Nidogen 2 22.12

Signaling Molecules

NM_011452 Serpinb9b Serine (or cysteine) peptidase inhibitor, clade B, member 9b 23.41

NM_175093 Trib3 Tribbles homolog 3 (Drosophila) 22.95

NM_146162 Tmem119 Transmembrane protein 119 22.54

NM_028744 Pi4k2b Phosphatidylinositol 4-kinase type 2 beta 22.53

NM_019681 Freq Frequenin homolog (Drosophila) 22.25

NM_024454 Rab21 RAB21, Member RAS oncogene family 22.18

NM_009369 Tgfbi Transforming growth factor, beta induced 22.17

NM_021532 Dact1 Dapper homolog 1, antagonist of beta-catenin (xenopus) 22.20

NM_008924 Prkar2a Protein kinase, cAMP dependent regulatory, type II alpha 22.12

NM_025954 Pgp Phosphoglycolate phosphatase 22.07

NM_008845 Pip4k2a Phosphatidylinositol-5-phosphate 4-kinase, type II, alpha 22.05

Cell Cycle-Proliferation

NM_007836 Gadd45a Growth arrest and DNA-damage-inducible 45 alpha 24.13

NM_021288 Tyms Thymidylate synthase 23.91

NM_175122 Rab39b RAB39B, Member RAS oncogene family 23.64

NM_011119 Pa2g4 Proliferation-associated 2G4 23.13

NM_010937 Nras Neuroblastoma ras oncogene 22.73

NM_010485 Elavl1 ELAV (Embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu
antigen R)

22.62

NM_145953 Cth Cystathionase (cystathionine gamma-lyase) 22.60

NM_011641 Trp63 Transformation related protein 63 22.40

NM_009234 Sox11 SRY-box containing gene 11 22.25

NM_001081323 Mphosph9 M-phase phosphoprotein 9 22.25

NM_009906 Tpp1 Tripeptidyl peptidase I 22.24

NM_054102 Ivns1abp Influenza virus NS1A binding protein 22.22

NM_024184 Asf1b ASF1 Anti-silencing function 1 homolog B (S. cerevisiae) 22.15

NM_009881 Cdyl Chromodomain protein, Y chromosome-like 22.12

NM_008726 Nppb Natriuretic peptide precursor type B 22.11

NM_007788 Csnk2a1 Casein kinase 2, alpha 1 polypeptide 22.04

NM_020618 Smarce1 SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily e, member 1

22.00
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associated with Twist1 candidate target genes identified through

microarray gene expression profiling (Table 1). ECRs were

selected for further validation based on the presence of an E-box

consensus sequence identified by all bioinformatics programs used

to analyze genomic alignments and sequence homology between

at least mouse and human, since many of the genes identified are

not entirely conserved across species. ECRs with these criteria

were identified for Twist1 candidate target genes Sema3C, Gadd45a,

and Rab39b. Sema3C is the gene with the most decreased gene

expression (24.95 fold, Table 1) in the siTwist1 versus siScr

microarray gene profiling. An ECR was identified within the 1st

intron (+949 to +1125 bps from the +1 site) of Sema3C (Sema3C-

Intron1, Figure 6A). In co-transfection assays to assess enhancer

activity, Twist1 promotes reporter gene expression from Sema3c-

Intron1/pGL3p approximately 2.25-fold. In contrast co-transfection

with E12 alone does not result in reporter gene induction

compared to Sema3C-Intron1/pGL3p co-transfected with the empty

vector (Figure 6B). In co-transfection assays of Sema3C-Intron1/

pGL3p with Twist1 and E12 together, reporter gene expression

increases 1.5-fold and is not statistically different from co-

transfection with Twist1 alone. To examine whether the E-box

consensus sequence in Sema3C-Intron1 is necessary for Twist1 trans-

activation, site-directed mutagenesis was performed to create

Sema3C-Intron1Mut/pGL3p (CATCTG to ATTCAG, Figure 6A).

Co-transfection of Sema3C-Intron1Mut/pGL3p with Twist1, E12, or

Twist1 and E12 together does not promote reporter gene

expression, indicating that Twist1 requires the E-box consensus

sequence for induction of gene expression from Sema3C-Intron1

(Figure 6B). Furthermore, ChIP experiments with anti-Twist1

performed on protein:DNA complexes isolated from ECCs (E12.5

Adhesion-Migration

Ref Seq Gene ID Gene Name Fold Change

NM_010067 Trdmt1 tRNA aspartic acid methyltransferase 1 22.00

doi:10.1371/journal.pone.0029758.t001

Table 1. Cont.

Figure 4. qPCR validation of differential expression of Twist1 candidate target genes in siRNA-transfected MC3T3-E1 cells and in
ECC and remodeling valves in vivo. A. qPCR was performed to determine the level of expression of candidate Twist1 target genes in MC3T3-E1
cells transfected with siTwist1 versus siScr control. Fold change in expression relative to the level in siScr control cells is shown. B. qPCR was
performed to determine the level of expression of Twist1 candidate target genes in mouse E17.5 AV valves versus E12.5 ECCs. Fold change in
expression relative to the level in E12.5 ECCs is shown. qPCR determination of the expression of the known Twist1 target gene Col2a1 was included as
a positive control. Statistical significance was determined by Student’s t-Test, p = #0.05 indicated by *. All experiments were performed in biological
and technical triplicates. Histograms are a compilation of n = 3 experiments.
doi:10.1371/journal.pone.0029758.g004

Twist1 Target Genes in Heart Valve Development

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e29758



ECCs) and remodeling valves (E17.5 AV valves) confirms that

Twist1 directly binds to the Sema3C-Intron1 sequence preferentially

in ECCs in vivo (Figure 6C).

The expression level of the DNA repair enzyme-encoding gene

Gadd45a decreased -4.13 fold in siTwist1 versus siScr treated cells,

and an ECR containing an E-box consensus sequences was

identified near the 59-promoter region (Gadd45a-promoter, 23240 to

23456 bps from the +1 site, Figure 7A, Table 1). Additionally,

expression of the Ras oncogene family member Rab39b is

significantly decreased by 23.64 fold in siTwist1 versus siScr

treated cells, and an E-box containing ECR was identified within

the 39UTR of Rab39b (Rab39b-39UTR, +5891 to +6093 bps from

the +1 site, Figure 7C, Table 1). Co-transfection assays with

Gadd45a-pr/pGL3p or Rab39b-39UTR/pGL3p with Twist1 alone

or Twist1 and E12 together, but not E12 alone, induced reporter

gene expression by approximately 3.25-fold, respectively

(Figure 7B,D left panels). Furthermore, ChIP assays on developing

heart valves with anti-Twist1 show increased Twist1 binding to

Gadd45a-pr (6.5-fold enrichment) and Rab39b-39UTR (3.5-fold

enrichment) in early E12.5 ECCs relative to later E17.5 AV valves

(Figure 7B,D right panels). These data indicate that enhancers

associated with Twist1 candidate target genes, Gadd45a and

Rab39b, are responsive to Twist1 in co-transfection assays and are

directly bound by Twist1 during heart valve development.

Discussion

The bHLH transcription factor Twist1 is well established as an

essential regulator of mesenchymal cell maintenance, however,

identification of Twist1 transcriptional targets remains incomplete.

In this study, we report multiple direct Twist1 transcriptional

target genes identified through candidate and global gene profiling

approaches. These genes all have functions regulating the critical

mesenchymal cell characteristics of cell proliferation and migra-

tion. Twist1 promotes these cellular functions in various cell types

during development, such as developing heart valves, and also in

metastatic cancers. Elucidation of Twist1 transcriptional hierar-

chies regulating cell proliferation and migration will further the

understanding of the molecular mechanisms by which Twist1

functions in heart development and cancer progression.

We have identified Twist1-responsive ECRs, predicted to act as

gene enhancers, associated with Tbx20, Cdh11, Sema3C, Gadd45a,

and Rab39b genes that promote cell proliferation and migration.

These enhancers are directly bound by Twist1 in developing heart

valves, and conserved E-box consensus sequences were identified

that are required for Twist1-responsive gene expression. Unlike

other bHLH transcription factors, whose transcriptional activity

requires paired E-box consensus sequences, Twist1 appears to only

require one E-box consensus site to promote gene expression [32].

With the exception of Cdh11, each of the ECRs identified in this

study contains a single E-box consensus sequence. Conversely,

Cdh11-Intron1 contains 2 E-box consensus sequences, however,

Twist1 binding and gene induction was detected only for E-box1.

rVista2.0, oPOSSUM, DiRE, and Trafac analysis for transcription

factor binding sequences revealed that each identified enhancer

has additional conserved transcription factor binding consensus

sequences [16–19]. Enhancer sequences identified in these studies

are located in upstream genomic regions, proximal to the gene, in

39UTR, and intronic gene regions, consistent with locations of

previously identified enhancers within the genome [33]. Interest-

ingly, regions within close proximity to the E-box consensus site

are enriched for A/T sequences, relative to more distal flanking

regions. However, no common binding sequences within close

proximity to the E-box consensus site of the Twist1 responsive

ECRs were identified (Figures S1, S2, S3, S4). From these data, we

predict that Twist1 does not require a specific co-factor protein to

promote gene expression from its downstream target genes.

Figure 5. Expression of Sema3C, Tubb3, Rab39b, Serpinb9b, and
Gadd45a is similar to Twist1 in developing mouse heart valves.
In vivo localized expression of Twist1 candidate target genes Sema3C
(A,B), Tubb3 (C,D), Rab39b (E,F), Serpinb9b (G,H), and Gadd45a (I,J), was
determined relative to Twist1 (K,L) in mouse E12.5 ECCs (A, C, E, G, I, and
K) and E17.5 AV valves (B, D, F, H, J, and L) by in situ hybridization of
heart sections. The arrows indicate areas of candidate target gene
transcript expression. (IVS = interventricular septum, ECC = endocardial
cushion, and MV = mitral valve).
doi:10.1371/journal.pone.0029758.g005
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Although an obligate Twist1 co-factor was not identified from

these experiments, Twist1 binds to the E-box consensus sequence

as either a homodimer or heterodimer with E-proteins [11]. In

other systems, bHLH dimer composition dictates target gene

responsiveness, but dimer-specificity of Twist1 function in heart

valve development has not yet been determined [3,34,35].

Identified Twist1 target genes involved in cell migration include

Sema3C and Cdh11. Sema3C is the gene with the greatest decrease in

expression resulting from in siTwist1 treatment of MC3T3-E1

cells (Table 1). Previous studies have demonstrated that Sema3C

promotes cell migration of axons, neural crest cells, and metastatic

cancer cells [36,37]. Sema3C null mice die within the first

24 hours of life from persistent truncus arteriosus and aortic arch

malformations due to neural crest migration defects [38]. Similar

to Twist1, Sema3C is important for NCC contribution to OFT

development, but a role in heart valve development has not

previously been reported [38,39]. The identification of a Twist1-

responsive ECR bound by Twist1 in ECCs supports Twist1

activation of Sema3C in ECC mesenchymal cells. Whether this

hierarchy exists in migrating NCC will require additional

investigation. The Twist1-responsive gene, Cdh11, also promotes

cell migration and has overlapping expression with Twist1 in

preosteoblast cells, neural crest cells, preadipocytes, and heart

valve mesenchymal cells [8,40,41]. Since Cdh11 is expressed in

multiple migratory cell types, we predict that Twist1 activates

Cdh11 to promote cell migration in ECC mesenchymal cells of the

developing heart valves. Additional Twist1 target genes involved

in cell migration include N-cadherin, identified in cancer cells, and

Zyxin, identified in ECC mesenchymal cells [13,15,42]. Together

these studies provide accumulating evidence that Twist1 coordi-

nately regulates multiple downstream target genes to promote cell

migration in ECC mesenchymal cells, as well as in other

embryonic and cancer cell types.

Twist1 promotes cell proliferation in ECC mesenchymal cells,

in addition to other mesenchymal progenitor populations, and

also in metastatic cancer cells [5,11]. Nevertheless, the transcrip-

tional hierarchies by which Twist1 promotes cell proliferation are

largely uninvestigated. Our studies identified two direct tran-

scriptional targets of Twist1, Gadd45a and Rab39b, which have

functions in regulation of cell proliferation during embryogenesis

and in cultured cells, respectively [43,44]. However, Gadd45a and

Rab39b expression during heart valve development has not

previously been reported. Expression of Gadd45a is responsive to

multiple cellular stresses, and promotes genomic stability through

prevention of DNA damage [28]. Rab39b belongs to the Rab

group in the Ras family of small GTPases, which propagate

TGF-beta signaling through receptor recycling within the cell

inducing cellular proliferation [44]. Additional Twist1 candidate

Figure 6. Twist1 binds and promotes gene expression from an ECR within Intron1 of Semaphorin3C (Sema3C). A. An ECR is located +949
to +1125 bps from the mouse Sema3C +1 site. Cross-species genomic alignment of the E-box consensus sequence (shaded grey) and mutated
sequence (mutated bps indicated by *) are indicated. B. Sema3C-Intron1 or Sema3C-Intron1Mut was co-transfected into HEK293 cells with empty
vector or with Twist1, E12, or Twist1 and E12 expression vectors and luciferase reporter assays performed. Fold change over the empty vector control
set to 1 is shown with SEM. C. ChIP assays were performed with anti-Twist1 in mouse E12.5 ECCs and E17.5 AV valves and quantified by qPCR. Fold
enrichment was evaluated by comparing anti-Twist1 IP of E12.5 ECCs or anti-Twist1 IP of E17.5 valves versus IgG (negative control) set to 1. Statistical
significance was determined by Student’s t-Test, p = #0.05 indicated by *. All experiments were performed in biological and technical triplicate.
Histograms are a compilation of n = 3 experiments.
doi:10.1371/journal.pone.0029758.g006
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target genes identified by microarray, Trib3 and Serpinb9b,

promote proliferation of cancer cells and dendritic cells,

respectively [45,46]. Thus Twist1 promotes cell proliferation in

ECC mesenchymal cells, through regulation of multiple genes,

including Gadd45a and Rab39b. It is likely that these regulatory

interactions also are important for cell cycle regulation in other

mesenchymal cells in the embryo, as well as in cancer cell cycle

progression.

During heart valve development, Twist1, along with its target

gene Tbx20, regulate the transition from mesenchymal ECC to

remodeling valve leaflet [8]. Prolonged expression of Twist1

during heart valve development leads to increased cell prolifera-

tion and expression of primitive ECM proteins during heart valve

remodeling stages [4]. Additionally, human adult and pediatric

diseased aortic valves exhibit increased expression of Twist1,

induction of mesenchymal gene expression, increased cell

Figure 7. Twist1 binds and promotes gene expression from ECRs associated with Gadd45a and Rab39b. A. An E-box containing ECR is
located 23240 to 23456 bps from the mouse Gadd45a +1 site with the E-box sequence indicated by grey shading. B. (left) Gadd45a-promoter
plasmid was co-transfected into HEK293 cells with empty vector or with Twist1, E12, or Twist1 and E12 expression vectors and luciferase reporter
assays performed (left). Fold change over the empty vector control set to 1 is shown with SEM. ChIP assays were performed with anti-Twist1 in mouse
E12.5 ECCs and mE17.5 AV valves versus IgG (negative control) set to 1 (right). C. An E-box containing ECR is located within the mRab39b39UTR, +5891
to +6093 bps from mRab39b +1 site with the E-box indicated by grey shading. D. Rab39b-39UTR was co-transfected into HEK293 cells with empty
vector or with Twist1, E12, or Twist1 and E12 expression vectors and luciferase reporter assays performed (left). Fold change over the empty vector
control set to 1 is shown with SEM. ChIP assays were performed with anti-Twist1 in mouse E12.5 ECCs and E17.5 AV valves versus IgG (negative
control) set to 1 (right). Statistical significance was determined by Student’s t-Test, p = #0.05 indicated by *. All experiments were performed in
biological triplicate. Histograms are a compilation of n = 3 experiments.
doi:10.1371/journal.pone.0029758.g007
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proliferation, and disruption of ECM organization [4,8,47]. These

characteristics of diseased heart valves are in accordance with

Twist1 functions observed in ECC mesenchymal cells. However, it

is not clear if these regulatory interactions have reparative or

pathologic functions in heart valve disease. It is likely that the same

Twist1-activated regulatory hierarchies are important in the

development of various cell types, including osteoblast, neural

crest cells, and cancer cells. Therefore manipulation of Twist1-

mediated regulatory events could be used to develop therapeutic

strategies related to both human heart valve disease and cancer

progression [5,48].

Supporting Information

Figure S1 Tbx20boxA ECR cross species genomic
alignment and conserved transcription factor binding
sites. The chicken Tbx20boxA genomic sequence was utilized for

luciferase assays and ChIP assays. Genomic alignment with

corresponding zebrafish (NW_001877680.2), rat (NW_047798.2),

mouse (NW_001030907.1), and human (NW_001839003.1)

conserved sequences is shown. The dashed boxes indicate

predicted transcription factor binding sites, and the black lines

represent the location of primers used for ChIP assays.

(TIF)

Figure S2 Cdh11-Intron1 ECR cross species genomic
alignment and conserved transcription factor binding
sites. The chicken Cdh11-Intron1 genomic sequence was utilized for

luciferase assays and ChIP assays. Genomic alignment with zebrafish

(NW_001879268.3), frog (NW_003163392.1), dog (NW_876316.1),

human (NW_0018388290.1), monkey (NW_001111353.1),

cow (NW_001493595.2), rat (NW_001084742.1), and mouse

(NW_001030904.1) conserved sequences is shown. The dashed

boxes indicate predicted transcription factor binding sites, and the

black lines represent the location of primers used for ChIP assays.

(TIF)

Figure S3 Sema3C-Intron1 ECR cross species genomic
alignment and conserved transcription factor binding

sites. The mouse Sema3C-Intron1 genomic sequence was utilized

for luciferase assays and ChIP assays. Genomic alignment with

human (NW_001839063.1) and monkey (NW_001114280.1)

conserved sequences is shown. These sequences were not

conserved in zebrafish, frog, chicken, dog, or cow genomes. The

dashed boxes indicate predicted transcription factor binding sites,

and the black lines represent the location of primers used for ChIP

assays.

(TIF)

Figure S4 Rab39b-39UTR, and Gadd45a-prm ECR cross
species genomic alignment and conserved transcription
factor binding sites. The mouse Rab39b-39UTR (top) genomic

sequence was utilized for luciferase assays and ChIP assays.

Genomic alignment to corresponding monkey (NW_001218204.1)

and human (NW_001842420.1) conserved sequences is shown.

These sequences were not conserved in zebrafish, frog, chicken,

dog, or cow genomes. The mouse Gadd45a-prm (bottom) genomic

sequence was utilized for luciferase assays and ChIP assays.

Genomic alignment with monkey (NW_001108704.1) and human

(NW_001830579.2) sequences is shown. The dashed boxes

indicate predicted transcription factor binding sites, and the black

lines represent the location of primers used for ChIP assays.

(TIF)
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