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Abstract: A considerable effort to understand the bolted joints’ mechanical behavior in pultruded
profiles has existed in the literature over the past decades. However, most investigations focused on
the single-bolt connections, and only a few works considered single-lap joints. This paper investigates
the mechanical performance of a single-lap connection of pultruded glass fiber-reinforced poly-
mer (GFRP) plates owning to the experimental data deficit in the literature. Tensile tests of specimens
with different geometries generate a database comprising 80 single-bolt joints. The shear-out failure
was predominant for the considered GFRP pultruded plates, with the end length mainly affecting the
load-bearing capacity. Hart-Smith’s theoretical model overestimated the ultimate resistance of all
considered joints—the exceptionally low efficiency of the GFRP composite points out the necessity of
additional means for strengthening the drilled connections. Additionally, finite element (FE) software
Abaqus simulated the bolted joints; this study employs the user-defined subroutine experimentally
verified in the literature. In the considered examples, the ultimate resistance prediction error de-
creased from 25.7% to 2.9% with increasing the plate thickness (from 4 mm to 8 mm) and width (from
25 mm to 35 mm), which proves the reasonable adequacy of the simplified FE model and makes it a
valuable reference for further bolted joints’ development.

Keywords: fiber-reinforced polymer; glass fibers; pultrusion; bolted connection; tensile tests; failure;
finite element analysis

1. Introduction

Fiber-reinforced polymer (FRP) composites become typical for lightweight structures
due to the high strength-to-weight ratio, corrosion resistance, electromagnetic transparency,
and ease of processing [1–3]. The FRP connections’ design guide [4] pointed out the ade-
quacy of the linear model in approximating the mechanical behavior of FRP materials up
to failure at the coupon level. However, coupon or structural shapes behave nonlinearly
beyond certain load levels because of the differences in the joining methods and particular
fiber and fabric layups. Thus, the mechanical models must account for the specific behav-
ior of the FRP composite, and this understanding requires physical tests. Furthermore,
although the FRP structural components have the shape of plates and profiles typical
for steel elements, FRP material is highly vulnerable to the load orthogonal to the fiber
orientation [5]. The review article [6] identified adapting the well-established design proce-
dures for steel connections (based on years of experience with isotropic and homogeneous
materials) to account for the heterogeneous and directional properties of FRPs as one of the
most challenging problems. In addition, pultruded composites cannot redistribute loads
through the yielding (characteristic for metals) and, hence, reduce the sensitivity to stress
concentrations; the inherent brittle behavior of FRPs renders the fastening joints susceptible
to premature damage. Reference [6] provides the following classification of the physical
characteristics affecting the joints’ mechanical performance:
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• Geometric parameters (Figure 1) include the width-to-diameter ratio, w/d, end distance-
to-diameter ratio, e/d, and plate thickness, t;

• Material parameters group includes fiber and matrix type, fiber alignment, and laminate
stacking sequence;

• Joint configuration describes shear panel number (single- or double-lap), number of
bolts and bolt-rows, etc.;

• Fastener parameters include the fastener type and clearance of the hole;
• Lateral restraint describes bolt tightening and clamping area;
• The design conditions group specifies loading type, direction, duration, and

failure mechanisms.
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Figure 1. The connection geometry definition.

Hart-Smith [7] developed an analytical procedure for failure analysis of mechanically
fastened composite bolted joints. With some modifications proposed by Rosner [8], this
model describes the maximum stress, σ, in the joint shown in Figure 1 as follows:

σ = ke·
P

t·(w − d)
(1)

where ke is the elastic stress concentration factor, which is described as follows [9]:

ke =
w
d
+

d
w

+ 0.5·
(

1 − d
w

)
·θ ≈ w

d
+

d
w

(2)

with coefficient

θ =

{ w
e − 1, e/w ≤ 1;

0, e/w > 1 .
(3)

Notwithstanding the progress in the fastening technologies [6], the sample geometry
effect on the efficiency of the bolted joints describes the continued discussion object. Re-
markably, the efficiency description in metallic and FRP joints is also different—net strength
describes the metallic connection performance, and the ultimate load-bearing capacity, Pu,
describes the FRP connection effectiveness. In particular, the ratio of the joined (drilled)
member capacity to the ultimate resistance of the undamaged element determines the joint
efficiency parameter [4]:

η =
Pu

w·t· ft
(4)

where ft is the tension strength of the FRP material.
The differences in the FRP manufacturing technologies and internal (reinforcement)

structure cause everlasting discussions in the literature. İçten & Sayman [10] found that
the e/d and w/d ratios have a similar effect on the bearing strength of the aluminum and
glass fiber-reinforced polymer (GFRP) sandwich plates; the w/d ratio controls the failure
mechanism, with the condition e/d ≥ 3 ensuring the full load-bearing performance. This
observation supports results by Cooper & Turvey [11], which demonstrated that the shear
damage of GFRP laminate occurred when e/d < 3, the hole extrusion occurred when e/d > 3,
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and the laminate shear damage replaced the hole extrusion at e/d > 4. Furthermore, the
bolt clamping torque increased the failure load and reduced the critical end distance and
plate width. Nhut et al. [12] investigated the bolt diameter effect on the load-bearing
capacity of typical GFRP profiles manufactured in Japan; the damage mechanisms altered
to the hole bearing failure at w/d > 5. At the same time, this study developed a reliable
finite element (FE) model to predict the load-bearing capacity of the bolted connections
with Hashin failure criteria and Lusas software. Similar profiles were also the object of
research [13], which developed an efficient and reliable strengthening system for bolted
connections, employing thin multiaxial glass fiber sheets. Eskenati et al. [14] experimentally
demonstrated the bolted joints’ prominence regarding adhesive joints characterized by
brittle failure; references [15–17] support this observation. The numerical model [14] with
Abaqus software assumed the linear-elastic and transverse isotropy of GFRP material. The
latter example is typical for the GFRP structural analysis—65% of studies reviewed in
reference [18] employed the elastic material model to simulate such components.

References [19,20] applied elaborate probabilistic procedures to predict the ultimate re-
sistance and simulation of random connection clearances in the bolted joints. Belardi et al. [21]
developed a computationally efficient simulation tool representing stiffness components
of the bolted region when a set of radially arranged customized beams describes the user-
defined element. The first-order shear deformation plate theory [22] described the elastic
contribution of carbon FRP laminate; the bolt stiffness model accounts for its shank, bolt
head, and bolt hole bearing deformation. Liu et al. [23] introduced an improved 2D finite
element model accounting for the secondary bending effect and adding holes in the model
that improve the bolted joint stiffness prediction adequacy. The study [24] demonstrated
that an additional adhesive (hybrid) connection could increase the load-bearing capacity of
the single-bolt joint by 10%. The considered situations represented CFRP laminate, which
failure is not sensitive to the fiber orientation in the polymer matrix because of the appropri-
ately designed stacking sequence of the unidirectional layers of the laminated plates [25–27].
However, the mechanical performance prediction of the drilled connections of pultruded
FRP components is problematic because of the material anisotropy [4]. Matharu & Mot-
tram [28] found that the pin-bearing strength of the FRP specimens loaded in the direction
of pultrusion could exceed two times the load-bearing capacity of the samples loaded in
the orthogonal direction. The article [29] provides a valuable reference to the bolted joint
database of pultruded FRP components consisting of more than 1000 tested cases.

From the industrial point of view, the well-developed pultrusion technologies enable
fabricating a large volume of structural components at low operating costs, high produc-
tion rate, high product reproducibility, and dimensional tolerances [30]. The pultrusion
allows the distribution of a high volume of continuous mechanically resistant filaments
in a polymer matrix that protects the reinforcement from mechanical and environmental
impacts. Still, unfortunately, the application of FRP profiles is limited to simple structural
cases [31]; for instance, there is no mature specification for the connection of composite
materials in China.

Notwithstanding gathered datasets and comprehensive reviews of pultruded FRP
composites fastening reported in the literature [6,29], a considerable effort still exists over
the past decades to develop an understanding of the bolted joints’ mechanical behavior.
For example, Turvey [32] found that most experimental investigations focused on the
single-bolt joint performance; however, only a few works have been reported on single-lap
joints. Thus, there are currently no quantitative data on the mechanical performance of
such connections. Furthermore, the manufacturing technologies substantially vary the
mechanical properties of FRP materials, complicating the practical engineering applications.
Recognizing this situation motivates the present experimental study.

This paper investigates the mechanical performance of a single-bolt single-lap connec-
tion of pultruded GFRP plates produced in China, determining the safe range of the joint
geometry. The research variables are the plate thickness and width, end distance, and bolt
diameter. The test matrix extends the characteristic e/d and w/d ratios’ ranges assumed in
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the reference [32]. In the present study, the experimentally verified subroutine [33] for the
laminated composite describes the pultruded GFRP failure assuming it is a single-layer
plate and distinguishing fibers and polymer matrix damage processes. This FE simula-
tion and empirical model of unidirectional FRP composite [7–9] describe the theoretical
reference for estimating the physical connection efficiency.

2. Materials and Methods
2.1. Test Samples

The tests employ the GFRP composite plate manufactured by Henan Embrace Co.
(Henan, China), comprising the pultruded core of unidirectional glass filaments covered
with thin multiaxial glass fiber sheets. The fiber-reinforcement percentage provided by the
manufacturer is 65%. Table 1 describes the experimentally assessed material properties of
the GFRP composite.

Table 1. Mechanical parameters of the GFRP material.

Parameter Value

Tensile strength (MPa) 475.3
Compression strength (MPa) 175.2

Modulus of elasticity of longitudinal tension (GPa) 33.3
Modulus of elasticity of longitudinal compression (GPa) 53.3

Modulus of elasticity of transverse tension (GPa) 3.68
Modulus of elasticity of transverse compression (GPa) 6.16

Poisson’s ratio (–) 0.27

The test program includes four types of plate samples—Table 2 defines the geometric
parameters of the different specimen types, and Figure 1 describes the notations. The
test coupons were cut from the plates having the corresponding thickness. The sample
appearance and filament structure were checked visually; the internal structure of several
samples was verified using the scanning electron microscopy (SEM) technique. Figure 2
shows characteristic views of the specimen structure, demonstrating no apparent damage to
the fibers. Each connection group (Table 2) consists of five nominally identical samples. The
drilled hole diameter was the test variable. Four diameters (i.e., 6 mm, 8 mm, 10 mm, and
12 mm) are considered. The fasteners are the ordinary bolts Grade 4.6 (Chinese standard
GB/T 152.4-1988) with a nominal strength of 400 MPa and yield strength of 240 MPa; a
5 Nm torque was applied to tighten the nuts. Figure 3 shows the bolt samples.

Table 2. Geometry parameters of the different sample types (dimensions are in mm).

Parameter Type A Type B Type C Type D

Thickness, t 4 6 8 10
End distance, e 32 28 24 20

Width, w 25 30 35 40
Length, l 105 160 160 180

The holes were drilled with the alloy triangle piercer and polished with a diamond
mill. This procedure was carried out carefully to avoid damage to the GFRP plate and
minimize the bolt clearance. Table 3 describes the sample configuration. In this table, the
specimen notation determines the specimen type (Table 2) and the diameter of the hole.
Figure 4a shows the specimen configuration. As mentioned in Section 1, the test matrix
extends the e/d and w/d ranges assumed in the literature except for the e/d < 2, which
Turvey [32] found inefficient.
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Table 3. Configuration of the test samples.

Type Joint d (mm) e/d w/d t/d w/e

A

A-6 6 5.33 4.17 0.67 0.78
A-8 8 4.00 3.13 0.50 0.78
A-10 10 3.20 2.50 0.40 0.78
A-12 12 2.67 2.08 0.33 0.78

B

B-6 6 4.67 5.00 1.00 1.07
B-8 8 3.50 3.75 0.75 1.07

B-10 10 2.80 3.00 0.60 1.07
B-12 12 2.33 2.50 0.50 1.07

C

C-6 6 4.00 5.83 1.33 1.46
C-8 8 3.00 4.38 1.00 1.46
C-10 10 2.40 3.50 0.80 1.46
C-12 12 2.00 2.92 0.67 1.46

D

D-6 6 3.33 6.67 1.67 2.00
D-8 8 2.50 5.00 1.25 2.00

D-10 10 2.00 4.00 1.00 2.00
D-12 12 1.67 3.33 0.83 2.00
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2.2. Test Method

The standard [34] described the testing procedure and loading conditions. An electro-
mechanic 100 kN universal testing machine, Byes 2100 (Bangyi Precision Measuring Instru-
ments, Shanghai, China), under the displacement control and 2 mm/min speed, loaded the
specimens until the failure. The testing machine recorded the load and displacement every
second. Adhesively connected packing blocks made from the same GFRP plate as the tested
sample protected the loaded end in the testing grips and reduced the load eccentricity.
Figure 4 shows the loading scheme and test setup, which correspond to the test rig from
work [32].

3. Test Results

Table 4 summarizes the test results and describes the failure mode, estimated by fol-
lowing the classification [4,9]. The damage classification is based on most modes observed
in five identical samples: “BF” stands for the bolt shear failure, “C” denotes the cleavage
failure, “S” designates the shear-out failure, and “D” represents the delamination damage
of the end zone.
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Table 4. Configuration of the test samples.

Type Group d × t (mm2) Pu (kN) σm (MPa) Failure Mode

A

A-6 24 5.14 214.2 B
A-8 32 7.38 230.6 B

A-10 40 7.67 191.8 C
A-12 48 6.25 130.2 C

B

B-6 36 7.82 217.2 BF
B-8 48 11.51 239.8 S

B-10 60 11.58 193.0 S,C
B-12 72 10.08 140.0 C

C

C-6 48 7.47 155.6 S
C-8 64 9.32 145.6 S,C
C-10 80 9.72 121.5 S,C
C-12 96 8.92 92.9 S,C

D

D-6 60 6.85 114.2 S
D-8 80 9.83 122.9 S

D-10 100 14.95 149.5 S,D
D-12 120 13.05 108.8 S,D

In Table 4, Pu determines the maximum experimental load, and σm is the correspond-
ing mean stresses in the GFRP plate determined as follows:

σm =
Pu

d·t (5)

Figure 5 demonstrates the failure patterns of the selected joints. The A-6 samples
show the bearing failure signs with damages arched around the holes. The cracks formed
at the bolt support and extended to the laminate end are characteristic of the A-10 and
A-12 joints, evidencing the cleavage laminate failure. At the same time, some joint samples
(e.g., A-10-1) had cracks on both sides of the perforation, though only one crack path fully
developed. The A-8 joints represent the transition situation between A-6 and A-10 cases;
still, the cleavage failure has not been reached.

The bolt failure has resulted from the B-6 samples’ tests. Still, the B-8 and B-10
specimens demonstrate the shear-out failure signs. Notwithstanding the failure-confined
effect of the external laminate layer, the GFRP fragments separated by the parallel cracks
were extruded in the B-8-2 and B-10-2 samples. This failure is also typical for the C-Type
connections—it appeared in more than half of the specimens comprising each group
of the joint (Table 4). The relative reduction in the end distance, e, clarifies the failure
mechanisms in the D-Type joints. The D-10 and D-12 specimens demonstrate parallel
cracks development and shearing of the separated laminate fragment. The D-8 samples
possess the transition from the bearing to the shear-out failure case. Figure 6 shows the
characteristic load-displacement diagrams of the test specimens.
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4. Discussion of the Results

Figure 6 demonstrates that the failure brittleness increases with the bolt diameter.
Moreover, the failure suddenness, unfavorable in engineering applications, increases with
decreasing the end distance (e). In this context, the bearing failure of the GFRP composite
represents a less dangerous mode. This result agrees with the findings reported in the
literature [4,6,35]. Additionally, in some instances, the bearing mode induces residual
deformations similar to the peeling-out bolt failure when the joint can resist the load in
the post-ultimate loading range. Table 5 summarizes the ultimate load-bearing capacity of
all tested samples. In this table, columns “1” to “5” describe the responses of nominally
identical specimens; Pu determines the averaged load-bearing capacity of five samples;
Pth describes the theoretical resistance calculated from Equation (1), assuming the tensile
strength of GFRP from Table 1; ∆ is the relative difference between the theoretical and
experimental resistance of the joints; and Equation (4) determined the efficiency ratio η.
The following are significant conclusions raised from the results of Table 5:

• The theoretical model (Equation (1)) overestimates the ultimate resistance of all consid-
ered joints under the assumption of the GFRP strength estimated from the undrilled
coupon tests (Table 1). This conclusion supports the previous finding related to the
limited reinforcement efficiency in fibrous composites [18];

• The theoretical model (Equation (1)) demonstrates the best performance (estimated
in terms of the prediction error ∆) for the relatively low w/e values (w/e ≤ 1). The
condition w/d < 4 describes the most reliable prediction cases within this range,
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except for the B-12 specimens, where the cleavage failure was predominant (Table 4).
This result supports the observations from the literature sources [4] and [12] but
opposes the failure mechanisms identified in the article [11]. At the same time, this
finding supports the insights related to the manufacturing technology’s effect on the
mechanical performance of FRP components highlighted in Section 1;

• To the previous comment, the exceptionally low efficiency of the considered GFRP
laminated composite (expressed in terms of the coefficient η) points out the necessity
of additional means for strengthening the supposed drilled connections. The external
laminate was unable to prevent the pultruded GFRP core failure. Figure 7a shows
a typical cleavage failure of the unidirectional pultruded core under the outer sheet.
References [12,13,16,35] describe several efficient strengthening techniques applicable
for the considered plate connections.
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Figure 7. Summary of the test results: (a) A typical cleavage failure of the unidirectional pultruded
core; (b) The deformation energy (Equation (1)) variation tendency.

As can be observed from the results in Tables 3 and 4, cleavage damage typically
occurs when e/d < 3, i.e., the combination of thin plate and large bolt diameter. Next, the
cleavage damage transforms to shear-out damage with the plate thickness and end distance
increase; still, this increase affects the damage stress, σm, insignificantly. Finally, the shear-
out damage transforms to the bearing damage with the condition e/d ≥ 4 is satisfied; at this
stage, the stress σm increase is significant. Therefore, the authors recommend this condition
for the bolt connection design of the considered pultruded GFRP plates. Furthermore, the
transverse tensile damage of the bolt connection does not occur when w/d ≥ 2.3. However,
additional tests are necessary to verify the latter condition.

Table 6 shows the displacements corresponding to the ultimate load (Table 5) of all
test specimens and averaged values of each specimen type, uP. This table also includes
the corresponding averaged deformation energy, δm, describing the joint failure ductility.
The area below the ascending branch of the load-displacement diagram (e.g., Figure 6)
describes this energy. In this study, the following linear approximation determines this
parameter for simplification purposes:

δm = Pu·uP/2 (6)
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Table 5. The load-bearing capacity summary of all test specimens.

Joint “1” “2” “3” “4” “5” Pu (kN) Pth (kN) ∆ (%) η (%)

A-6 5.68 5.05 5.30 4.71 4.97 5.14 ± 7.1% ‡ 7.79 51.4 11.4
A-8 7.32 8.20 7.47 7.10 6.82 7.38 ± 7.0% 8.91 20.7 16.4

A-10 7.96 7.50 7.52 7.23 8.12 7.67 ± 4.7% 9.34 21.9 17.0
A-12 2.47 * 4.88 6.31 7.25 6.56 6.25 ± 16.0% 9.16 46.6 13.8

B-6 7.44 8.26 8.30 7.71 7.40 7.82 ± 5.6% 13.09 67.3 9.1
B-8 10.75 11.50 12.27 11.94 11.09 11.51 ± 5.3% 15.52 34.8 13.5
B-10 12.62 11.15 13.19 10.04 10.91 11.58 ± 11.2% 16.99 46.7 13.5
B-12 8.36 10.99 10.42 9.44 11.18 10.08 ± 11.7% 17.57 74.3 11.8

C-6 5.61 7.70 7.52 8.33 8.21 7.47 ± 14.7% 17.80 138.2 5.6
C-8 8.03 10.20 9.34 9.65 9.37 9.32 ± 8.6% 21.47 130.4 7.0

C-10 7.97 8.54 11.13 11.30 9.65 9.72 ± 15.4% 24.07 147.7 7.3
C-12 7.14 10.68 7.89 9.16 9.73 8.92 ± 15.9% 25.64 187.4 6.7

D-6 6.51 6.12 7.50 7.24 6.90 6.85 ± 8.1% 22.31 225.6 3.6
D-8 9.38 12.84 8.20 9.74 9.01 9.83 ± 18.0% 27.16 176.2 5.2
D-10 14.62 15.45 14.48 14.86 15.31 14.95 ± 2.8% 30.83 106.3 7.9
D-12 13.09 15.49 16.28 10.82 9.55 13.05 ± 22.2% 33.41 156.0 6.9

* The average resistance did not account for this exceptional value. ‡ This number represents the mean ± coefficient
of variation (in percent).

Table 6. The displacement corresponding to the ultimate load and deformation energy.

Joint “1” “2” “3” “4” “5” uP (mm) δm (kN·mm)

A-6 5.20 5.04 6.26 5.49 5.47 5.49 ± 8.5% ‡ 14.12 ± 11.3% ‡

A-8 7.45 6.77 8.38 6.36 6.78 7.15 ± 11.1% 26.40 ± 13.6%
A-10 8.00 7.94 6.17 6.49 7.49 7.22 ± 11.6% 27.74 ± 14.7%
A-12 5.44 5.88 5.08 6.60 5.44 5.69 ± 10.3% 18.03 ± 34.5%

B-6 3.69 2.99 4.69 5.65 5.18 4.44 ± 24.5% 17.29 ± 23.4%
B-8 4.68 5.00 5.26 5.46 4.38 4.96 ± 8.8% 28.61 ± 13.5%
B-10 5.63 4.96 4.84 3.65 5.98 5.01 ± 17.8% 29.22 ± 23.0%
B-12 4.70 5.76 4.87 4.83 6.09 5.25 ± 12.0% 26.71 ± 22.6%

C-6 4.46 6.25 7.88 6.69 6.59 6.37 ± 19.3% 24.22 ± 28.3%
C-8 4.28 6.91 5.59 5.44 4.56 5.36 ± 19.3% 25.23 ± 26.7%

C-10 3.68 4.47 6.44 6.23 4.33 5.03 ± 24.4% 25.13 ± 38.7%
C-12 4.44 6.79 5.68 4.28 5.76 5.39 ± 19.2% 24.44 ± 32.6%

D-6 5.85 4.75 5.14 7.01 5.06 5.56 ± 16.3% 19.13 ± 20.7%
D-8 4.65 7.93 5.20 5.42 7.92 6.23 ± 25.3% 31.22 ± 39.7%
D-10 6.36 7.60 7.84 7.72 6.62 7.23 ± 9.5% 54.02 ± 9.7%
D-12 6.69 6.85 6.67 5.48 6.56 6.45 ± 8.6 42.42 ± 27.4%

‡ This number represents the mean ± coefficient of variation (in percent).

The statistical analysis demonstrated that among the parameters listed in Table 3,
only e/d and w/e ratios significantly affect the energy δm, opposing the w/d parameter’s
importance reported in the literature [10,12].

Figure 7b shows the averaged energy values (Table 6) scattered along the influence
parameters. The trend lines define the effect tendencies; the determination coefficients, R2,
describe the scatter part, which could be explained by the variation of the variable, i.e.,
either e/d or w/e ratio. In other words, these results mean that the variation of the e/d and
w/e ratios can explain 40.9% and 31.1% of the deformation energy alteration observed in the
experiments. An interested reader can find a more detailed explanation of the coefficient
R2 interpretation procedure in reference [36].

The multiple numbers of identical samples allow for assessing variation of the char-
acteristic mechanical parameters of the bolted joints. Therefore, Tables 5 and 6 include
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the variation coefficient values; Figure 8 summarizes the parametric analysis results of the
scatter tendencies.
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Figure 8. Variation of the test results: (a) Maximum load, Pu; (b) Deformation corresponding to Pu.

Figure 8a demonstrates the tendency of the variation coefficient of the ultimate
load (Table 5), similar to the deformation energy trends shown in Figure 7b except for
the linear approximation reliability—the models demonstrate the coefficient R2 equal to
0.257 for e/d ratio and 0.122 for w/e ratio. Figure 8b shows the opposite tendencies of the
deformation corresponding to the ultimate load (Table 6)—only the t/d or w/d ratios have a
detectable effect on the scatter. This trend is expectable and indicative of the scatter reduction
with increasing the width and thickness of the plate. The remaining geometry parameters do
not affect the spread of the characteristics presented in Tables 5 and 6. In any case, however,
the observed coefficients R2 are too low in developing a reliable prediction model.

5. Finite Element Model of the Bolted Connection

The theoretical analysis demonstrates systematic underestimation of the ultimate re-
sistance expressed in the coefficient η terms (Equation (4))—none of the considered joints’
efficiency exceeds 20% (Table 5). Thus, this study employs the finite element (FE) analysis to
identify possible ways to improve the bolted joint resistance in the pultruded GFRP plates.

5.1. The FE Model Description

The deformation problem is formulated in the 3D domain. A nonlinear FE analysis
with Abaqus software predicts the load-bearing capacity of the bolted connection. The sim-
ulations include stress analysis, failure determination, and material stiffness degradation.
The Abaqus software can determine the stress distribution, but the failure determination
requires a damage criterion of the GFRP material. Therefore, this study employs the
experimentally verified subroutine [33] describing the laminate failure, considering the
pultruded GFRP as a single-layer composite plate. The GFRP plate is treated as transversely
isotropic material with 17 solution-dependent state variables and five variables controlling
finite element deletion, i.e., failure of the FE mesh structure. This subroutine uses the 3D
Hashin [37] and Puck [38] failure criteria, describing fibers and polymer matrix damage
processes. Table 7 describes the material model parameters of the GFRP plate; the default
values determined the remaining constraints. The interested reader could find a detailed
description of the material model in the reference [33].

The perfectly elastic material model describes the deformation behavior of steel. The
200 GPa modulus of elasticity and the 7820 kg/m3 density were assumed.

Figure 9 shows a FE model of the bolted joint, and Table 8 defines the model assump-
tions and FE size. Remarkably, the finite element size-sensitivity analysis was beyond
the scope of this study, which uses the FE discretization as recommended in the refer-
ences [19,21] to reduce the computation costs. This FE model requires three to four hours to
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reach the final convergence using the laptop with four parallel Intel Core I7-10750H CPU
2.60 processors and 16G RAM.

Table 7. The GFRP material model parameters.

Parameter Direction “1” Direction “2” Direction “3”

Modulus of elasticity, E (GPa) 33.27 3.68 3.68
Poisson’s ratio, υ (–) 0.27 0.27 0.40

Shear modulus, G (GPa) 1.6 1.6 1.0
Maximum tensile stress, σt (MPa) 1800 * 31 31

Maximum compression stress, σc (MPa) 450 * 50 50
Maximum shear stress, τ (MPa) 80 80 40

Density, ρ (kg/m3) 1600 1600 1600
* These values were tailored for adequate representation of the experimental load-bearing capacity.
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mesh of GFRP plate; (c) FE mesh of the steel bolt.

Table 8. FE model assumptions.

Component Model Comment

Bolt and screw-nut Perfectly elastic A single macroelement with ~1.4 mm FE size

Bolt and GFRP plate contact Hard contact The bolt was fit without clearance; the teeth surface is
neglected; the penetration is impossible

GFRP plate Progressive damage model
Table 7 and reference [33] describe the model parameters
with ~2.5 mm (plate ends) and ~1.2 mm (around the bolt

hole) FE size

Contact between GFRP plates Hard contact The friction coefficient = 0.2; the penetration is impossible

Figure 9a describes the loading and boundary conditions, which represent the physical
tests (Section 2.2). Tables 2 and 3 describe the specimen geometry. The iteratively applied
displacement determines the loading situation. The loaded end deviation was prevented,
fixing the plate in the “2” direction; the opposite end movements were fixed in the “1” and
“3” directions.
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Solid brick C3D8R, an eight-node linear brick, reduced the integration elements dis-
cretizing the FE model in Abaqus/Explicit solver; the relax stiffness hourglass-control
method reduced zero-energy modes in the simulations. Figure 9b,c show the FE mesh. It
can be observed (Figure 9b) that the square zone around the hole has refined mesh with six
elements through the plate thickness. The steel bolt (Figure 9c) and nut are modeled as a
single macroelement, neglecting the teeth on the contact surface with the GFRP plate.

5.2. Simulation Results

The simulation results of the A-12 and C-12 joints exemplify the numerical modeling.
Figure 10 shows the deformation prediction results. Figure 10a,c, together with the simu-
lated graphs, include the experimentally determined load-displacement diagrams. Several
test specimens did not react to the tension load approximately until one mm displacement.
This situation results from the insufficiently solid contact of the joint parts. Typically, several
pre-loading cycles disappear such an effect [5]. However, the considered samples were
not pre-loaded. Therefore, the authors theoretically shifted the experimental diagrams to
the zero-point—Figure 10b,d demonstrate the modified graphs, which are the object for
further analysis.
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Figure 10. Load-displacement diagrams of the tested joints: (a,b) A-12 joint type before and after
transformation of the experimental graphs; (c,d) The same diagrams of C-12 connections. Note: the
diagrams of each graph show responses of five nominally identical test samples.

Let us consider the simulated diagrams the theoretical reference, describing the effi-
cient behavior of the bolted connection. Thus, Figure 10b,d display that the initial slope
of experimental and numerical graphs coincide, indicating the correctness of the assumed
modulus of elasticity. However, the joins deform “elastically” until a relatively low load
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(approximately 1 kN). The experimental graphs’ deviation from the numerically predicted
elastic line indicates the emergence of the defects of the bolted connection. These defects
can result from the fiber cutting in the drilled hole, manual drilling flaws, and damaging
the contact surface with the spiral teeth of the bolt. The decrease in the ultimate resistance
of the joints could have similar origins [18,35]. At the same time, however, the test samples
demonstrate a load-bearing capacity comparable to the predicted one.

In the considered examples, the numerical model predicts the 7.85 kN and 9.18 kN
ultimate resistance of the A-12 and C-12 type joints that describe 25.7% and 2.9% error
regarding the test results (6.25 kN and 8.92 kN, Table 5). In other words, the prediction error
decreases with increasing the plate thickness and width, proving the reasonable adequacy of
the developed simplified model, improving the theoretical predictions of Table 5. Moreover,
the descending branch of the predicted load-displacement diagram (Figure 10) represents
the brittle failure tendency observed in the tests.

Figure 11 illustrates the failure mechanisms of the A-12 joint hidden during the
experimental loading. During the simulation process, the loaded surface of the hole was
squeezed first. Then, the fiber and matrix were compressed and damaged; the matrix
tensile damage occurred behand the compressed surface. Finally, the splitting damage
occurred instantaneously, reaching the ultimate resistance of the GFRP material.
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Figure 11. Numerically predicted deformation behavior and stress distribution in the A-12 joint
(refer to Figure 10b for the deformation stages): (a) Displacement u = 0.259 mm, load P = 1.500 kN;
(b) u = 1.040 mm, P = 6.500 kN; (c) u = 1.350 mm, P = 7.630 kN; (d) u = 2.440 mm, P = 0.798 kN.

Figure 12 compares the deformation behavior of the A-12 and C-12 joints expressed
in the damage factor SDV3 terms—the factor SDV3 = 0 corresponds to the undamaged
material; SDV3 = 1 defines the complete failure, describing the limit when the subroutine
eliminates the damaged finite element from the model. The simulation results’ consistency
with the physical test outcomes proves the model’s adequacy. On the one hand, however,
the authors point out the illustrative nature of Figures 11 and 12. On the other hand,
the developed numerical model can serve as an efficient reference for further developing
mechanically fastened joints employing GFRP components.
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6. Conclusions

This manuscript investigates the mechanical performance of a single-bolt connection
of pultruded GFRP plates. The research variables were plate thickness and width, end
distance, and hole diameter. The test program included four types of plate samples.
Each testing group consisted of four joint geometries; five nominally identical joints were
produced, resulting in 80 connections tested. The theoretical model reported in the literature
determined the connection efficiency. Additionally, finite element (FE) Abaqus software
simulated the bolted joints, employing the user-defined subroutine experimentally verified
in the literature. The following conclusions result from this study:
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• The test results demonstrate that the failure brittleness increases with the bolt diame-
ter, d. In addition, the failure suddenness, unfavorable in engineering applications,
increases with decreasing the end distance, e. In this context, the bearing failure of the
GFRP composite represents a less dangerous mode, supporting the findings reported
in the literature;

• Hart-Smith’s theoretical model overestimates the ultimate resistance of all considered
joints under the assumption of the GFRP strength estimated from the undrilled coupon
tests. The best agreement between the theoretical and experimental results corresponds
to the relatively low width-to-end distance ratio (w/e ≤ 1). The width-to-bolt diameter
ratio w/d < 4 describes the most reliable prediction cases within the above range.
However, the exceptionally low efficiency of the considered GFRP laminated composite
points out the necessity of additional means for strengthening the drilled connections;

• The statistical analysis demonstrated that only e/d and w/e ratios significantly affect
the deformation energy of the bolted connections, opposing the w/d parameter impor-
tance reported in the literature. The dissipated energy amount demonstrated positive
correlation with w/e ratio (R2 = 0.311) and negative relationship with w/e parameter
(R2 = 0.409). In other words, these results mean that the variation of the e/d and w/e
ratios can explain 40.9% and 31.1% of the deformation energy alteration observed in
the experiments. The authors recommend the end distance-to-bolt diameter condition
e/d ≥ 4 for the bolted connection design of the considered pultruded GFRP plates;

• The variation coefficient of the ultimate load revealed a similar tendency as above
except for the linear approximation reliability—the regression models demonstrated
the coefficient R2 equal to 0.257 for e/d ratio and 0.122 for w/e ratio. On the contrary,
only the t/d or w/d ratios had a detectable effect on the scatter of the deformation
corresponding to the ultimate load. However, the observed coefficients R2 are too low
in developing a reliable prediction model;

• The theoretical analysis established systematic underestimation of the ultimate
resistance—none of the considered joints’ efficiency exceeded 20%. Hence, this study
employed the FE analysis to identify possible ways to improve the bolted joint resis-
tance in the pultruded GFRP plates. The simulation results revealed that the joins
deformed “elastically” until a relatively low load (not exceeding 1 kN). The exper-
imental graphs’ deviation from the numerically predicted elastic line indicated the
emergence of the defects of the bolted connection, which could result from the fiber
cutting in the drilled hole, manual drilling flaws, and damaging the contact surface
with the spiral teeth of the bolt. Thus, the strengthening procedures can improve the
mechanical resistance of the joints, and the numerical model explicitly estimates the
strengthening efficiency, quantifying the difference between the physical tests and
predicted joint performances;

• In the considered examples, the numerical prediction error decreases from 25.7% to
2.9% with increasing the plate thickness (from 4 mm to 8 mm) and width (from 25 mm
to 35 mm), proving the reasonable adequacy of the simplified model.
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31. Juozapaitis, A.; Sandovič, G.; Jakubovskis, R.; Gribniak, V. Effects of flexural stiffness on deformation behaviour of steel and FRP
stress-ribbon bridges. Appl. Sci. 2021, 11, 2585. [CrossRef]

32. Turvey, G. Failure of single-lap single-bolt tension joints in pultruded glass fibre reinforced plate. In Proceedings of the Sixth
International Conference on Composites in Construction Engineering (CICE), Rome, Italy, 13–15 June 2012; pp. 13–15.

33. Li, X.; Ma, D.; Liu, H.; Tan, W.; Gong, X.; Zhang, C.; Li, Y. Assessment of failure criteria and damage evolution methods for
composite laminates under low-velocity impact. Compos. Struct. 2019, 207, 727–739. [CrossRef]

34. Beijing FRP Research Institute. Fiber-Reinforced Plastics Composites—Determination of Tensile Properties; GB/T 1446–2005; FRP
Research Institute: Beijing, China, 2005.

35. Malakhov, A.V.; Polilov, A.N.; Li, D.; Tian, X. Increasing the bearing capacity of composite plates in the zone of bolted joints by
using curvilinear trajectories and a variable fiber volume fraction. Mech. Compos. Mater. 2021, 57, 287–300. [CrossRef]

36. Gribniak, V.; Mang, H.A.; Kupliauskas, R.; Kaklauskas, G. Stochastic tension-stiffening approach for the solution of serviceability
problems in reinforced concrete: Constitutive modeling. Comput. Aided Civ. Infrastruct. Eng. 2015, 30, 684–702. [CrossRef]

37. Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 329–335. [CrossRef]
38. Guo, Z.; Li, Z.; Zhu, H.; Cui, J.; Li, D.; Li, Y.; Luan, Y. Numerical simulation of bolted joint composite laminates under low-velocity

impact. Mater. Today Commun. 2020, 23, 100891. [CrossRef]

http://doi.org/10.3390/su11164456
http://doi.org/10.1016/j.engstruct.2017.10.003
http://doi.org/10.1002/pse.154
http://doi.org/10.1533/9780857098641.2.207
http://doi.org/10.3390/app11062585
http://doi.org/10.1016/j.compstruct.2018.09.093
http://doi.org/10.1007/s11029-021-09954-1
http://doi.org/10.1111/mice.12133
http://doi.org/10.1115/1.3153664
http://doi.org/10.1016/j.mtcomm.2020.100891

	Introduction 
	Materials and Methods 
	Test Samples 
	Test Method 

	Test Results 
	Discussion of the Results 
	Finite Element Model of the Bolted Connection 
	The FE Model Description 
	Simulation Results 

	Conclusions 
	References

