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Amyotrophic lateral sclerosis (ALS) is
a fatal neurodegenerative disease

that causes motor neuron degeneration
leading to progressive muscle atrophy,
weakness, paralysis and death. The
majority of ALS (>95%) shows intracel-
lular aggregation of transactive response
DNA binding protein (TDP-43) as a
prominent pathological feature. TDP-43
is normally a nuclear protein. In ALS,
TDP-43 accumulates and aggregates in
the cytoplasm (thus forming TDP-43
proteinopathy) and is depleted from the
nucleus in CNS cells, including motor
neurons and glia. While TDP-43 aggre-
gation can harm cells through a gain of
toxicity, it can also cause a loss of TDP-
43 function in conjunction with its
nuclear depletion. TDP-43 regulates its
own expression to maintain itself at a
constant level. Perturbation of this level
by either increasing or decreasing TDP-
43 in animal models leads to neurode-
generation and ALS phenotypes. The evi-
dence supports the hypothesis that TDP-
43 dysfunction is a critical driver of neu-
rodegeneration in the vast majority of
ALS cases.

Introduction

Approximately 10% of ALS cases are
inherited. The other 90% apparently
occur sporadically without a family his-
tory. Recently, rapid advances in genetic
studies have identified mutations in multi-
ple genes as causes of this disease, includ-
ing mutations in SOD1, TDP-43, FUS,
UBQLN2, optineurin, VCP, c9orf72, profi-
lin1 and matrin 3.1,2 Studies on these
mutant genes have implicated impaired
proteostasis, oxidative stress, damage to

endoplasmic reticulum (ER) and mito-
chondria, disrupted cytoskeleton and dys-
regulation of RNA processing and
function to be involved in the neurode-
generation pathway.1,3 By further studies
of these genes and their mutations, path-
ways that lead to neurodegeneration in
ALS may be elucidated.

Among the mutant genes that have
been identified to cause ALS, the gene
encoding transactive response DNA bind-
ing protein (TDP-43) is the most impor-
tant. TDP-43 proteinopathy occurs in all
the sporadic ALS and the majority of
familial cases that originate from a variety
of gene mutations.4,5 Therefore, TDP-43
may be a midstream confluent juncture
where multiple upstream origins of ALS
converge in the ALS pathogenic pathway.
TDP-43 is a heterogeneous nuclear ribo-
nucleoprotein (hnRNP) containing the 2
signature RNA recognition motifs
(RRM1 and RRM2). TDP-43 binds to
RNA and modulates multiple RNA pro-
cesses including RNA synthesis, splicing,
stability and transport.5,6 TDP-43 inter-
acts with multiple RNA transcripts and
proteins and is likely functioning in
multi-protein/RNA complexes.7-10 Fur-
thermore, TDP-43 may be involved in
regulation and biogenesis of miRNAs.11,12

In addition to its numerous roles in RNA,
TDP-43 also binds to DNA and repress
transcription of certain genes.13

The function of TDP-43 is essential for
the survival of mammals and mammalian
cells.14-17 Loss of TDP-43 function in
zebra fish and invertebrates also causes
developmental abnormalities leading to
neurological dysfunction, behavioral alter-
ations and in most cases premature
death.14,18-20 Thus, the normal function
of TDP-43 is vital for the survival of cells,
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including neurons, and animals. Given the
functional importance of TDP-43 in cells
and organisms, dramatic changes such as
TDP-43 proteinopathy with its nuclear
depletion likely signify a change in TDP-
43 function that is consequential in the
neurodegenerative pathway in ALS.

TDP-43 May be Increased in ALS
Leading to Neurotoxicity from
Both Gain and Loss of Functions

The involvement of TDP-43 in ALS
and its related disease frontotemporal
dementia (FTD) was initially discovered
by its identification as a component in the
ubiquitin-positive intracellular inclu-
sions.21,22 The subsequent identification
of TDP-43 mutations in familial ALS
cases further cemented its role as a causal
gene for ALS.23,24 Although mutations in
the TDP-43 gene cause only »4% of
familial ALS, the mutations also cause
TDP-43 proteinopathy that is indistin-
guishable from the TDP-43 proteinop-
athy observed in the majority of ALS
cases, including all sporadic and the
majority of the familial cases.4,25 There-
fore, over 95% of ALS cases involve TDP-
43 proteinopathy. A uniform feature that
accompanies the aggregates is a depletion
of TDP-43 from the nucleus.4,21,22 The
twin presence of TDP-43 cytoplasmic
aggregates and nuclear depletion has led
to the proposal that both a gain of toxicity
in the cytoplasm and a loss of function in
the nucleus contributes to the disease.26

Numerous studies have provided evi-
dence for a gain of toxicity by the ALS-
linked TDP-43 mutants. These studies
demonstrate that overexpression of
mutant TDP-43 cause neurodegeneration
in various model systems, including cell
culture, C. Elegans, Drosophila, zebrafish
and rodents.27,28 In general, the neurode-
generation is widespread in the central
nervous system (CNS) and not restricted
to motor neurons. One puzzling and less
discussed observation among these studies
is that overexpression of the wild type
TDP-43 causes similar neurodegenerative
phenotypes as the mutants.29-33 The con-
fusion over the “wild type gene toxicity”
stems from the conception that the wild
type gene performs the normal function,

and therefore, should not cause the
disease.

However, humans with the wild type
TDP-43 do develop ALS and these cases
comprise >95% of all ALS, including the
sporadic and the most of the familial cases.
This fact makes the finding that overex-
pression of the wild type TDP-43 relevant
for the ALS disease mechanism. Indeed
recent studies suggest that TDP-43 level is
increased in sporadic and familial
ALS.34,35 Additionally, TDP-43 mutants
show various degrees of prolonged half-
life and enhanced stability,36,37 which
could also lead to an elevated level of
TDP-43.38,39 The fact that overexpression
of the wild type TDP-43 causes neurode-
generation in animal models suggest that
such an increase in TDP-43 level can
result in neurotoxicity in humans.

To prevent such toxicity, controlling
TDP-43 expression level is essential for
cell survival. Indeed, TDP-43 expression
is normally autoregulated. An increase in
TDP-43 inhibits its own expression
whereas a low level relieves the inhibition
and in turn increases TDP-43 expres-
sion.40,41 A defect in this regulation may
cause an elevated level of TDP-43, which
could lead to consequences of both gain-
and loss-of-function types.

TDP-43 functions in multi-protein
RNA complexes.7-9,42 An elevated level of
TDP-43 could increase the stoichiometric
ratio between TDP-43 and other compo-
nents in these complexes. This could lead
to the formation of partial or incomplete
complexes which contain TDP-43 and
some but not all of the other components.
These partial complexes may not be func-
tional (loss of function), or perform unreg-
ulated abnormal functions that lead to
cellular toxicity (gain of function).43 For
example, an elevated level of TDP-43 could
increase the uncomplexed TDP-43 (mono-
mer or dimer), which could increase the
opportunity for TDP-43 to engage in aber-
rant interactions including ectopically bind-
ing to RNAs that it normally does not bind
(gain of function) and self-aggregation.

TDP-43 self-aggregation or proteinop-
athy is a hallmark in ALS pathology and
can produce consequences with both gain-
of-function and loss-of-function charac-
ters. TDP-43 has a putative prion-like
domain in its C-terminal glycine-rich

region and is aggregation-prone.44-46 An
increase in TDP-43 may exhaust the pro-
teins that TDP-43 normally complex
with, leaving the excess TDP-43 to freely
self-associate and form aggregates. Once
formed, the initial aggregates could act as
seeds for further expansion of aggregates,
thereby absorbing more TDP-43 into the
aggregates and depleting functional TDP-
43 in cells.43 Furthermore, the aggregates
could be released from dying cells or by
exosomes and internalized by neighboring
cells, where they could propagate TDP-43
aggregation. This has been proposed to be
a mechanism whereby TDP-43 aggrega-
tion and ultimately the clinical symptoms
spread from the initial focal area to the
broad areas of the CNS.47,48 Recent evi-
dence that TDP-43 aggregates from
patients’ brain possess prion characteristics
and are capable of seeding and inducing
TDP-43 aggregates in cultured cells sup-
ports this idea.49

A Partial Loss of TDP-43 Function
Causes Neurodegeneration and

ALS Phenotypes

While numerous gain-of-function
models have been generated by overex-
pression of TDP-43, relatively few loss-
of-function models have been created. In
Drosophila and zebrafish, knocking out or
knocking down of TDP-43 caused similar
neurodegenerative phenotypes as those
caused by overexpression of TDP-43, thus
suggesting that overexpression of TDP-43
may cause TDP-43 dysfunction by a dom-
inant-negative mechanism.43,50 However,
confirmation of these findings in mamma-
lian models has been hampered by techni-
cal difficulties as a result of the early
embryonic lethality of the homozygous
TDP-43 knockouts.15,16,51,52 Even the
heterozygous knockouts failed to provide
a partial loss of function model because
the TDP-43 level was unaltered from the
wild type animals due to the aforemen-
tioned autoregulatory mechanism. To
overcome this difficulty, 2 groups
attempted to knock out TDP-43 specifi-
cally in motor neurons. Wu and col-
leagues disrupted the TDP-43 gene by a
Cre-loxP conditional knockout approach.
They reported that the mice developed
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motor neuron degeneration phenotypes
after induction of TDP-43 knockout spe-
cifically in motor neurons by the HB9-
Cre driver.53 Specifically, they showed
that the mice developed kyphosis, motor
dysfunction, muscle weakness/atrophy,
motor neuron loss and astrogliosis in the
spinal cord. Iguchi and colleagues used a
similar Cre-loxP approach but a different
Cre driver. After induction of TDP-43
knockout in motor neurons by the
VAChT-Cre driver, they also observed
degenerative changes in motor neurons
including atrophy of motor neurons and
their axons, and skeletal muscle denerva-
tion.54 However, they failed to confirm
motor neuron loss and premature death of
these mice as reported by Wu and col-
leagues. While the reasons for the discrep-
ancies remain unknown, the data on
motor neuron loss and the analysis on the
phenotypes by Wu and colleagues were
incomplete and could be subjected to
alternative interpretations. For example,
Wu and colleagues concluded that there
was motor neuron loss based on the
counting of the ChAT-positive and Nissl-
stained motor neurons. However, a reduc-
tion of TDP-43 expression is known to
cause a reduction in ChAT expression.55

Therefore, a reduction in ChAT expres-
sion, rather than an actual loss of motor
neurons, could have led to a reduced
counting of motor neurons. Similarly, a
reduction in the size of motor neurons or
rough endoplasmic reticulum, rather than
a true loss of motor neurons, could have
caused a lower motor neuron counting in
Nissl stained spinal cord sections. Both of
these possibilities could have been ruled
out if the ventral roots were examined and
quantified. As to the phenotypes, kypho-
sis, motor dysfunction, muscle weakness
and atrophy could all have been caused by
metabolic disturbances resulting from
TDP-43 knockout in cells outside of the
motor neurons such as pancreatic b cells
and various other systems.56-58

While the motor neuron specific TDP-
43 knockout model addresses the question
of whether a loss of TDP-43 function
causes motor neuron degeneration in a
cell-autonomous manner, it does not fully
mimic the condition in ALS patients. In
the human disease, TDP-43 proteinop-
athy and its accompanying nuclear

depletion occur in both neurons and
glia.4,21,22,59 Moreover, TDP-43 is not
completely depleted from these cells.
Therefore, to evaluate the impact of loss
of TDP-43 function in ALS, a model with
partial loss of TDP-43 function in both
neurons and glia is desirable. To fulfill
this need, Yang and colleagues generated
an in vivo model with a partial loss of
TDP-43 function by creating a transgenic
mouse line that expresses an artificial
microRNA that knocks down TDP-43
expression (amiR-TDP43).60 They dem-
onstrated that the transgenic mice express
the transgene ubiquitously and that TDP-
43 was knocked down in multiple organs.
Despite the widespread transgene expres-
sion and TDP-43 knockdown, the mice
displayed predominantly neurological
phenotypes and neurodegeneration in cor-
tical layer V and spinal cord motor neu-
rons. These data suggest that the CNS
cells, particularly motor neurons, possess a
heightened sensitivity to TDP-43 dys-
function. In light of the prominent TDP-
43 proteinopathy in ALS, this result
strengthens the notion that TDP-43 plays
a central role in the vast majority of ALS
cases.

TDP-43 Toxicity: Effects of
Neighboring Cells on Motor

Neurons

A role of glial cells in motor neuron
degeneration in ALS has been well estab-
lished in models for familial ALS that are
caused by mutations in Cu, Zn superoxide
dismutase (SOD1). Abundant experimen-
tal literature suggests that mutant SOD1
expression in both neurons and glia con-
tribute to motor neuron degenerati-
on.61-65 By comparison, research on the
role of glia expressing mutant or wild type
TDP-43 is at an early stage and the results
have been contradictory. Some studies
suggest that glial cells expressing mutant
TDP-43 do not play a role in neuronal
degeneration, and therefore, the neurode-
generation caused by mutant TDP-43 is
determined by a cell-autonomous mecha-
nism.39,66 Other studies suggest that astro-
cytes expressing mutant TDP-43 can exert
toxicity on motor neurons and cause
motor neuron degeneration.67-69 In the

amiR-TDP43 transgenic mice that exhib-
ited motor neuron vulnerability, TDP-43
knockdown was detected in astrocytes but
not in motor neurons in the spinal cord,
despite both cell types expressing the
transgene.60 Therefore, the massive motor
neuron loss in these TDP43 knockdown
transgenic mice suggests that TDP-43
dysfunction in astrocytes is a significant
driver of motor neuron degeneration, con-
sistent with the absence of motor neuron
loss when TDP-43 is specifically knocked
out in motor neurons.54 These findings
are relevant to sporadic ALS where TDP-
43 proteinopathy occurs in glial cells in
addition to neurons.21,22

Dysregulation and Dysfunction of
TDP-43: Relevance to ALS

To determine whether dysregulation
and dysfunction of TDP-43 is relevant to
ALS, let us consider 2 questions: Does
alteration of TDP-43 function impact
neuronal function and survival, and do
dysregulation and dysfunction of TDP-43
occur in ALS? Based on our discussions
above, the answer to the first question is a
clear yes. A large number of experiments
in the literature have already demonstrated
that either overexpression or knockdown
of TDP-43 causes neurodegeneration and
ALS phenotypes.27,28,43,60 Therefore, any
alterations in the level of TDP-43 func-
tion are detrimental to neuronal health
and can seriously impact neuronal func-
tion and survival. The answer to the sec-
ond question is less certain largely because
few studies on human ALS have addressed
this problem. However, emerging evi-
dence has lent support to a yes answer.
First, some studies suggest that the level of
TDP-43 is elevated in the spinal cord of
sporadic ALS patients and in cultured cells
derived from patients with TDP-43 muta-
tions.34,38,39 Second, several studies have
shown that ALS-associated TDP-43
mutants have an increased half-life8,36 and
enhanced stability,37 which could lead to
an increased TDP-43 level. Third, some
studies suggest that the alternative splicing
of TDP-43-regulated genes are altered in
human CNS tissues from ALS cases,60,70

thus suggesting that TDP-43 function is
altered in ALS.
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Conclusion

The vast majority of ALS patients
develop TDP-43 proteinopathy and its
accompanying nuclear depletion. TDP-43
mutations can cause familial ALS, with
proteinopathy and nuclear depletion that
is indistinguishable from sporadic ALS.
Thus, although the origin for pathogenesis
in sporadic ALS is unknown, the involve-
ment of TDP-43 is likely a converging
point with its familial ALS counterpart.
The emerging evidence that the level of
TDP-43 is elevated in human sporadic
ALS may be pointing to the origin from
which TDP-43 proteinopathy eventually
develops. The expression level of TDP-43
is tightly maintained by an auto-regula-
tory mechanism. Strong evidence has indi-
cated that perturbation of this level, by
either an increase or a decrease, is detri-
mental to CNS cells and can cause cell
degeneration and ALS phenotypes. Cur-
rently, the evidence for the existence of
TDP-43 functional perturbation in ALS
patients is emerging but further research is
needed in this area. Taken together, the
current literature supports the hypothesis
that TDP-43 dysfunction is a critical
driver of neurodegeneration in ALS and
other CNS diseases with TDP-43
proteinopathy.
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