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Abstract

Microglial activation can release free radicals and various pro-inflammatory cytokines,

which implicates the progress of a neurodegenerative disease. Therefore suppression of

microglial activation can be an appropriate strategy for combating neurodegenerative dis-

eases. Betanin is a red food dye that acts as free radical scavenger and can be a promising

candidate for this purpose. In this study, purification of betanin from red beetroots was car-

ried out by normal phase colum chromatography, yielding 500 mg of betanin from 100 g of

red beetroot. The purified betanin was evaluated by TLC, UV-visible, HPLC, ESI-MASS,

FT-IR spectroscopy. Investigation on the inhibitory effect of betanin on activated microglia

was performed using primary microglial culture. The results showed that betanin signifi-

cantly inhibited lipopolysaccharide induced microglial function including the production of

nitric oxide free radicals, reactive oxygen species, tumor necrosis factor-alpha (TNF-α),

interleukin-6 (IL-6) and interleukin-1 beta (IL-1β). Moreover, betanin modulated mitochon-

drial membrane potential, lysosomal membrane permeabilization and adenosine triphos-

phate. We further investigated the interaction of betanin with TNF-α, IL-6 and Nitric oxide

synthase (iNOS or NOS2) using in silico molecular docking analysis. The docking results

demonstrated that betanin have significant negative binding energy against active sites of

TNF-α, IL-6 and iNOS.

Introduction

Increasing evidences demonstrate that microglial activation and inflammatory response path-

way may play crucial role in the pathogenesis of neurodegenerative diseases [1] Microglia are

the most important immune cells of the central nerves system (CNS). These macrophage-like
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cells, emerge early erythro-myeloid pre-cursors in the embryonic yolk sac and migrate to the

CNS before the formation of macrophages from hematopoietic stem cells (HSCs) [2]. Com-

monly, highly ramified cells are determined as ‘resting’ form of microglia with proliferative

functions while the amoeboid cells are defined as ‘activated’ form. The activated form possess

inflammatory functions which is raised from the presence of pro-inflammatory cytokines and

free radicals of nitrogen and oxygen [3]. Studies have shown that activation of microglia can

be regarded as an indicator for neuroinflammation and neurodegenerative diseases [4]. When

microglia gets activated, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and NO•

secreted through NF-кB transcription factor that has been activated by Toll-like receptors

(TLRs) and eventually involved further damage of neurons [5]. Microglia expresses specialized

pattern recognition receptors (PRRs) in the CNS that can initiate neuroinflammation. These

PRRs are capable of stimulating the microbial molecules which are known as pathogen-associ-

ated molecular patterns (PAMPs) [6]. TLRs, including TLR2 and TLR4, are major PRRs that

can be stimulated by these substances and initiate an inflammatory response [7]. Thus, manag-

ing microglial activation, neuroinflammation, and oxidative stress raised by reducing free radi-

cals may demonstrate therapeutic benefits in neurodegenerative diseases.

In healthy cells, there is a direct relation between free radical and endogenous antioxidant

defense processes [8]. However, in degenerative diseases such as neurodegenerative disorders

and neuroinflammation, this equilibrium has been destroyed [9]. Therefore, this oxidative

stress can hurt vital macromolecules such as membrane lipids, proteins, and DNA which can

probably result in cell death. Hence antioxidant materials may have beneficial effects on neuro-

degenerative disease by reducing free radicals and suppressing oxidative stress [8,10].

Many studies have proved that plants have different biological activities [11,12]. Betalains

are one of the pivotal plant pigment families that are mostly found in Amaranth [13]. Betalains

are divided into two subgroups of betacyanins with red-violet and betaxanthins with yellow-

orange color. Both of these groups are water-soluble nitrogen-containing pigments and have

free radical scavenger activity [11,13]. Betanin with red color is widely found in red beet and is

the most common betacyanin pigment that acts as a stimulator of antioxidant defense mecha-

nisms and has a considerable free radical scavenger activity [11,13]. Several investigations have

also reported beneficial impact of betanin as anti-inflammatory factor [14]. The ability of beta-

nin for suppression of cancer cells, lipid peroxidation and heme disintegration in in-vitro has

been specified [15–17].Furthermore, a most recent report exhibited that betanin significantly

suppresses NF-κB DNA-binding activity in rats stimulated with acute renal harm [18]. In

another study Reddy et al., have shown that betanin suppresses 97% of enzyme activity in

cyclooxygenase-2 (COX-2) that was comparable or even greater than some phenolic com-

pounds and several anti-inflammatory drugs like Celebrex, Vioxx, and Ibuprofen [19].

In fact the anti-inflammatory processes of natural compounds have been demonstrated in

numerous investigations and have been proved in innumerable preclinical studies [10]. Fur-

thermore the excess costs and side effects of using nonsteroidal anti-inflammatory drugs,

turned natural anti-inflammatory elements into more popular compounds [20–22]. Patel NK

et al. showed that ethyl acetate extraction of Cassia occidentalis roots, suppresses LPS-induced

IL-1β, TNF-α, and NO• release in macrophages. The anti-inflammatory effects of this extract

have been determined to be equally potential both in in vitro and in vivo models [23]. Despite

the proved significant antioxidant properties of betanin, there is no information available on

its anti-neuroinflammatory effects. In this study, we report the results of investigation on the

anti-inflammatory effect of betanin in stimulated microglial cells for possible effects on reduc-

ing neuroinflammation.
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Materials and methods

Materials

The used red beetroots were from Dezful (in the south of Iran) and purchased from the local

market in the city of Dezful, Khoozestan, Iran. PBS (Phosphate buffered saline), DMEM (Dul-

becco’s Modified Eagle Medium) medium, FBS (fetal bovine serum) were purchased from

GIBCO, UK. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], LPS

(lipopolysaccharide), Betanin (CAS 7659-95-2), sulphanilamide, TLC (Thin-layer chromatog-

raphy sheets), silica gel (high-purity grade pore size 60 Å, 60–100 mesh) and NED (N-

1-naphthyl ethylenediamine dihydrochloride) were from Sigma-Aldrich, USA. methanol, and

acetonitrile were HPLC-grade, citric acid, ascorbic acid, phosphoric acid and DMSO

(Dimethyl sulfoxide) were obtained from Merck, Germany. https://www.biocompare.com.

Anti-CD11b antibody (ab128797, Cambridge, UK, https://www.abcam.com), Alexa-488

Cross-adsorbed anti-rabbit IgG (H+L) (A11008, Invitrogen, https://www.thermofisher.com).

Instrumentation

Flow cytometer (FACS Calibur, BD Bioscience, USA). Mass Spectrometer Agilent Technolo-

gies 5975C, HPLC (High-Performance Liquid Chromatography) Agilent Technologies 1260

Infinity II LC System with Eurospher 100–5 C18 with precolumn, Column 250 x 4.6 mm

(KNAUER 25VE181ESJ), UV-Vis Microplate Spectrophotometer (Epoch 2 BioTek), IR Spec-

trophotometer (Bruker Tensor 27)

Methods

The authors confirm that all experiments were performed in accordance with relevant guide-

lines and regulations. The study was also reviewed and approved by the Bioethics Committee

of the Health Ministry (Tehran, Iran; permit no. IR.NIGEB.EC.1395.4.1.C).

Betanin extraction and purification. Chopped red beetroots were extracted into metha-

nol/water (80/20 v/v) the solvent with 50 mM ascorbic acid at a solid/liquid ratio of 1/5 (g/mL)

for 30 minutes under continuous mechanical stirring, nitrogen bubbling and light protection.

The pH of the extraction solvent was adjusted to 5.5 for more stability of betalains. The super-

natant was centrifuged at 15000 g for 30 minutes at 4˚C to remove the solid components. Col-

umn chromatography was then used for purification of betanin from the extract with the

elution solvent mixture of methanol/water/glacial acetic acid (9/0.3/0.7). Purification of beta-

nin was monitored continuously by TLC analysis and the pure fractions were concentrated

under vacuum at 35˚C and freeze-dried. The prepared betanin was identified and character-

ized by using TLC, UV-visible, HPLC, FT-IR, ESI-MASS spectroscopy.

Chromatography (RP-HPLC). HPLC analysis was performed with a C18 reversed-phase

column with a particle size of 5μm in a gradient of elution including two solutions. Solution A

contains 100% water and 0.1% (v/v) TFA and solution B contains 100% acetonitrile. The gradi-

ent was carried out for 40 min at a flow rate of 0.5 ml/min. The elution profile was 0–4 min

100% A, 4–20 min 0–14% B in A (linear gradient), 20–25 min 14% B, 25–30 min 14–50% B,

30–34 min 50–100% B, 34–40 min 100% B. The detection wavelengths was adjusted to 538 nm

(betanin λmax).

Antioxidant activity. Antioxidant activity was assayed by DPPH. To this, 250 μM of

DPPH solution in methanol (80%) was added to sample solutions containing 10 μM of pure

betanin, standard betanin, and ascorbic acid in deionized water. After 30 minutes of incuba-

tion, the absorbance was detected using a spectrophotometer at 518 nm.
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Primary microglial cell culture and treatment. Microglia primary culture was obtained

from the cerebral cortex brains of 1–3 days old Wistar rat. Concisely, the mix glial cells were

cultured for two weeks in DMEM high glucose, supplemented with 10% FBS. Microglial cells

were isolated with a Shaker at 80 rpm for 30 min at 37˚C. Harvested microglial cells were

placed into 96-well plates at a density of 3×104 cells/well [24]. To confirm the purity of the har-

vested microglial cells, anti-CD11b antibody (ab128797, 1:200; Abcam), a typical microglia

marker was used on FACS Calibur flow cytometer instrument and the secondary antibody was

used Alexa-488 conjugated anti-rabbit IgG (A11008, Invitrogen).

Treatment of microglia cells was performed in three timepoints 24, 48 and 72h; each time-

point consist of the control group, without LPS and betanin, induced group with 1μg/ml LPS

[24] and a group with 5 different doses of betanin, contains 100, 200, 300, 400 and 500μM

which were selected for viability assay.

Cell viability assay. Cell viability was performed by the MTT assay. 20 μl of MTT solution

(5 mg/ml) was added to each well with a total volume of 200 μl culture medium and incubated

at 37˚C for 4h. Afterward the medium was removed, and 100 μl of DMSO was added. The

absorbance was detected using a microplate spectrophotometer at 580 nm after 30 minutes.

Nitrite assay. Aggregation of nitrite levels was evaluated in the microglia culture medium

after 24h of stimulation by the Griess reaction. Nitrite was measured as a criterion of NO• pro-

duction. 50 μl of the culture medium was blended with an equal volume of 1% sulphanilamide

in 5% phosphoric acid in a 96-well plate. The above combination incubated at room tempera-

ture for 10 minutes, and then 50 μl of 0.1% NED was added to the combination, and after 10

minutes of incubation, the absorbance value was detected using a microplate spectrophotome-

ter at 540 nm [3].Dilution of Sodium nitrite was performed in culture medium at various con-

centrations, from 0 to 100 mM, to obtain a standard curve.

Extracellular cytokines assay. Microglia cells (5×105 cells/well in a 6-well plate) were

treated with LPS in the presence or absence of betanin. The culture medium of the microglia

cells was gathered in 24 hours after effective material stimulation. The levels of inflammatory

cytokines comprising TNFα, il-1β, and IL-6 in culture medium were assessed using enzyme-

linked immunosorbent assay kits conforming to the constructor’s instructions. The absor-

bance value was detected using a microplate spectrophotometer at 450 nm.

Real-time PCR. Cells were lysed in RNXplus Reagent (Sinaclon, Iran), and the total RNA

was extracted according to the manufacturer’s instructions. The quality, quantity, and concen-

tration of extracted RNA were evaluated by electrophoresis and Nano-Drop. RNA was reverse

transcribed to cDNA by Synthesis Kit (Thermo Scientific, USA). Quantitative PCR was exe-

cuted using the MIC qPCR–Magnetic Induction Cycler and RT-PCR kit with SYBR Green

(Ampliqon, UK) according to the manufacturer’s instructions. The condition of PCR was as

follows: 5 min enzyme activation at 95˚C, 40 cycles of 95˚C for 30 s, annealing temperature of

primers for 20 s and 72˚C for 40 s, so for Tnf-α, the forward primer:

50GCTCCCTCTCATCAGTTCC30 and the reverse primer: 50TTGGTGGTTTGCTACGAC30,
annealing Tm 55˚C; for Nos2, the forward primer: 50GAGATGTTGAACTACGTCCTATC-30,
the reverse primer: 50CCATGACCTTCCGCATTAG-30, annealing Tm 60˚C and for Nf-кb, the

forward primer: 50GCTCAAGATCTGCCGAGTAAA-30 and the revers primer:

50GTCCCGTGAAATACACCTCAA-30, annealing Tm 62˚C.Moreover, a reference gene Gapdh
was amplified by the forward primer: 50CTCATGACCACAGTCCATGC30 and the reverse

primer: 50TTCAGCTCTGGGATGACCT30.
Lysosomal membrane stability assay. Lysosomal membrane stability of microglial cells

was specified with the redistribution of acridine orange as a fluorescent dye. Acridine orange

(AO) is a lysosomotropic weak base fluorescent dye that its fluorescence emission depends on

concentration. In intact lysosomes, due to a low pH inside AO accumulates and emits red
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fluorescence, while in the cytosol and the nucleus, it emits green fluorescence. When the lyso-

some ruptures, the AO leaks out and redistributes in the cytoplasm. Hence, AO redistribution

can be used to determine the lysosomal membrane stability [25,26]. Microglia cells were

stained with acridine orange (5 μM) and the excess fluorescent dye were washed off by per-

forming centrifugation twice at 1500 rpm for 3 min in the 2ml incubation medium. Acridine

orange redistribution in the microglia cells was measured by a fluorescence spectrophotometer

at 490 nm for excitation and 540 nm for emission wavelengths.

Determination of adenosine triphosphate concentration. Adenosine triphosphate

(ATP) concentration in mitochondria was measured by a bioluminescent somatic cell assay kit

(Sigma Aldrich.MO 63103, USA). The intensity of bioluminescence was determined by a Sir-

ius tube luminometer (Berthold Detection System, Germany).

Determination of mitochondrial membrane permeability and reactive oxygen species.

Microglia cells (5 × 105 cells) were treated with betanin/LPS for 24 h. After treatment, micro-

glia cells were washed with PBS. H2DCFD and Rhodamin 123 (10 mM) were applied to deter-

mine intracellular reactive oxygen species (ROS) and disrupted cell membrane. De-

esterification is the reason for diffusing these factors into the cells. Following reactions with

peroxides generate fluorescent 5-chloromethyl-20, 70 dichlorofluorescein (DCF). Mitochon-

drial membrane permeability (MMP) was specified using lipophilic cationic dependent fluo-

rescent dye rhodamine (Rh123) by flow cytometry.

Cells were scanned on a FACS Calibur flow cytometer instrument to determine the mito-

chondrial membrane permeability (MMP), and light scattering was analyzed for 10000 counts

per sample. Using Flowing software (ver-2-5-1), argon-ion laser sets as 488 nm and fluores-

cence signals were measured in a 530 nm (FL-1 channel).

In silico analysis

In order to predict the inhibitory effect of betanin on IL-6, TNF-α, iNOS and NF-кB, in silico

approach (blind and accurate docking) was employed. In the first step, Protein modeling for

preparation of IL-6, TNF-α, iNOS and NF-кB, was performed. For this, I-TASSER (https://

zhanglab.ccmb.med.umich.edu/I-TASSER/) [27] RaptorX (http://raptorx.uchicago.edu/) [28]

and SWISS-MODEL (https://swissmodel.expasy.org/) [29] were used to predict structures.

Also for the protein structure validation, the "SAVES v5.0" server (http://servicesn.mbi.ucla.

edu/SAVES/) was applied, and the Ramachandran plot for each structure was obtained. To

generate improved 3D models, Molecular dynamics (MD) simulation, was applied using

GROMACS package 5.1 by 54A7 force field and the simple point charge (SPC) water model

was used to develop the solvated systems. Afterward, to neutralize the systems for each simula-

tion, appropriate ions were added. Energy minimization was achieved, and system equilibra-

tion was performed under NVT and NPT ensembles for 100 ps. MD simulation was

performed for a time duration of 50 ns at 300 K temperature and 1 bar pressure. Finally, the

root mean square deviation (RMSD) and root mean square fluctuation (RMSF) was calculated

using the GROMACS 5.0 "rmsdist" algorithm and "rmsf" algorithm, respectively. On the other

hand, for the preparation of ligand, betanin structure was retrieved from the PubChem data-

base (https://pubchem.ncbi.nlm.nih.gov/). Then, to acquire the optimized geometry of the

neobaicalein structure, the webserver ATB, (Automated force field Topology Builder, http://

compbio.biosci.uq.edu.au/atb), was used. Accordingly blind docking studies were carried out.

Eventually accurate docking on this binding pockets was performed by AutoDock Tools

(ADT) by AutoDock Vina 1.1.2.

Statistical analysis. All results were determined as mean ±S.D of at least three indepen-

dent experiments. Statistical analysis of data was done by one-way ANOVA using the Holm-
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Sidak method in multiple comparisons of means by Sigma Plot Version 12.0. In the RT-PCR,

Data were analyzed using the LinRegPCR, and REST 2009 software also results were shown as

fold differences.

Results and discussion

Purification and characterization of betanin

Purification of betanin from the extract of red beetroot was performed by using normal phase

column chromatography (NPC). The used purification methodology yielded 500±22 mg of

betanin from 100 g of red beetroot. The efficiency of purification is about five times higher

than the maximum value that has already been reported in other studies. This is more likely

because of high amounts of betanin in the used source of red beetroot. Several studies have

reported quantification of different amount of betanin in red beet root ranging from 2.8–8.5 g/

kg [30]. Kanner et al. applied HPLC with a C18 column to purify betanin, obtaining 60 mg of

pure betanin from 100 g red beet [18]. Sephadex gel column has also been evaluated for the

purification of betanin in another study, yielding 15–50 mg betanin from the same amount of

beetroot extract [31]. Comparison of seven different methods for purification of betanin also

showed that the use of NPC and ion exchange chromatography resulted in purification of 31.4

mg and 89.1mg of betanin from 100 g of fresh beetroot, respectively [32]. The purified betanin

was evaluated by using several methods and comparing the obtained results with those of the

standard sample of betanin from commercial source (Fig 1).

The TLC analysis (Fig 1i) and IR spectroscopy (Fig 1iii) of the purified betanin showed

almost a same pattern and retention factor with that of the standard sample. UV spectroscopy

was also used to characterize the purified sample. As can be seen from Fig 1ii both the purified

sample and also the control show a single peak at 538 nm which belongs to λmax of betanin,

while the crude extract shows two peaks at 450 nm and 538 nm. Elimination of the signal at

450 nm of the crude extract together with identical pattern of the commercial and purified

spectra clearly confirms the successful purification of betanin. Also, ESI-mass was used for

determination of purified betanin molar mass (Fig 1v). The mass calculated by ESI-mass for

the purified sample was about 552 dalton which is identical with the molar mass of betanin.

HPLC analysis for the crude extract, purified, and standard betanin were performed at 538 nm

corresponding to the maximum absorption of betanin (Fig 1iv). These results indicated the rel-

ative purity of betanin as compared to the standard sample. This result further confirmed that

the purification procedure was effective in isolating betanin in its purified form. Evaluation of

antioxidant activity using DPPH for the purified and standard samples is shown in Fig 1vi.

DPPH is a free radical, which produces a violet solution in methanol (80%) that is decreased in

the presence of a free radical scavenger like natural antioxidants. The results showed almost

same antioxidant activity for the commercial and purified samples at the same concentration

(Fig 1vi). However ascorbic acid as positive control has more activity compared to the betanin.

Cell isolation and cell viability

Immunofluorescence study with flow cytometry analysis of CD-11b antibody for performing

harvested microglial cells showed more than 94% CD-11b+ cells. This means that microglia

cells are the dominant population of the total isolated cells (Fig 2i). Assessment of cytotoxicity

for purified betanin on microglial cells at 24, 48, and 72 hours using MTT assay was per-

formed. According to Fig 2ii, for the highest concentration tested (500 μM) no toxicity was

observed. Drug toxicity is known to be a drug’s weaknesses. The lack of toxicity even at high

concentrations can suggest the probable potential of betanin to be used as a new strategy for

anti- inflammatory treatment.
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Anti-inflammatory effects of betanin in LPS- induced microglial cells

Neuroinflammation is one of the most critical mechanisms of neurodegenerative diseases. It

can also lead to the production, and release of free radicals [33]. Microglial cells are one of the

most important cells involved in neuroinflammation and they play a key role in free radical

generation [3]. The production of NO• is mediated by the iNOS protein in microglial cells,

which could predispose the oxidative stress and ROS formation [34]. Therefore, inhibition of

free radicals, especially RNS, is one of the main ways to combat neuroinflammation. Applica-

tion of antioxidants has been suggested as a way to reduce the amount of these free radicals

[35]. In order to examine the anti-inflammatory properties of betanin as a natural antioxidant,

we first investigated its effect on nitrogen and oxygen free radicals in LPS-induced microglial

cells, followed by the evaluation of MMP, ATP, redistribution of lysosome and pro-inflamma-

tory cytokines analysis.

Investigation of NO• level as an inflammatory marker

As can be seen from Fig 2iii, morphological transformation of microglia from ramified (Fig

2iiia) into amoeboid occurs (Fig 2iiib). A five-fold increase of NO• concentration (Fig 2iv) in

LPS-induced cells confirms the inflammation model. The pretreatment of betanin at 100 and

200 μM concentrations was not effective in inhibiting NO•. However, in the betanin concen-

trations of 300 and 400 μM, there was a slight decrease in NO• concentration compared to the

LPS-induced group. With increasing betanin concentration to 500 μM, the lowest NO• level

was observed as compared to the LPS-induced group, still almost 1.5 fold higher than the NO•

concentration of the control group. Due to the high cell death in neuroinflammation process,

the non-toxicity of betanin even at high doses has great importance for the use as an anti-

inflammatory agent. Therefore, according the above mentioned observations, the concentra-

tion of 500 μM was chosen for the rest of analysis. NO• as a crucial factor in neuroinflamma-

tion, has some degenerative effect on the brain. It can cause excitotoxicity due to stimulating

astrocytes for release glutamate as well as NO• inhibit the mitochondrial respiratory chain and

induce production of peroxynitrite (ONOO–) as a fatal free radical [34].

ROS, MMP, ATP, and redistribution of lysosomes analysis

ROS was quantified by flow cytometry analysis (Fig 3i). As expected, the ROS level in the LPS-

induced group was significantly increased compared to the control group. Pretreatment of the

LPS-induced cells with betanin causes a significant reduction in ROS level while there was no

meaningful difference between pretreatment and control group. Bearing in mind the correla-

tion between ROS production with oxidative stress and mitochondrial dysfunction [36]. One

of the vital functions of mitochondrial is to maintain the MMP. We monitored the changes in

MMP to find more information about the effect of betanin in mitochondrial dysfunction with

Rh123 as a sensitive cationic fluorescent probe for membrane potential (Fig 3ii).

The results show a significant peak shifting of MMP in the LPS-induced group as compared

to the control group, which demonstrates that the mitochondrial membrane potential is

impaired. However, after pretreatment, betanin can decline mitochondrial membrane poten-

tial compared to the LPS-induced group (Fig 3ii). Collapse in MMP is related to the induction

of inflammation signaling and oxidative stress. It is well documented that the mitochondrial

Fig 1. Purification and characterization of betanin. Evaluation of purified betanin. TLC (i), Optical absorption (ii), and FT-IR (iii).

Comparison of purified and standard betanin. HPLC chromatogram (iv), Mass spectrum (v), Antioxidant activity using DPPH assay

(vi).

https://doi.org/10.1371/journal.pone.0233088.g001
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dysfunction and oxidative stress are correlated with the amount of ATP production in cell

[37]. Therefore, for further investigation on mitochondrial activity, ATP levels were measured

in all three groups (Fig 3iii). The results in Fig 3iii show a significant depletion of ATP level in

the LPS-induced cells compared to the control group. Although betanin pretreatment leads to

an increase in ATP levels as compared to the LPS-induced group, its level changes indicate a

positive trend in mitochondrial dysfunction and oxidative stress inhibition. Oxidative stress

and mitochondrial dysfunction also affect lysosomal membrane stability. Increased lysosomal

membrane permeabilization causes the leakage large quantities of lysosomal materials such as

acidic hydrolases to the cytoplasm and further mitochondrial damage and promotes the irre-

versible degradation of lipids and proteins, thus intensifying the inflammation [38,39]. There-

fore, the LMP was evaluated in all three groups. As shown in Fig 3iv, a two-fold increment of

the LMP was observed for LPS-induced group. There was also a significant difference between

the pretreated and LPS-induced groups. Consequently it can be concluded that pretreated cells

with betanin will have less inflammation than the LPS-induced group.

Evaluation of pro-inflammatory cytokines

Considering the role of cytokines in neuroinflammation and the involvement of the immune

system in this complex process, the evaluation of inflammatory factors such as TNF-α, IL-1β,

and IL-6 is of great importance [5].The increase of free radicals, oxidative stress, mitochondrial

dysfunction, lysosomal membrane permeability, and critical inflammatory cytokines indicate

that M1 state in microglia is occurred [40]. In this study, three important IL-6, IL-1β, and

Fig 2. Cell isolation, cell viability and investigation of NO• level. Flow cytometry analysis of CD-11b+ cells (Fig i). Cytotoxicity of

betanin on microglial cells using the MTT assay (Fig ii). The control group is the cells treated with PBS as betanin solvent. Evaluation of

LPS-induced microglial cells. Morphology characteristics of microglia cells before and after LPS induction with 200x magnification

light microscope (Fig iii). Before induction, cells are healthy and ramified (a), after LPS-induction, cells switch to the inflamed and

amoeboid form (b). Determination of nitric oxide by Griess reaction (iv). All groups were compared with the control group. The

difference in NO• concentration in the LPS group and control group was more than five times. However, no significant difference was

detected between the control and 500 μM betanin. �P<0.05, ��P<0.01, ���P<0.001 and #P>0.05 or non-significant, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0233088.g002

Fig 3. ROS, MMP, ATP, and redistribution of lysosomes analysis. Flow cytometry, ATP, and LMP analysis of

microglial cells before, and after pretreatment with betanin at 500 μM concentration. Flow cytometry histogram of

ROS (i) and MMP (ii), comparison between control and pretreated (left), control and LPS-induced groups (right).

ATP levels (iii). LMP analysis by acridine orange redistribution. The absorbance of the control group was considered

as one (iv). �P<0.05, ��P<0.01, ���P<0.001, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0233088.g003
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TNF-α cytokines were investigated (Fig 4). As expected, a significant increase in the LPS-

induced group was observed. These results of inflammatory cytokines confirmed that the

inflammation occurs which is usually associated with M1 phenotype. The most significant dif-

ference of cytokines between the control and LPS-induced groups belongs to TNF-α, indicat-

ing the critical function of this cytokine in inflammatory model. Surprisingly, all three

cytokines were declined in the pretreated group. It shows that betanin has a positive effect on

inhibition of these cytokines. Switching of the microglia phase from M1 to M2 can reduce

inflammatory activity and improve its efficiency. In the M2 state, inflammatory cytokines,

RNS, and ROS decrease, while mitochondrial activity increases [40,41]. Therefore, conversion

from M1 to M2 requires improvement of mitochondrial activity and reduction of free radicals

and inflammatory cytokines, while mitochondrial dysfunction can prevent the conversion

[42]. The results demonstrated that betanin is capable to play these roles and also helps to

reprogramming of microglial cells.

Comparison of Nos2, Tnf-α and Nf-кb expression

NO• plays an important role in neuroinflammation, mitochondrial dysfunction, and microglial

reprogramming from M1 to M2 [41,42]. The effect of NO• on TNF-α and their cross-talk

intensify the LMP degradation [38,43]. Also, we already showed the high inhibitory effect of

betanin on NO• concentration. Hence, the expression of Nos2 was investigated. The real-time

results showed a significant increase in Nos2 expression in the LPS-induced group, proving

microglial inflammatory activity. Furthermore, a significant decrease in the expression of this

gene was observed in pretreated microglial cells compared to LPS-induced cells (Fig 5). Our

finding reveals the dual role of betanin in both antioxidant activity and Nos2 reduction expres-

sion level. According to the NO• and TNF-α cross-talk and our product analysis, the positive

effect of betanin on reducing expression of Tnf-α would also be predictable. As shown in Fig 5,

there was a significant increase in Tnf-α, expression in the LPS- induced group. The pretreated

group with betanin demonstrated a significant decrease in Tnf-α expression. Other studies

have reported the inhibition of this cytokine by antioxidants [44]. TNF-α leads to the expres-

sion of pro adhesive molecules in endothelial cells that gives rise to the penetration and accu-

mulation of leukocytes in the brain, and eventually makes more extensive neuroinflammation

[45]. The binding of TNF-α to its receptor activates other glia cells, gliosis and enhances ROS

production [43,45]. Activation of the p38, JNK, and NF-κB pathways by the TNFR1 (Tumor

necrosis factor receptor 1) enhances the expression of Nos2 and production of NO•. The effects

of TNF-α on ROS and RNS stimulates these radicals to increase TNF-α self-expression and

produces a positive feedback loop which consequently enhances the neuroinflammation [43].

In LPS-activated macrophages, p38 immediately phosphorylated at a tyrosine residue and per-

forms a crucial role in inflammation [46]. Activating of p38 MAPKs is involved in the upregu-

lation of inflammatory mediators, including TNF-α, iNOS, and cyclooxygenase-2 (COX-2)

[47]. The obtained results of attenuating in the expression of Tnf-α and Nos2 at mRNA level,

TNF-α protein, and the product of iNOS (NO•), could be attributed to either the direct effect

of p38 on these factors or the negative effect of betanin on the performance of p38. Another

important protein that is involved in inflammation is NF-κB. This transcription factor was

also proved for its contribution in the expression of Tnf-α and Nos2 genes by regulating their

expression. Furthermore, NF-κB has been associated with inflammatory diseases [48]. The

activation of NF-κB affects phosphorylation of p65, ubiquitination, phosphorylation and deg-

radation of IкBα which intensifies the translocation of NF-κB to the nucleus thus enhancing

the expression of its downstream genes [48,49]. Therefore, one of the possible reasons for the

decrease in Tnf-α and Nos2 genes expression could be the effect of betanin on the expression
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of the Nf-κb gene and function of this transcription factor. The quantitative polymerase chain

reaction (qPCR) results exhibit a significant increase in Nf-κb at LPS-induced group that can

be a potential reason for inflammatory signaling pathways. Also at the pretreated group with

betanin, a significant reduction in the expression of the Nf-κb gene was observed. In the

inflammation, JNK-AP-1 and IKK-NF-kB signaling cascades can amplify the production of

several pro-inflammatory cytokines such as TNF-α, IL-6, iNOS and IL-1β [50,51].

These data suggest that betanin probably is able to inhibit Tnf-α and Nos2 genes and their

transcription factor (Nf-κb). Accordingly betanin might play a crucial role in neuroinflamma-

tion inhibition by the loop dysfunction that further confirms the potential of betanin to be

used as a new natural anti-inflammatory agent.

Protein modeling and docking study

Further investigation of the anti-inflammatory potential of betanin was performed by molecu-

lar docking simulation on Pro-inflammatory cytokines (IL-6 and TNF-α). According to the

role of betanin in reducing NO• and mRNA level of NOS2, the inhibitory potential of betanin

on the iNOS enzyme was studied. On the other hand, LPS induced activation of the microglial

cells via the NF-κB signaling pathway. The activation of NF-κB-p65 releases inflammatory

Fig 4. Evaluation of pro-inflammatory cytokines. Comparison of cytokines levels in microglial cells after pretreatment with 500 μM of

betanin. Concentration of TNF-alpha: 82, 418, 75 pg/ml, IL-6: 261, 705, 363 pg/ml and IL-1BETA: 2573, 3610, 1553 pg/ml were obtained

for control, LPS and LPS+Betanin groups, respectively. The experiment was performed with three replications at two different times.
�P<0.05, ��P<0.01, ���P<0.001, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0233088.g004
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cytokines such as TNF-α, IL-6, IL-1β and iNOS [52]. Hence, protein modeling for TNF-α, IL-

6, IL-1β and iNOS using three servers; I-TASSER, RaptorX, and SWISS-MODEL was per-

formed. Structure validation using SAVES v5.0 showed that SWISS-MODEL is the most

appropriate method for all of our four proteins. These structures did not include any residues

in the disallowed regions in the Ramachandran plot (Fig 6). In the next step, the molecular

dynamic simulation was used to energy minimization of all four proteins (Fig 6). Based on the

accurate docking, betanin expressed significant inhibition against TNF-α active site, with the

affinity of -9.6 kcal/mol, and in this docked conformation, Val152, PRO178, PRO180, SER177,

TYR193, and GLU194 were the critical amino acids that involved in hydrogen bonds. The

affinity between betanin and iNOS active site was -9.1 kcal/mol with ASP289, ASP253,

ARG255, PRO492, THR495, and GLN307 involved in hydrogen bonds. Also, the affinity

between betanin and IL6 was -7.3 kcal/mol and CYS76, ARG66, GLU199, GLU37, and PHE35

interacted with hydrogen bonds. Eventually, the affinity of betanin with NF-κB-p65 as a criti-

cal element of neuroinflammation was -8.5 kcal/mol. In this interaction, ASN190, ARG274,

SER281, LYS28 were involved. Finally, betanin displayed interactions with active site of IL6

with the affinity of -7.3 kcal/mol and CYS76, ARG66, GLU199, GLU37, and PHE35 interacted

with hydrogen bonds (Fig 6). These results suggest that the anti-inflammatory properties of

betanin is probably related to its potential to bind cytokines (TNF-α and IL6), NF-κB p65 and

iNOS active sites. Therefor betanin can affect TNF-α, NF-κB and IL-6 in both gene expression

Fig 5. Comparison of Tnf-α, Nos2 and Nf-кb expression. Changes in gene expression of Tnf-α, Nos2 and Nf-кb in microglial cells

under the influence of betanin pretreatment at 500 μM. �P<0.05, ��P<0.01, ���P<0.001, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0233088.g005
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and in silico level that eventually results in anti-inflammatory properties. According to the

Fig 6. Protein modeling and docking study. Ramachandran and RMSD analysis plots of IL6, iNOS, TNF-α and NF-кB proteins modeling showed that, these structures

did not contain any residues in the disallowed regions. According to the RMSD values these proteins were stable in the simulation time period. The visual illustration

showed the binding energy between betanin and IL6 (ΔG = -7.3 kcal/mol), iNOS (ΔG = -9.1 kcal/mol), TNF-α (ΔG = -9.6 kcal/mol) and NF-кB (ΔG = -8.5 kcal/mol). The

docked pose of betanin and each protein showed the key hydrogen-bonds area by using AutoDock Vina results. All visual illustration of the interactions generated with

Discovery Studio visualizer 19.1.0.219 (https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery studio/visualization-download.php) as a free resource.

https://doi.org/10.1371/journal.pone.0233088.g006
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docking results, betanin could affect TNFR1 pathway by inhibiting TNF-α and iNOS activity.

Thus it can destroy the positive feedback loop between NO•, TNF-α, and iNOS.

Conclusion

In summary, our purification methodology yielded 500±22 mg of betanin from 100 g of red

beetroot. The efficiency of purification is about five times higher than the maximum value that

has already been reported in other studies. The purified betanin has no toxicity on microglial

cells. Therefore the anti-inflammatory effect of betanin on the activated microglial was deter-

mined. The results showed that betanin inhibited LPS-induced production of inflammatory

mediators such as TNF-α, IL-1β, IL-6, free radicals, and modulates MMP, LMP, and ATP in

microglial cells at 500μM concentration. Moreover, Docking results demonstrated a significant

negative binding energy against active sites of TNF-α, IL-6, iNOS and NF-кB that reduce acti-

vation of LPS-induced microglial cells. These data suggest that multi-functional therapeutic

applications of betanin are presumably served by the anti-inflammatory action of betanin on

activated microglial.
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