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ABSTRACT

How does a cell respond to numerous external
stresses with a limited number of internal molecular
components? It has been observed that there are
some common responses of yeast to various
stresses, but most observations were based on
gene-expression profiles and only some part of the
common responses were intensively investigated.
So far there has been no system-level analysis to
identify commonly responsive or regulated genes
against various stresses. In this study, we identified
a core regulation module (CRM), a commonly
involved regulation structure in the regulatory
networks of yeast, which cells reuse in response
to an array of environmental stresses. We found
that regulators in the CRM constitute a hierarchical
backbone of the yeast regulatory network and that
the CRM is evolutionarily well conserved, stable
against genetic variations and crucial for cell
growth. All these findings were consistently held
up to considerable noise levels that we introduced
to address experimental noise and the resulting
false positives of regulatory interactions. We
conclude that the CRM of yeast might be an evolu-
tionarily conserved information processing unit that
endows a cell with enhanced robustness and effi-
ciency in dealing with numerous environmental
stresses with a limited number of internal elements.

INTRODUCTION

Cells have developed stress-responsive strategies which are
dynamically implemented through molecular regulatory
networks in order to survive the various stresses they
may experience (1–3). A fundamental question arises as
to how cells direct specific strategies against many possible
stresses given a limited number of molecular components.

Cells may realize stress-specific responses by combinator-
ial usage of regulatory molecules and their interactions,
which suggests that common regulatory molecules might
be involved in various specific responses.
Microarray experiments in yeast (4–5) have revealed that

hundreds of genes, referred to as environmental stress
response (ESR) or common environmental response
(CER) genes, are commonly induced or repressed in
response to a variety of stresses. These observations
indicate that yeast has a common protective mechanism
against various types of stress. However, very few regula-
tory molecules have been identified among ESR or CER
genes, perhaps due to their tendency of inducing stable
gene expressions. We should also note that many regula-
tory molecules play their roles in post-translational modi-
fications. Thus, cellular responses may not be fully
captured by gene-expression profiles (6), which suggests a
fundamental limitation in identifying common regulators
based on microarray experiments alone. On the other
hand, other relevant studies revealed that signal transduc-
tion pathways such as the mitogen-activated protein kinase
(MAPK) and cAMP/PKA pathways respond to a variety
of stresses (7–10). However, these findings alone are also
insufficient for the identification of common regulators
because they lack genome-wide perspective.
To overcome the aforementioned limitations, we have

employed in the present study the integrated information
about genome, signaling networks and transcriptional
regulatory networks of yeast and taken a network-based
approach to identify common regulators. It is likely that
common regulators would not work alone, but act in
harmony with their interacting molecules. So, the
common regulators would not be equally distributed in
the whole yeast regulatory network but would probably
exist as a sub-network by forming a core regulation
module (CRM) (Figure 1). With this motivation and
background, we have investigated such a CRM and
identified its presence by solving a maximum-weight con-
nected subgraph (MWCS) problem. From a network per-
spective, we have further investigated its topological
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structure and genetic properties. As a result, we found that
the regulators in the CRM form a hierarchical backbone
of the yeast-signaling regulatory network and that the
CRM is evolutionarily well-conserved, robust against
genetic variations and crucial for cell growth. From
these, we infer that cells might have developed the CRM
as a core information processing unit to respond to
numerous stresses with a limited number of internal mo-
lecular components, which is an important organizing
principle achieved evolutionarily.

MATERIALS AND METHODS

Construction of the global regulatory network of yeast

We collected data describing a broad range of regulatory
(signaling and transcriptional) networks of yeast (11–17).
All the regulations were collected with stringent cutoff
(P= 0.001) (17) or validated through the information
from the literature (11–16). Using the regulatory informa-
tion, we constructed a global regulatory network contain-
ing 523 nodes and 2093 links where all nodes are
regulatory molecules and links are directed regulatory

interactions. In the global regulatory network, regulatory
molecules are defined as genes which have at least one
out-degree. All the regulations are protein modifications
except transcriptional regulations and therefore the regu-
latory molecules include transcription factors, kinases,
phosphatases, guanine nucleotide exchange factor,
GTPases, histone modifying enzymes, chromatin modi-
fiers and ubiquitin modifiers.

Gold standards

We identified several stress-regulated pathways or
stress-related functions for each of the seven stresses
from literature (Supplementary Table S1). Based on this
information, we further identified stress-specific gene
ontology (GO) terms for each stress and then defined
the gold standards of positives from these stress-specific
GO terms (Supplementary Table S1). The rest of genes are
considered as gold standards of negatives that are not re-
sponding to any specific stress (see Supplementary
Material S1 for details).

Node scoring based on YeastNet

In order to identify stress-specific regulators, we first
calculated the stress-specific node scores of all the yeast
open reading frames (ORFs). To do this, we transformed
functional linkage scores computed by integrating hetero-
geneous data (YeastNet) (18) into node scores based on
a priori knowledge (Supplementary Table S1). The
YeastNet score is more useful to infer a new biological
insight than a single dataset due to its integrated nature.
The functional linkage data in YeastNet provides us with
the information about a network composed of genes
(nodes) and the functional similarity (link) of each pair
of genes. The link strength indicates the degree of func-
tional similarity between genes. We have assigned the sum
of link strengths to the ORF where only those links having
gold standards of positives with the ORF are considered.
Thus, an ORF having more strong functional linkages
with gold standards of positives will have a larger
stress-specific score.

The YeastNet is a functional similarity network which is
an undirected graph. So, it does not include the informa-
tion on molecular regulatory interactions. As our major
goal is to understand how a cell processes information
through complex molecular interactions, we have con-
structed a directed global regulatory network of yeast sep-
arately as described in the previous subsection. Note that
we did not use YeastNet to construct our regulatory
network of yeast, but only utilized it to calculate the
node scores for each stress.

Log likelihood ratio

We have employed a log likelihood ratio to normalize the
various stress-specific scores [mRNA expression data,
growth fitness defect score data and YeastNet (18) based
score data] and to evaluate the sensitivity and specificity.
Log likelihood ratio, L is defined as follows:

L ¼ ln
P ð f jpositiveÞ

P ð f jnegativeÞ

� �

Figure 1. Schematic diagram of a CRM. Dotted red and blue squares
indicate the SRN for stresses (A) and (B), respectively. Dotted red and
blue ellipses denote the set of stress-responsive genes against stresses
(A) and (B), respectively. ESR (or CER) genes are denoted at the
intersection between dotted red and blue ellipses.
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where f, positive and negative indicate the target dataset,
gold standards of positives and gold standards of nega-
tives, respectively. If the log likelihood ratio of a gene is
larger (smaller) than zero, the gene can be considered
active (inactive, respectively) given the specific stress con-
dition. L is computed from contingency tables by binning
the dataset values into N intervals (19). So, scores of the
likelihood ratio can strongly depend on how the score
interval is divided. To avoid this problem, we calculated
the average likelihood ratio over 100 times of randomly
divided score intervals (see Supplementary Material S1 for
details). Here, we set N to 5 as it showed a smooth likeli-
hood ratio distribution while maintaining the data speci-
ficity (data not shown).

For overall assessment of the log likelihood ratio, we
have divided the gold standards into a training set and a
test set. We conducted the 7-fold cross-validation (19).
Then, we evaluated the sensitivity and specificity of the
log likelihood ratio. We have also computed the sensitivity
and specificity of mRNA expression data and growth
fitness defect score data (Supplementary Figure S1). We
found that the log likelihood ratio based on YeastNet is
much more reliable than other log likelihood ratio based
on mRNA or growth fitness defect score data (Supple-
mentary Figure S1). This indicates that our stress-specific
score faithfully reflects the stress-specific responses. In
total, we obtained 6243 ORF specific log likelihood
ratios as node scores for each stress condition (adenine
dropout, DNA damage, glycerol, H2O2, heat shock,
NaCl and sorbitol treatment).

MWCS problem formulation and optimization

Given a connected and undirected node-weighted graph
G= (V, E, w) with nodes V, edges E and weights w, the
MWCS problem is defined as finding a connected
subgraph T= (VT, ET) of G, VT2V, ET2E that
maximizes the score w(T):=

P
V2VT w(v) (20). In case

both positive and negative node weights are present,
solving the MWCS problem is nontrivial. It is known
as an NP-complete problem, but a mathematical
programming-based algorithm to search for an optimal
solution has been proposed (20,21). Therefore, we can
obtain an optimal sub-network by solving the MWCS
problem using this algorithm. We obtained seven
stress-specific regulatory networks (SRNs) based on
seven stress-specific regulator scores and a global regula-
tory network (N=523, E=2093) where all nodes are
regulatory molecules and links are directed regulatory
interactions. We employed the algorithm provided by
(21), and IBM ILOG CPLEX callable library version
12.1 was used for programming.

This approach provides us with a global optimal
solution and therefore it is advantageous compared to
other heuristic approaches that can only identify non-
unique local optimal solutions (22,23). For instance, if
we employ heuristic approaches, we cannot assess
whether the obtained solutions are globally optimal.
Moreover, if a poor solution is obtained, we cannot de-
termine whether it is caused by optimality gap, parameter
setting, or score function (20). On the other hand, by

solving the MWCS problem, we can easily evaluate
whether the scoring function is adequate for obtaining
biologically relevant solution.

Identification of a CRM against various noise levels

It is hard to determine the most biologically relevant SRN
since every experimental measurement contains a certain
level of inherent noise. To identify SRNs that are irrele-
vant of different noise levels, we added a random noise
following the normal distribution � N(0, s2) to the score
of each node where s denotes a noise level (s=0.30 in
Figure 2). Next, we computed SRNs by formulating the
MWCS problem. Finally, we found out the CRM from
the identified seven SRNs (Figure 2). The CRM is the
intersection of both nodes and edges of seven SRNs.
The whole procedure is described in Supplementary
Figure S2 in detail. We examined whether the gold stand-
ards of positives for each stress are overlapped and found
that none of them overlaps with each other. This means
that the genes in the CRM we defined are not simply
originated from the overlapping of gold standards of
positives.
We defined the regulators in the CRM as CRs (core

regulators) and the regulators not in the CRM as NCRs
(non-core regulators). This classification has been done by
conservative selection of only consistent results over 100
times repeated simulations. Then we further examined
whether all the topological and genetic properties of the
CRM are still consistent against different CRs/NCRs clas-
sifications. For this purpose, we carried out the same stat-
istical tests for different CRs/NCRs classifications under
both node and link perturbations. It turns out that most of
the properties are consistently significant (Supplementary
Tables S2–S7). Thus, we confirm that the properties of
the CRM do not depend on particular CRs/NCRs
classifications.

Computation of the hierarchical order and hierarchy
destruction score

Hierarchical order of each node is computed based on
the global regulatory network using the vertex sort algo-
rithm (24). If a node does not have a specific hierarchical
order, we assigned a median hierarchical order to it.
Hierarchy destruction score of node X (DX) is defined as
follows:

DX ¼
XN
i¼1

jHO,i �HX,ij

where HO,i, HX,i and N denote the hierarchical order of
node i in the original network, that in the network after
removing node X, and the number of nodes in the
network, respectively. Removed and isolated nodes are
not considered for computation of DX (see Supplementary
Figure S3 for details). Nodes which are included in the
hierarchical backbone are expected to have larger DX.

Genetic measurements

Evolutionary rate indicates the rank of the protein evolu-
tionary rates (25) where a low (high) rank means a low
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(high, respectively) evolutionary rate. Interstrain variance
was calculated as the variance of gene expressions across
different yeast Saccharomyces cerevisiae strains with and
without stress (26–28). From these data, we excluded
clinical and laboratory strains because they have very dif-
ferent phenotypic outcomes among yeast strains and thus
can be considered as phenotypic extremes (28,29). From
this regard, we used the gene-expression differences with
respect to YPS163 (neither clinical nor laboratory strain)
in (27). Synthetic lethal pairs were obtained from (30) and
only the dataset with stringent cutoff was considered. We
computed the growth fitness defect as the average ratio of
the mean control intensity to the chemical treatment in-
tensity of yeast strains with homozygous gene deletions
(31). Each gene is assigned with a growth fitness defect
score which indicates how slow the cell growth will be if
the gene is deleted. If the score of a gene is large, then the

gene is essential against various stresses. In the computa-
tion, we excluded essential genes since their growth rates
cannot be measured.

RESULTS

Identifying stress-specific regulatory networks in yeast

Since not all regulators respond to each stress, sub-
network identification methods (20,22–23) were used to
identify connected sets of stress-specific regulatory mol-
ecules. We identified seven SRNs by formulating an
MWCS problem based on the global regulatory network
and stress-specific regulator scores (see ‘Materials
and Methods’ section for details). The SRNs we identified
are mathematically optimal, but they might not be bio-
logically optimal since all experimental measurements

Figure 2. The CRM identified from the global regulatory network of yeast. S1–7 indicate the seven SRNs. The CRM is determined by the inter-
section of seven SRNs. Nodes are named according to Saccharomyces Genome Database nomenclature (73). The CRM includes 31 ‘Cell cycle
(GO:0007049)’ genes and 39 ‘Response to stress (GO:0033554)’ genes. ‘Both’ indicates those genes having both GO terms. The network is created by
Cytoscape (74).
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employed here to determine the stress-specific regulator
scores could contain inherent noise and this might
have induced a certain level of bias. To exclude such a
bias, we extracted only those SRNs that are not affected
by different noise levels (see ‘Materials and Methods’
section for details). The seven stresses considered in this
study are adenine dropout, DNA damage, glycerol, H2O2,
heat shock, NaCl and sorbitol treatment.

Validation of the CRM based on biological evidences

From the intersection of the SRNs, we identified a CRM
(Figure 2) composed of 79 regulators and 210 regulatory
interactions (isolated regulators are excluded). In order to
validate our finding, we have investigated the elements of
the CRM and examined whether they coincide with the
established knowledge. We found that the CRM includes
the most well-known general stress responsive regulators,
MSN2 and MSN4. We have identified a set of genes
related to the MAPK-signaling pathway (e.g. FUS3,
HOG1 and SLT2) which is known to be central in
response to oxidative, osmotic and chemical stresses and
in diverse functions such as osmoadaptation, filamentous
growth and cell-cycle control (32–36). We have also
identified those genes related to the cAMP/PKA
pathways (e.g. BCY1, TPK1 and TPK2) that are primarily
associated with the response to environmental nutrient or
growth factor signaling and with the regulation of
cell-cycle, growth and stress responses (10,37,38). We
have further identified those genes related to the
AMPK-signaling pathway (e.g. SNF1 and ELM1) which
controls energy homeostasis and various ESRs (39). Other
identifications include 31 ‘regulation of cell cycle
(GO:0051726)’ genes (P= 0.001) and 39 ‘response to
stress (GO:0033554)’ genes (P= 0.001) which were signifi-
cantly enriched in the CRM (Figure 2 and Supplementary
Table S2). In particular, the cell-cycle machinery was
found closely linked to the aforementioned general
stress-regulating pathways. We note that yeast is known
to control the cell cycle for energy balance when it encoun-
ters environmental stresses (40).

If a cell encounters an environmental stress, it could
gain tolerance against subsequent stresses of not only
the same type but also different ones (41). This phenom-
enon called ‘cross-protection’ leads us to infer that a cell
might have a common strategy against various types of
environmental stresses. To examine this, we analyzed
whether the target genes of the CRM have specific GO
terms. We found that most of the target genes have ‘cell
cycle (GO:0007049)’ (P= 6E–11) and ‘negative regulation
of biological process (GO:0048519)’ (P= 5E–10)
(Supplementary Table S3). This implicates that, when a
cell perceives a stress signal, it would first shut down all
the processes including cell-cycle progression which is the
most crucial event of a living organism. This result has in
common with the fact that one of the main responses
against various stresses is the cell-cycle arrest (41). So,
we confirm that our findings are well supported from
previous evidenced knowledge.

Regulators in the CRM form a hierarchical backbone of
the global regulatory network

What is the characteristic feature of the structural organ-
ization of CRM in the global regulatory network of yeast?
We investigated the topological basis of CRM as it
is closely related to transmitting and processing of infor-
mation through multiple molecular interactions.
Hierarchy is one of the crucial topological characteristics
of directed networks since the hierarchical order is known
to be strongly related to many biological properties
(24,42). We have constructed the hierarchical structure
of the global regulatory network by using the ‘vertex
sort algorithm’ (24). We identified first the strongly con-
nected components (SCC) defined as a set of nodes con-
nected through feedback regulation. Next, we collapsed
each SCC into a single node to transform the complex
global regulatory network into a directed acyclic graph
(Figure 3A). Then we assigned the hierarchical order to
each node of the network. We classified the nodes into five
groups: Middle, Top–middle, Top, Bottom–middle and
Bottom defined, respectively, as a giant SCC, nodes that
only regulate the SCC, the remaining nodes which control
other nodes, nodes which are only regulated by the SCC,
and the rest of the nodes which are regulated by other
nodes (Figure 3A). From this transformed network, we
identified that the global regulatory network has a
bow-tie structure with the Middle group as a knot (43).
In this structure, the knot can integrate various inputs and
regulate multiple outputs, so the Middle group is a central
regulator of yeast. Intriguingly, we found that most of
genes in the CRM are located in the Middle (Figure 3B)
and this is very significant compared to random samples
(Figure 3C). Therefore, we conclude that the CRM locates
in the center of the global regulatory network, which leads
us to infer that the CRM might tune the relationship
between input (=environmental stress) and output
(=cellular response) as a unified information processing
unit of the yeast regulatory system.
To unravel the topological importance of each node, we

computed the hierarchy destruction score defined as how
much each node perturbs the original hierarchical order
when it is removed (see ‘Materials and Methods’ section).
We found that nodes in the CRM (CRs) are more struc-
turally crucial than nodes outside the CRM (NCRs). This
suggests that the CRM constitutes a hierarchical
backbone of the yeast regulatory system (Figure 3D). In
addition, we investigated the enrichment of feedback and
feedforward network motifs in the CRM as they are im-
portant basic building blocks in constructing SCC and
multi-layered hierarchical order, respectively, and there-
fore are crucial in determining the hierarchy of a
network. We found that the CRM contains a significant
number of these network motifs compared to random
samples (Figure 3E, F, Supplementary Tables S4 and
S5), which also supports that the CRM is a structural
core. Taken together, we infer that the regulatory system
of yeast might have been designed to let all the environ-
mental signals flow into the CRM, a core decision proces-
sor, such that common stress responses can be induced
and utilized.
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CRM is well conserved, robust against genetic variations
and crucial for cell growth

We compared various genetic properties (see ‘Materials
and Methods’ section) between CRs and NCRs to find
out functional characteristics of the CRM. We assessed
whether CRs or NCRs are evolutionarily more conserved
by comparing the evolutionary rate of each group, and
found that CRs tend to be more conserved than NCRs
(Figure 4A). In addition, we found that CRs have less
variation in their gene expressions than NCRs across dif-
ferent wine yeast strains (Figure 4B). We further
compared the gene-expression variance of different
yeast strains and found the same result (Supplementary
Figure S4) (27). However, we noted that all these expres-
sion profiles were measured without stress. So, we have
further analyzed the gene-expression profiles of various
yeast strains under stress (28). We found again that the
expressions of CRs are significantly less variable than
those of NCRs after adaptation to new environments
(Supplementary Figure S5). Therefore, we conclude that
a cell can generate robust steady-state responses through
CRs under stress. These results indicate that CRs might
have undergone stronger selective pressure to maintain
their gene-expression levels during evolution. Overall, we
conclude that CRs are evolutionarily well conserved in
terms of molecular function.
We further investigated whether the synthetic lethal

pairs are enriched in the CRM and found that the ratio
of synthetic lethal pairs within the CRM is >2-fold of that

within the non-CRM (Figure 4C). Finally, we found that
deletion of CRs leads to slower cell growth than the
deletion of NCRs upon exposure to various stresses
(Figure 4D). In order to further examine whether CRs
are crucial against multiple stress, we have investigated
whether MDR (multiple drug resistance) genes are
enriched in CRs or NCRs. MDR genes are defined as
essential genes to grow in the presence of multiple drugs
(31). We found that MDR genes are significantly enriched
in CRs (P= 0.034, Hypergeometric test), but are not
overlapped with NCRs (Supplementary Figure S6). All
the above results are consistent with various CRs/NCRs
classifications (Supplementary Tables S6 and S7).
Therefore, we can conclude that deletion of CRs leads
to slower cell growth than the deletion of NCRs upon
exposure to various stresses. These are the direct evidences
showing that knockout mutants of CRs result in greatly
increased sensitivity to a wide range of stress conditions. It
also leads us to infer that CRs are more critical to cell
growth than NCRs. Taken together, the genes in the
CRM are not only evolutionarily conserved, but also
they are central regulators of cellular function.

DISCUSSION

In this article, we have identified the CRM of S. cerevisiae
and uncovered its topological and genetic properties.
Biological data used for determination of gene function
and construction of a molecular interaction network

Figure 3. Topological properties of the CRM. (A) A schematic view of the global regulatory network of yeast. All the SCC are reduced to single
nodes. Node size is proportional to the number of genes included in each group. Red and grey links denote the regulation of the genes in the Middle
group and those in the others, respectively. (B) The ratio of nodes in the CRM for each group (the inlet shows those of the global regulatory network
of yeast). (C) The number of Middle nodes in the CRM (Observed) and randomly selected sub-networks (histogram). (D) Hierarchy destruction score
of CRs and NCRs. (E), (F) the numbers of two-node feedback loops and feedforward loops within the CRM and those in randomly selected
sub-networks, respectively. In (C), (E) and (F), empirical P-values were computed using 1000 random samples. In (D), P-value was computed using
Wilcoxon’s rank-sum test.
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usually contain various inherent noises. So, in this study,
we intentionally added random perturbations to the
node scoring as well as to the construction of a network
and identified only those properties consistently held irre-
spective of different noise levels (see Supplementary
Tables S2–S7 for details). Therefore, we confirm that
our results do not depend on such random biases that
might be introduced during the integration of uncertain
biological data.

We wondered whether the genes in the CRM might be
overlapped with the ESR genes, but such an overlapping
was very little. This is because most ESR genes are not
regulatory molecules. In addition, we noted that the func-
tional role of ESR genes and that of the genes in the CRM
are considerably different. In contrast with the genes in the
CRM, cell-cycle genes were not identified in the ESR
genes which are mostly involved with the transcriptional
(e.g. RNA processing), translational (e.g. ribosome bio-
genesis), or other cellular processes. ESR genes perform
cellular protection by preserving energy, balancing
internal osmolarity and stabilizing biomolecular structure
(2). However, these functions were not represented in the
CRM. How can we interpret such differential functions?
For instance, we can think that cell-cycle control is the
most crucial event regulated by the CRM and the ESR
gene expressions are the resulting responses. In other
words, the genes in the CRM are involved in the
stress-induced cell-cycle arrest and the ESR gene expres-
sions are the subsequent processes followed by the growth
arrest. Brauer etal. also suggested that many ESR genes

may not be reacting to stress but responding to a growth
reduction (44). In summary, our network-based approach
provides a complementary insight into the common stress
responses of yeast compared to previous studies on
genome-wide gene expressions.
What might be the reason why yeast cells have de-

veloped the CRM? There is no doubt that the most prom-
inent activity of yeast as a unicellular organism is to
determine whether it should run a cell-cycle or not in con-
sideration of all environmental stresses. For a wild yeast,
to survive under full of environmental stresses, there might
be a necessity to develop some central information pro-
cessing unit like the CRM that is to be frequently and
robustly utilized. We note that the expression variation
of those genes in the CRs is lower than that in the
NCRs. From this, we speculate that yeast cells can have
constant transmission of various kinds of environmental
information as the molecular level of CRs is kept invariant
across various yeast strains. This also suggests that the
CRM might be designed to maintain the robustness of
cellular information processing. Furthermore, we infer
that the CRM is the most important information process-
ing unit of a cell achieved evolutionarily since the CRM is
both topologically and genetically essential parts of the
yeast regulatory network. Taken together, we summarize
that a cell can efficiently interpret numerous external
inputs using the CRM, a unified information processor,
and thereby the cell can choose an appropriate decision
from the most important and problematic choices of yeast:
to run a cell cycle, or not.

Figure 4. Genetic properties of the CRM. In (A), (B) and (D), box plots show a five-number summary of data: the 25th, 50th, 75th percentiles of the
samples, and the two most extreme values within 1.5 times of the interquartile range (distance between 25th and 75th percentiles). P-values were
computed using Wilcoxon’s rank-sum test. In (C), P-value was computed using Fisher’s exact test.
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In order to identify the CRM for a specific species, we
need three kinds of information: a genome-wide func-
tional association network, gene lists that are known to
respond to specific stresses, and a molecular interaction
network. Since the first (e.g. SPRING (45)) and third
(e.g. Bio-GRID (46)) are well-established and widely
available in general, our method can be applied to many
other species with different physiological conditions.
A similar concept of the CRM has also been proposed

in developmental regulatory networks (47), in which the
developmental role and regulatory interactions of a CRM
have been argued to be most impervious to change during
evolutionary processes and suggested to affect the
planning of major body morphology. Why does a cell
have such a regulatory system? Reuse of the CRM in
response to various stimuli allows cells to minimize
resource utilization while the robustness of the CRM
maximizes the efficiency and accuracy of information pro-
cessing. Thus, the CRM endows a cell with an enhanced
efficiency in dealing with numerous external stimuli with a
limited number of internal molecular components. We
speculate that the CRM might be a ubiquitous organizing
principle of various regulatory systems by shaping central
responses in an efficient and accurate manner.
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