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Abstract: Giant condyloma acuminatum, also known as Buschke-Lowenstein tumor (BLT), is a rare
disease of the anogenital region. BLT is considered a locally aggressive tumor of benign histological
appearance, but with the potential for destructive growth and high recurrence rates. BLT development
is strongly associated with infection with low-risk human papillomaviruses (HPVs), mostly HPV-6
and -11. Immunity to HPVs plays a crucial role in the natural control of various HPV-induced
lesions. Large condyloma acuminata are frequently reported in patients with primary (e.g., DOCK8
or SPINK5 deficiencies) and secondary (e.g., AIDS, solid organ transplantation) immune defects.
Individuals with extensive anogenital warts, including BLT in particular, should therefore be tested
for inherited or acquired immunodeficiency. Research into the genetic basis of unexplained cases is
warranted. An understanding of the etiology of BLT would lead to improvements in its management.
This review focuses on the role of underlying HPV infections, and human genetic and immunological
determinants of BLT.

Keywords: giant condyloma acuminatum; Buschke-Lowenstein tumor; human papillomavirus;
immunodeficiency; genetics

1. Introduction

Papillomaviruses (PVs) are small circular double-stranded DNA viruses from the
family Papillomaviridae. PVs are highly host-specific, and display preferential tropism
for squamous stratified epithelia, including skin, and conjunctival, oral, and anogenital
mucosae [1]. Human PVs (HPVs) are classified into five main genera (α-, β-, γ-, µ-, and
ν-HPVs) on the basis of their DNA sequences. To date, almost 450 HPV genotypes have
been isolated and sequenced [2]. According to serological data, most humans have been
exposed to HPVs, and HPV infection is one of the most common sexually transmitted
diseases [3,4]. Epidemiological studies have shown the risk of anogenital HPV infections to
be positively associated with number of sexual partners and inversely associated with age
at first sexual intercourse [5,6]. Infection is usually asymptomatic or self-limiting. However,
in some individuals, insufficient immune control of viral infection leads to persistent lesions,
profuse warts, dysplasia, or cancer development [6,7].
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The α-HPVs include species with cutaneous (e.g., HPV-2, -27, and -57) and mucous
membranes (e.g., HPV-6, -11, -16, and -18) tropism [1]. Based on their oncogenic potential
they are further divided in low- and high-risk HPVs. Infection with low-risk HPV types
usually remains asymptomatic or benign, and lesions regress spontaneously after a few
weeks or months. Low-risk α-HPVs can cause common warts but may also be responsible
for tree man syndrome (TMS), as reported in several patients [8,9]. TMS is characterized
by persistent giant cutaneous horns. Other low-risk α-HPVs, such as HPV-6 and HPV-11,
are associated with condylomas, but may contribute to the formation of giant condyloma
acuminata with destructive local progression [10]. High-risk α-HPVs are HPV-16, -18, -31,
-33, -35, -39, -45, -51, -52, -56, -58, -59, -66, -68, and -70. Persistent infection with high-risk
HPV types is the main risk factor of developing HPV-induced malignancies. In particular,
HPV-16 is responsible for the majority of HPV-induced cervical cancer, oropharyngeal
and anogenital squamous cell carcinoma (SCC) [11–13]. HPV types belonging to genus
beta have a cutaneous tropism and typically cause asymptomatic infections in the general
population. Patients with epidermodysplasia verruciformis (EV), a rare condition, present
with profuse flat warts or scaly, reddish, brownish, or achromic plaques due to an isolated
susceptibility to β-HPVs infection, and sometimes HPV-3 from the α genus [14]. In these
patients, β-HPVs with a high oncogenic potential, such as HPV-5, are co-factors of cuta-
neous SCC development [14–16]. Finally, the γ-, µ-, and ν-HPVs all present skin tropism
and are associated with benign common warts (e.g., HPV-4, a γ-HPV) or plantar myrmecia
(e.g., HPV-1, a µ-HPV) [17].

Extensive HPV lesions of all types are frequently observed in individuals on immuno-
suppressive therapy or with human immunodeficiency virus (HIV) infection, suggesting a
crucial role of CD4+ T cells in controlling HPVs [18]. Severe isolated or syndromic (associ-
ated with other infections) HPV lesions are also observed in individuals with inborn errors
of immunity [18,19]. For instance, the isolated susceptibility of EV patients to β-HPVs
results from inherited EVER1 (encoded by TMC6), EVER2 (encoded by TMC8), or calcium-
and integrin-binding protein 1 (CIB1) deficiency [20,21]. Syndromic EV results from muta-
tions in genes involved in T cell immunity (e.g., STK4, RHOH) [17]. Mutations of certain
immune response-related genes, such as GATA2, CXCR4, and DOCK8, are associated with
a greater predisposition to multiple types of HPV-induced lesions, including extensive
anogenital warts [19]. Moreover, recent studies have shown that the defective CD28 signal-
ing pathway can also decrease the anti-α- and γ-HPV responses, thereby increasing the risk
of extensive warts and condylomas [8,22]. This review explores the roles of HPV infection,
immunodeficiencies, and host genetics in the pathogenesis of anogenital HPV lesions, with
particular focus on giant condyloma acuminatum.

2. Giant Condyloma Acuminatum (Buschke-Lowenstein Tumor)—A Short Description
of the Disease
2.1. Classification

Giant condyloma acuminatum is also known as Buschke-Lowenstein tumor (BLT).
BLT was first reported in 1896, in Neisser’s Sterokopischer Atlas, by Abraham Buschke [23].
Subsequently, in 1925, Abraham Buschke and his assistant Ludwig Löwenstein described
BLT as a penile lesion clinically resembling both common condylomas and SCC, but with
a different histological appearance and biological behavior [24,25]. BLT is considered
to be a locally aggressive tumor characterized by (i) benign histology, (ii) a potential
for destructive growth, (iii) malignant transformation (estimated rate of 56%) without
propensity for metastasis, and (iv) with a high rate of recurrence after excision (66%) and an
overall mortality of approximately 20% [26]. Some authors consider BLT to be intermediate
between condyloma acuminatum and SCC, whereas others classify it as an anogenital
verrucous carcinoma (a well-differentiated type of SCC) [27,28]. According to recent studies,
BLT and verrucous carcinoma should be recognized as two separate entities [29,30]. Indeed,
BLTs are associated with low-risk HPV-6 or HPV-11 (see Section 3), whereas verrucous
carcinomas are not usually HPV-driven [30,31].
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2.2. Clinical Presentation

BLT tends to occur in individuals in their forties. It has an estimated incidence of about
0.1% in the general population and a male-to-female ratio of 2.7:1 [28,32,33]. However,
its precise incidence is unknown. It presents as a slow-growing cauliflower-like mass
in the genital or anorectal area, with relatively slow infiltration into deeper tissues [26].
The disease starts from a long-standing condyloma acuminatum, which can grow to sizes
of more than 10 cm in diameter. Progression from the first symptoms of condyloma to
BLT development may take 2.8–9.6 years, or longer [26]. Tumor growth is usually slow,
but may be rapid in immunocompromised individuals [34,35]. Non-sexual transmission
via fomites is possible, but cases of condyloma acuminata and BLT in children should
always raise the suspicion of sexual abuse, for which both medical and social evaluation
is essential [36]. Unusual clinical presentations of BLT with rapid growth may suggest
malignant transformation [28].

2.3. Diagnosis

BLT is diagnosed on the basis of patient history, clinical and histological presentation.
Histologically, the tumor is characterized by papillomatosis, hyperkeratosis, parakeratosis,
acanthosis, and koilocytosis (Figure 1) [34]. Careful histological examination is crucial
to exclude transformation to SCC. Imaging studies, such as computed tomography and
magnetic resonance imaging, are strongly recommended for assessment of the local and
regional extension and to ensure that optimal therapy is prescribed [37].
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Figure 1. Hematoxylin and eosin staining of a penile Buschke-Lowenstein tumor (BLT). (A) BLT
presents with a typical cauliflower shape, without invasion of the dermis. (B) Magnification of
the indicated area from A. The histological features are typical of HPV infection, with numerous
vacuolated cells (VC; koilocytosis) and parakeratosis (PK). Large immune infiltrates are visible in the
dermis downstream from the lesion.

2.4. Treatment

A wide radical excision, followed by reconstructive surgery, seems to be the optimal
therapeutic strategy for BLT management [38]. However, for extensive tumors, preoperative
chemotherapy or radiotherapy can be used to promote tumor shrinkage, rendering the
debulking procedure safer [39]. Follow-up visits are necessary due to the high risk of
recurrence (estimated at more than 60%) [26]. BLT-related mortality appears to be mostly
associated with infectious complications [29]. The maintenance of good hygiene and the
correct healing of postoperative wounds are, therefore, essential to reduce the risk of death.
Immunomodulatory treatments have also been tested in clinical trials. Topical imiquimod,
which induces interferon alpha (IFN)-α production upon binding to Toll-like receptor 7
(TLR7), has shown benefit in the treatment of BLT [40–43]. Interestingly, Geusau et al.
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reported a regression of deeply infiltrating BLT following long-term intra-lesional IFN-
α2b therapy [44]. Unfortunately, less favorable outcomes were reported in other studies
after imiquimod or IFN-α treatment [45–47]. IFN-α exerts antiviral activity by inducing
the expression of protective genes with products that inhibit viral replication and reduce
viral dissemination. However, patients with inherited IFNAR1, IFNAR2, IFNGR1, or
IFNGR2 deficiencies are not susceptible to severe HPV infections, suggesting that type I
and II interferons are not central to HPV-disease pathogenesis [48–50]. Similarly, epidermal
growth factor receptor (EGFR) overexpression in benign condyloma acuminata may play
a role in dysplastic cell proliferation. This led Bowman et al. to implement systemic
chemotherapy including the EGFR inhibitor cetuximab in a patient with metastatic BLT,
resulting in a partial response for eight months [51]. Finally, HPV quadrivalent and
nonavalent vaccines (Gardasil vaccines) significantly decrease the incidence of genital
warts [52]. Although no studies measured the impact of vaccination on BLT incidence, HPV
vaccines are also likely to decrease the risk of BLT given that the two causal HPV types,
HPV-6 and HPV-11, are included in these vaccines. In addition, some authors suggested
their possible therapeutic properties and presented clinical cases of regression of giant
condyloma acuminata after HPV vaccination [53,54]. These promising observations show
that more studies are required to evaluate the therapeutic value of HPV vaccines and other
immunomodulatory treatments against BLT. In summary, surgery is the only really effective
treatment of BLT to date, but less invasive procedures may also be beneficial.

3. The Role of Low-Risk HPVs in BLT Pathogenesis

Approximately 90% of genital warts are caused by HPV-6 or -11 [55], with HPV-6
predominating [56]. Low-risk HPVs have a low transformation capacity. Despite their high
prevalence in genital warts, DNA from HPV-6 and HPV-11 were found only in 4% and 3%
of anal cancers, respectively [57], and <1% of cervical cancers [58]. In contrast, HPV-6 and
HPV-11 are found in most, if not all, BLT cases, demonstrating a key role for these viruses
in tumor development [37,38,59–61]. An excellent review was previously dedicated to the
pathogenicity and carcinogenicity of low-risk HPVs compared to high-risk HPVs [62]. It is
believed that irrespective of high- or low-risk status, in the course of persistent infection,
HPVs make common changes to the infected cells, and that there is convergence in the
pathways that they affect [62]. Among a large number of biological activities, high-risk
HPV E6 and E7 oncoproteins induce degradation of the tumor suppressor protein p53
and inhibit the retinoblastoma protein (pRb), respectively [62–65]. This leads to abnormal
proliferation from the earliest layer of the epithelium, and oncogenic transformation of
infected host cells. In contrast, low-risk α-HPV do not induce cell proliferation in the basal
and parabasal layer of the epithelium, contributing to their lower oncogenic potential [62].
This is probably explained by difference in biological activity of E6 and E7 proteins from
low- and high-risk HPVs. The overexpression of E6 or E7 from low-risk HPV-6 or HPV-11
in various cellular models impact the expression of numerous host genes [66,67]. Unlike
E6 from high-risk HPV-16, E6 from low-risk HPV-11 induces p53 degradation in a cell
density-dependent manner [68]. E7 from low-risk HPVs targets pRb family members
similarly to high-risk HPVs; however, they were shown to have a preference for p130 which
regulates cell cycle entry in the upper epithelial layers [62,69].

While malignant cell transformation in response to high-risk HPV infection has been
extensively studied and well characterized, little is known about the mechanisms involved
in the progression of low-risk HPV-driven benign condyloma acuminatum to the BLT
phenotype. To our knowledge, no studies investigated the viral protein expression patterns,
in particular E6 and E7, in BLT compared to conventional condyloma. Nevertheless, the
role of p53 in the malignant progression of BLT was highlighted by Pilotti et al., based
on immunocytochemical and molecular data [70]. These authors studied five cases of
vulvar verrucous carcinoma and two cases of BLT associated with invasive SCC. Neither
p53 overexpression nor HPVs were detected in verrucous carcinoma samples, whereas
both cases of BLT with invasive SCC tested positive for HPV-6 or -11 and presented p53



Int. J. Mol. Sci. 2022, 23, 4547 5 of 15

overexpression in nuclei. Interestingly, the malignant area of one of these BLT with SCC
carried a pathogenic TP53 missense mutation (Gly245Ser) in the DNA-binding domain
of the p53 protein [70]. Altogether, while it has been known for a long time that HPV-6
or HPV-11 are required for BLT development, more studies are needed to understand the
mechanisms underlying the transition between benign condyloma and BLT.

4. Possible Impact of Viral Genome Rearrangements, Mutations, and Host Genome
Integration on BLT Development

In normal conditions, HPVs exist as episomes in infected cells. During tumorigenesis,
high-risk HPVs can integrate into the host genome, but they may sometimes remain
episomal [71,72]. Integration disrupts the viral E2 gene and thus leads to dysregulation
of viral E6 and E7 oncogene expression that promotes cell proliferation, abolishes cell-
cycle checkpoints, and causes progressive genetic instability [71]. By contrast, probably
reflecting their low oncogenic potential [73], low-risk HPVs, such as HPV-6 and HPV-11,
do not usually integrate into host DNA, including in BLT [74,75], anal [76], cervical [58],
and vulvar cancers [77]. To our knowledge, HPV-6 was never reported integrated in BLT,
and only once in an anogenital cancer [78]. However, HPV-6 and HPV-11 integration was
reported in some patients with head and neck cancers [79–81]. Altogether, the available data
strongly suggest that HPV-6 or HPV-11 integration is not required for BLT development.
This is reminiscent of episomal HPV-2 in a TMS case [8], another devastating benign
cutaneous tumor driven by a low-risk HPV.

Instead of viral integration, mutations or rearrangement within the episomal virus may
explain BLT development. Rearrangements within the upstream regulatory region (URR)
of HPV-6 or HPV-11 from BLT were reported in multiple studies [75,82–85]. Duplications
within the URR have also been detected in anogenital carcinomas associated with HPV-
16 [86], laryngeal carcinomas containing HPV-11 [87], and one SCC of the lung [88] and
two SCCs of the vulva related to HPV-6 infection [89,90]. It has been suggested that URR
duplications may increase the otherwise low oncogenic potential of HPV-6 and HPV-11 by
enhancing transcription of the transforming genes E6 and E7 [91,92]. However, Rübben et al.
showed that host factors were probably more responsible for BLTs, with rearrangements
of the URR of HPVs probably representing only secondary events in BLT development,
as such rearrangements are also detected in benign genital warts [82]. In addition, to our
knowledge, no nucleotide substitution identified in the HPV-6 or HPV-11 strains from BLT
samples can explain tumorigenesis [75,82,83,93]. However, the full-length DNA sequence
of the HPV strain within the BLT was not obtained for the overwhelming majority of
reported cases. Further studies are required to determine whether mutations or viral
genome rearrangements can influence the development of BLT and possible neoplastic
transformation. This would require a systematic report of the full-length HPV sequence, as
well as of the viral genome integration status in BLT.

5. Secondary Immunodeficiencies in the Etiology of BLT

Cell-mediated immune response is crucial for control of HPV-induced lesions [94].
Indeed, patients on immunosuppressive drugs, and HIV-infected patients have a higher
risk of severe HPV infections than the general population [95–97]. CD4+ T cells as well
as monocytes/macrophages prevail within regressing condylomas [44,98,99]. Akinboro
et al. reported lower blood CD4+ cell counts in HIV-positive patients with genital warts
than those without such lesions (101 cells/µL vs. 294 cells/µL, respectively) [100]. They
also found that the extent of the viral warts was correlated with CD4+ T-cell count [100].
In this context, not surprisingly, BLT is more frequent in individuals with HIV infec-
tion [101–105] or on immunosuppressive drugs, such as patients with a history of stem cell
or solid organ transplantation [106–109]. Risk of rapid progression of BLT into metastatic
SCCs in HIV-infected patients is elevated [61,110]. Grodner et al. reported an improve-
ment in voluminous pelvic BLT after highly active antiretroviral therapy alone in an HIV-
infected patient [111]. Surgical excision of the BLT was initially planned but was postponed
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when significant regression of the tumor was observed on antiretroviral therapy, together
with CD4 immune recovery (gradual increase in CD4+ T-cell count from 26 cells/µL to
229 cells/mm3 over a period of six months) and the suppression of HIV-1 replication
(HIV RNA levels decreased from 5.21 log copies/mL to <20 copies/mL and remained
undetectable thereafter). Given the absence of any other therapy in this patient, the authors
concluded that cellular immune recovery after antiretroviral therapy alone was responsible
for the regression of BLT. Thus, acquired immunodeficiencies should be considered in all
cases of extensive HPV lesions, including BLT, to improve patient outcomes.

6. Leading Genetic Causes of Susceptibility to Extensive Anogenital HPV Lesions

Mutations in several immunity-related genes have been associated with extensive
condyloma acuminata (Table 1).

Table 1. Primary immunodeficiencies associated with extensive condyloma acuminata.

Primary Immunodeficiency Gene Mutated Inheritance Phenotype References

CARMIL2 deficiency CARMIL2
(RLTPR) AR

Common warts, recurrent condylomas, broad
susceptibility to infection, immune

dysregulation, EBV-driven smooth muscle
tumors

[17,22,112,113]

WHIM syndrome CXCR4 AD
Common warts, condyloma acuminata,

hypogammaglobulinemia (low IgG and IgA,
normal IgM), infections, myelokathexis

[114–116]

DCLRE1C deficiency DCLRE1C AR
(hypomorphic)

Extensive HPV-related anogenital lesions,
atypical EV, low numbers of B cells,

hypogammaglobulinemia
[117,118]

DOCK8 deficiency DOCK8 AR

Common warts, condyloma acuminata,
atypical EV, other viral cutaneous infections

(VZV, HSV, molluscum contagiosum), eczema,
food allergy, asthma, allergic rhinitis, bacterial

pneumonia, candidiasis, abscesses, cancer,
thrombocytosis, eosinophilia, lymphopenia

[119–121]

GATA2 deficiency
[DCML, MDS,

MonoMAC syndrome,
WILD syndrome,

Emberger syndrome]

GATA2 AD

Common warts, condyloma acuminata, VZV,
HSV, fungal infections, lymphedema,

myelodysplasia, leukemia, panniculitis,
cancer, low B-cell levels

[19,122–125]

ICOSL deficiency ICOSLG AR

Common warts, extensive condyloma
acuminata, orolabial HSV infections,

angular cheilitis, mouth ulcers,
hypogammaglobulinemia, neutropenia,

lymphopenia

[126]

LAD-1 ITGB2 AR

Extensive common warts and condyloma
acuminata, frequent systemic, skin, and soft

tissue infections, inflammatory bowel disease,
impaired wound healing, gingivitis,

periodontitis

[19,127]

MAGT-1 deficiency
XMEN syndrome MAGT-1 XLR

Cutaneous warts, perineal condylomas, EBV
infections, infections of the ear and nose, viral

infections of the skin, cancers
[17,128]

Netherton syndrome SPINK5 AR
Common warts, giant condyloma acuminata,

ichthyosis, eczema, bamboo hair, asthma, food
allergy, high IgE levels

[129,130]

WAS WAS XLR
Common warts, condyloma acuminata,
thrombocytopenia, infections, eczema,
cancers, autoimmune manifestations

[17,131]

CARMIL2, capping protein regulator and myosin 1 linker 2; AR, autosomal recessive; WHIM, warts, hypogam-
maglobulinemia, infections, and myelokathexis; CXCR4, CXC chemokine receptor 4; AD, autosomal dominant;
DCLRE1C, DNA cross-link repair 1C; DOCK8, dedicator of cytokinesis 8; VZV, varicella zoster virus; HSV, herpes
simplex virus; GATA2, GATA-binding protein 2; DCML, dendritic cell, monocyte, B and NK lymphoid deficiency;
MDS, deafness, lymphedema, mononuclear cytopenia, infection, myelodysplasia; MonoMAC, monocytopenia and
mycobacterial infection syndrome; WILD, warts, immunodeficiency, lymphedema, dysplasia; ICOSLG, inducible
T-cell costimulator ligand; LAD-1, leukocyte adhesion deficiency type-1; ITGB2, integrin B2; MAGT-1, magnesium
transporter 1; XMEN, X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neo-
plasia syndrome; XLR, X-linked recessive; EBV, Epstein-Barr virus; SPINK5, serine protease inhibitor Kazal-type 5;
WAS, Wiskott Aldrich syndrome.
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The genetic predispositions to common warts and anogenital HPV lesions overlap
considerably [17]. Gain-of-function (GOF) mutations of the CXCR4 gene encoding the
receptor of the CXCL12 chemokine are responsible for WHIM syndrome (HPV-induced
warts, hypogammaglobulinemia, recurrent bacterial infections, and myelokathexis) [114].
Patients with WHIM syndrome are particularly susceptible to extensive warts on the
hands, feet, and trunk. They may also develop genital and anal condyloma acuminata,
and female patients may develop vulval and cervical dysplasia [115,132]. Monoallelic
missense and null mutations of GATA2 lead to a deficiency in an important transcription
factor for hematopoiesis and maintenance of the stem-cell compartment (GATA2) [19].
In addition to its role in myelodysplasia and leukemia, GATA2 deficiency increases the
risk of profuse and recurrent cutaneous or anogenital warts [124,125,133]. Difficulties in
treatment of generalized unremitting warts are also observed in individuals with autosomal
recessive dedicator of cytokinesis 8 (DOCK8) deficiency [119,120]. DOCK8 is essential for
the maintenance of T-cell integrity in collagen-dense tissues, and this translates into poor
defense against pathogens in the absence of DOCK8 [134]. DOCK8 is also important for
dendritic cell migration to lymph nodes [135]. Venegas-Montoya et al. reported a six-year-
old DOCK8-deficient patient with disseminated flat warts, who also presented an extensive
condyloma acuminate around the scrotum and groin folds [121]. Overall, mutations of
CXCR4, GATA2, and DOCK8 result in low numbers of both antigen-presenting cells and
T cells. Thus, inborn errors of immunity simultaneously impairing these two arms of
immunity underlie extreme penetrance of cutaneous and anogenital HPV infections.

7. Significance of the CD28 Axis in the Development of HPV-Related Anogenital Lesions

Individuals with autosomal recessive CARMIL2 deficiency present a wide spectrum of
clinical phenotypes, with bacterial, fungal, and viral infections, including anogenital condy-
lomas in some patients [22,113]. CARMIL2 is a protein involved in the CD28 cosignaling of
T cells, and in cytoskeletal organization and cell migration [112]. The discovery of severe
cutaneous HPV infections in patients with CD28 deficiency suggested that defective CD28
signaling in T cells was the main driver of HPV susceptibility in individuals with CARMIL2
mutations [8]. However, in accordance with the incomplete penetrance of HPV infection
in CARMIL2-deficient patients, the three reported CD28-deficient patients developed no
anogenital lesions, despite one patient being seropositive for HPV-6 and HPV-11 [8]. Con-
sistent with the hypothesis that the CD28 axis plays a crucial role in the anti-HPV response,
mutations of the caspase activation and recruitment domain 11 (CARD11) and magnesium
transporter 1 (MAGT1) genes also increase the risk of severe HPV infections [128,136].
CARD11 is a scaffolding protein required for antigen receptor-induced NF-κB activation,
notably downstream from CD28. MAGT1 deficiency is a congenital disorder of glyco-
sylation. MAGT1 is crucial for the glycosylation and cell-surface expression of major
immune receptors, including CD28. It has been reported that 27% of patients carrying
dominant-negative mutations of CARD11 suffer from unspecified skin warts [136], whereas,
in individuals with MAGT1 deficiency, flat warts, predominantly affecting the palms and
soles, are observed in 30% of cases, and some patients develop extensive perineal condy-
loma acuminata [128]. Thus, the CD28 pathway probably contributes to anogenital HPV
control, and the early pathogenesis of BLT.

8. Other Genes in the Pathogenesis of Anogenital HPV-Induced Lesions

There are few reports concerning other genes involved in predisposition to anogenital
HPV infection. Individuals with Netherton syndrome, an autosomal recessive ichthyosis
caused by mutations of SPINK5, are prone to the development of giant warts [129,130].
Ashton et al. published a pediatric case of BLT in the natal cleft in a patient with Netherton
syndrome [130]. Extensive vulvovaginal and perianal warts, including BLT, have been
reported in patients with integrin B2 (ITGB2) or DNA cross-link repair 1C gene (DCLRE1C)
deficiencies [17,19]. Similarly, patients with autosomal recessive deficiency of the zeta
chain-associated protein of 70 kDa (ZAP70) may present severe HPV infections. Chinn
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et al. published a case report concerning a ZAP70-deficient woman with recurrent oral and
cutaneous warts and HPV-induced cervical dysplasia [137]. Severe anogenital manifesta-
tions of HPV infection have also been observed in individuals with autosomal recessive
inducible costimulator (ICOS) pathway deficiency. Schepp et al. reported HPV-induced
vulvar carcinoma in one ICOS-deficient patient [138], whereas Roussel et al. recently re-
ported the case of a male patient with an autosomal recessive mutation of the inducible
T-cell costimulator ligand gene (ICOSLG) [126]. This last patient was 16 years old, and
subsequently developed recurrent genital warts that spread, over the years, to involve the
scrotum, perineum, perianal, and inguinal regions [126]. To our knowledge, there are no
published case reports of familial BLT (multiple cases in the same family). Nevertheless,
there is strong evidence that inborn errors of immunity can underlie severe anogenital HPV
infections, including BLT.

The Table 2 summarizes all discussed genes and the function of encoded proteins.

Table 2. Summary of the discussed genes.

Gene
(Official Symbol)

Gene
(Official Full Name) Function of Encoded Protein

CARD11 caspase activation and recruitment
domain 11

a member of the membrane-associated guanylate kinase
(MAGUK) family; plays a key role in adaptive immune
response by transducing the activation of NF-kappa-B

downstream of T-cell receptor and B-cell receptor engagement

CARMIL2 capping protein regulator and
myosin 1 linker 2

a member of CARMIL family of proteins; involved in the CD28
cosignaling of T cells, and in cytoskeletal organization and

cell migration

CIB1 calcium and integrin binding 1
regulator of diverse cellular processes including migration,

adhesion, proliferation, and cell death/survival. CIB1
deficiency is associated with epidermodysplasia verruciformis

CXCR4 C-X-C chemokine receptor type 4

a receptor of the CXCL12 chemokine; is involved in multiple
signaling pathways that orchestrate cell migration,

hematopoiesis and cell homing, and retention in the
bone marrow

DCLRE1C DNA cross-link repair 1C a nuclear protein; regulation of the cell cycle in response to
DNA damage, and TCR and BCR recombination

DOCK8 dedicator of cytokinesis 8
a member of the DOCK180 family of guanine nucleotide

exchange factors; critical role in cell migration and survival of
several types of immune system cells

GATA2 GATA-binding protein 2
a member of the GATA family of zinc-finger transcription

factors; plays a critical role in maintaining the pool of early
hematopoietic cells

ICOS inducible T cell costimulator
protein belonging to the CD28 and CTLA-4 cell-surface receptor

family; T cell co-activating receptor, involved in T cell
immune responses

ICOSLG inducible T cell costimulator ligand ligand of ICOS, involved in T cell immune responses

IFNAR1 interferon alpha and beta receptor
subunit 1

forms one of the two chains of a receptor for IFN-α and IFN-β;
involved in immune response; functions as an antiviral factor

IFNAR2 interferon alpha and beta receptor
subunit 2

forms one of the two chains of a receptor for IFN-α and IFN-β;
involved in immune response; functions as an antiviral factor

IFNGR1 interferon gamma receptor 1
the ligand-binding chain (alpha) of the gamma interferon

receptor; non-redundant roles against intra-cellular pathogens
(in particular mycobacteria)
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Table 2. Cont.

Gene
(Official Symbol)

Gene
(Official Full Name) Function of Encoded Protein

IFNGR2 interferon gamma receptor 2
the non-ligand-binding beta chain of the gamma interferon

receptor. non-redundant roles against intra-cellular pathogens
(in particular mycobacteria)

ITGB2 integrin subunit beta 2 an integrin beta chain; participate in cell adhesion as well as
cell-surface mediated signaling

MAGT1 magnesium transporter 1
a ubiquitously expressed magnesium cation transporter protein;

crucial for the glycosylation and cell-surface expression of
major immune receptors, including CD28

SPINK5 serine peptidase inhibitor Kazal
type 5

lympho-epithelial Kazal-type related inhibitor (LEKT1); plays a
role in skin and hair morphogenesis, as well as

anti-inflammatory and antimicrobial protection of
mucous epithelia

TMC6
(EVER1) transmembrane channel like 6

integral membrane protein located in the endoplasmic
reticulum; predicted to form transmembrane channels; TMC6
deficiency is associated with epidermodysplasia verruciformis

TMC8
(EVER2) transmembrane channel like 8

integral membrane protein located in the endoplasmic
reticulum; predicted to form transmembrane channels; TMC8
deficiency is associated with epidermodysplasia verruciformis

ZAP70 zeta chain of T cell receptor
associated protein kinase 70

an enzyme belonging to the protein tyrosine kinase family;
plays a role in T-cell development and lymphocyte activation;

essential for thymocyte development

9. Conclusions

The prognosis of BLT probably depends on tumor size, SCC transformation, local
recurrence, secondary infections, and associated immunodeficiencies. Early diagnosis and
appropriate aggressive therapy may reduce both medical and surgical morbidity, and over-
all mortality. Primary or secondary immunodeficiencies should be suspected in individuals
with BLT. In the absence of acquired immunodeficiency, genetic investigations should
be envisaged. Recent studies have shown that inborn errors of immunity conferring a
predisposition to common warts and anogenital HPV lesions largely overlap, and that they
impair host cellular immunity, including that mediated by CD4+ T cells, in particular. The
smaller number of reports of severe anogenital warts than of cutaneous warts in patients
with primary immunodeficiencies probably reflects the epidemiology of the disease, with a
peak incidence in childhood for cutaneous warts, and during the third decade of life for
anogenital warts [139,140]. Inborn errors of immunity conferring predisposition to various
infections, including those caused by HPVs, probably manifest before exposure to sexually
transmissible HPVs. As a result, prophylactic measures or a severe course of immunodefi-
ciency (e.g., early death, transplantation) probably reduce the incidence of anogenital HPV
lesions in such patients. Despite the large body of knowledge available regarding HPV
infections, further immunological and genetic investigations into susceptibility to severe
and persistent HPV lesions of the anogenital region are required. The study of patients
with isolated severe anogenital HPV infections is of particular interest, and may unravel
important molecular pathways, as recently exemplified by the discovery of CD28 deficiency
in patients with tree man syndrome [8]. Such efforts should lead to improvements in the
clinical management of patients.
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