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a b s t r a c t 

Rat erythrocytes, or erythrocyte membrane ghosts, have been subjected to either chronic (drinking 

water containing 15 mM lead acetate for 3 months) or acute (10 −9 –10 −2 M lead acetate for 1 h) Pb 2 + 

treatments and subsequent changes in membrane properties have been measured. Pb 2 + concentration 

in chronically treated rat plasma was 1.8 μM, which is one order of magnitude above normal values. 

Membrane permeability, or hemolysis, was increased in both cases. A comparative study using lipo- 

somes, in the form of large unilamellar vesicles, also indicated an increase in membrane permeability. 

Membrane microviscosity, or acyl chain molecular order, measured as DPH fluorescence polarization, 

showed an increased order in the acute treatments, at least below 700 μM Pb 2 + , and a similar increase

in chronically treated rats. The correlation between acute and chronic treatments, and between cell and 

model membranes, suggests that the present observations may be relevant in the pathogenesis of lead 

intoxication in humans. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical 

Societies. All rights reserved. 
 

. Introduction 

Lead (Pb) is considered to be a major global environmental health 

azard. It is found in nature as a divalent cation, mainly forming sta- 

le complexes with sulfur. Pb belongs to the group IVa of the periodic 

able of elements, it has a relatively large ionic radius (1.2 Å) and a 

igh electronegativity (2.33 in the Pauling scale), which favors its in- 

eractions with the coordination groups of proteins [ 1 ]. Particularly, 

he ability of Pb to interact with a flexible coordination number with 

rotein oxygen and sulfur atoms, and to form stable complexes with 

hem, increases its affinity for proteins [ 2 ]. Pb is a heavy metal with 

o known biological function in humans. On the contrary, it can dam- 

ge various systems of the body including the hematopoietic, renal 

nd skeletal systems, the central nervous system being its primary 

arget [ 3 ]. Exposure of the immune system to Pb 2 + may lead to im- 

unological dysregulation [ 4 ]. The susceptibility to Pb 2 + toxicity is 

nfluenced by several factors such as environmental exposure, age and 
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nutritional status. Human exposure to Pb 2 + occurs via food, water, 

air and soil [ 5 ]. Young children can be easily intoxicated from chronic 

ingestion of paint chips, house dust or soil containing Pb 2 + particles. 

People can also be exposed to Pb 2 + contamination from industrial 

sources such as smelters and Pb 2 + manufacturing industries [ 5 , 6 ]. 

Also, because Pb 2 + is a cumulative metal, it constitutes a major haz- 

ard for human health. Its toxic effects depend on both the duration 

of exposure and the magnitude of the dose. The half-life of Pb 2 + in 

blood is only 35 days but in the brain it is about 2 years and in bone it

persists for decades. 

Pb 2 + intoxication is a complex disorder that affects several cells 

and organs, including functional and structural alteration of erythro- 

cytes [ 7 , 8 ]. Following exposure, lead is taken up in the bloodstream 

and transported to other tissues. In human blood, 99% Pb 2 + is as- 

sociated with erythrocytes, leaving about 1% in the plasma [ 9 ]. The 

hematological effects result mainly from interference with heme and 

hemoglobin synthesis, and changes of erythrocyte morphology and 

survival time result in the anemia frequently observed in Pb 2 + poi- 

soning [ 10 ]. Pb 2 + is known to have toxic effects on membrane struc- 

ture and functions [ 11 ]. The effects on erythrocyte membranes in par- 

ticular have been analyzed because erythrocytes have a high affinity 

for Pb 2 + and are more vulnerable to oxidative damage than many 

other cells [ 12 ]. 

The mechanisms underlying Pb 2 + toxicity are still a matter of re- 

search. So far, the effects of Pb 2 + on Ca 2 + fluxes and Ca 2 -regulated 
f European Biochemical Societies. All rights reserved. 
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events have been suggested as major mechanisms involved in Pb 2 + 

toxicity [ 13 –15 ]. Other potential mechanisms for Pb 2 + toxicity in-

clude the capacity of Pb 2 + to affect cell membrane biophysics, how-

ever this possibility has not been tested previously, to the authors ’

knowledge. In our study we have attempted to fill this void in our

knowledge of Pb 2 + toxicology. To this aim we submitted adult male

rats to chronic exposure of Pb 2 + leading to persistently high Pb 2 + 

blood levels. The effect of Pb 2 + on red blood cell hemolysis, morphol-

ogy and erythrocyte membrane fluidity was investigated. The data

were compared with those on cells subjected to an acute Pb 2 + expo-

sure. Some of the above studies were also repeated on model mem-

branes (large unilamellar liposomes, LUV). A comparison of the three

systems, erythrocyte chronic, erythrocyte acute and model mem-

brane, allow important generalisations that may shed light on the

biophysical aspects of lead intoxication and are relevant to human

exposure to this metal. 

2. Materials and methods 

2.1. Materials 

Egg phosphatidylcholine (PC) was purchased from Lipid

Products (South Nutfield, United Kingdom). Diphenylhexatriene

(DPH), 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene

p -toluenesulfonate (TMA–DPH), were from Sigma Aldrich. 8-

Aminonaphthalene-1,3,6-trisulfonic acid (ANTS), p -xylene bis (pyri-

dinium bromide) (DPX) were obtained from Molecular Probes Inc.

Phosphatidylserine (PS), phosphatidylinositol (PI), and phosphatidic

acid (PA) were purchased from Avanti Polar Lipids (Alabaster, Al-

abama). All other reagents were of analytical quality. 

2.2. Animals 

Adult male Wistar rats weighing 200 g were raised in the animal

house and kept under constant illumination conditions 12:12 light /

dark and a room temperature of 22 ± 3 ◦C. All animals were treated

in compliance with the guidelines of the Cadi Ayyad University, Mar-

rakech (Morocco) with adequate measures undertaken to minimize

pain and animal discomfort. 

Healthy male rats were divided into two groups of 15 animals

each. The first group used as controls received distilled water, the

second group was treated with drinking water containing 15 mM lead

acetate [Pb 2 + (CH 3 COO) 2 ·3H 2 O], dissolved in distilled water. Animals

were exposed to this treatment for 3 months according to a previous

study [ 16 ]. 

Venous blood samples were collected from rats into heparinised

tubes. Blood samples were stored for analyses. Aliquots of blood sam-

ples were separated for Pb 2 + analysis and the remaining blood sam-

ples were centrifuged to separate plasma and red blood cells. 

2.3. Methods 

2.3.1. Preparation of erythrocyte suspensions 

Blood was withdrawn from control and Pb 2 + -treated adult male

rats into heparinised tubes. The samples were then centrifuged at

2500xg for 10 min, the plasma obtained was stored at −25 ◦C, and

the pellet washed several times with buffer (144 mM NaCl, 5 mM KCl,

1.8 mM MgCl 2 , 10 mM Hepes, 5 mM glucose, pH 7.4). To 50 μl erythro-

cyte suspension 100 μl glutaraldehyde were added for fixation. Fresh

blood smears were carried out from 50 μl of control and Pb 2 + -treated

samples and stained with May-Gr ̈unwald–Giemsa. 

2.3.2. Lead assay 

500 μl samples were dissolved in 2.0 ml ultra-pure nitric acid, for

atomic absorption spectrometric analysis performed at the ICP AES

laboratory, CNRST, Division UATRS, Rabat, Morocco [ 17 ]. 
2.3.3. Iron assay 

Iron reacts with chromazurol B (CAB) and cetyltrimethylammo-

niumbromide (CTMA) to form a coloured ternary complex with an

absorbance maximum at 623 nm [ 18 ]. 

2.3.4. Calcium assay 

Calcium reacts with methylthymol blue in alkaline medium form-

ing a coloured complex that can be measured by spectrophotometry

[ 19 ]. 

2.3.5. Osmolarity assays 

A 40 μl aliquot of the diluted control and Pb 2 + -treated blood sam-

ple was measured in an Osmomet 030 osmometer (Gonotec, Berlin). 

2.3.6. Hemolysis assays 

After centrifugation at 1700x g for 5 min, hemolytic activity was

measured as an increase in the A 412 value (i.e., increase in hemoglobin

content) of the supernatant. 

2.3.7. Preparation of human erythrocyte ghosts 

Blood was collected from healthy donors, placed in EDTA tubes

(BD Vacutainer Systems, Franklin Lakes, NJ) and washed with 25 mM

HEPES, 150 mM NaCl, pH 7.2 buffer. Right-side-out (RSO) ghosts were

prepared following the method of Steck and Kant [ 20 ]. Lipid extracts

from erythrocyte ghosts in organic solvent were obtained as described

previously by Bligh and Dyer [ 21 ]. 

2.3.8. Fluorescence polarization assays 

Red blood cells (3.3 × 10 8 cell / ml) or erythrocyte ghosts (0.3 mM)

were incubated with 4 μl fluorescent probe diphenylhexatriene (DPH)
for 1 h with stirring and centrifuged at 1600 rpm, 10 min to remove
probes that were not incorporated. The fluorescence polarization of

DPH and TMA–DPH was measured using a SLM 8100 Spectrofluorom-

eter, equipped with standard polarization accessories and a circulat-

ing water bath. The excitation and emission wavelengths were 360
and 430 nm, respectively, for DPH and 365 and 427 nm, respectively,
for TMA–DPH. The fluorescence polarization was calculated as: 

P = 

( I vv − G I vh ) 

( I vv + G I vh ) 

2.3.8.1. Liposome preparation 

The lipids were dissolved in chloroform and mixed as required, and

the solvent was evaporated exhaustively. Large unilamellar vesicles

were prepared by the extrusion method (10 passages) with filters

0.1 μm in pore diameter [ 22 ]. Final lipid concentration was measured

as lipid phosphorus. 

2.3.8.2. Liposome membrane permeability 

Liposome membrane permeability was determined by measur-

ing the efflux of probe previously encapsulated in lipid vesicles. The

leakage of vesicular aqueous contents was assayed with ANTS and

DPX entrapped in the liposomes according to Ellens et al. [ 23 ]. Non-

entrapped probe was removed by gel filtration on Sephadex G-25

columns. Fluorescence measurements were carried out in a LS-50B

Perkin–Elmer spectrofluorometer, at room temperature (37 ◦C) and

with continuous stirring. The osmolality of intra- and extravesicu-

lar solutions was measured in a cryoscopic osmometer (Osmomat

030, Gonotec, Berlin, Germany) and adjusted to 0.3 osm / kg by adding

NaCl. An interference filter (520 nm) was used to avoid scattered ex-

citation light. Fluorescence measurements were performed by setting

the (ANTS + DPX) emission at 520 nm and the excitation at 355 nm.

The 0% leakage corresponded to the fluorescence intensity ( F 0 ) of a

suspension containing 100 μM liposomes at time zero; 100% leakage
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Table 1 

Effects of chronic Pb 2 + treatment on rats and rat erythrocytes. 

Control Pb 2 + -treated 

Plasma Pb 2 + ( μM) 0.17 ± 0.08 1.84 ± 0.19 

Plasma Ca (mM) 3.5 ± 0.1 1.3 ± 0.1 

Plasma Fe ( μM) 33.2 ± 0.1 31.0 ± 0.1 

Osmolality (mosm) 327 ± 2.0 363 ± 20.1 

Hemolysis (relative) 1.0 1.6 ± 0.05 

DPH polarisation * 0.204 ± 0.006 0.343 ± 0.033 

Average values ± S.E.M. ( n = 3–5). 
∗ Erythrocyte ghost membranes. 
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Fig. 1. Erythrocyte morphology of control (A), and chronically intoxicated (B), rats. 

May-Gr ̈unwald–Giemsa stain. 
as the fluorescence value ( F 100 ) obtained when LUV are lysed by 

dding 10 μl Triton X-100 [ 24 ]. To test the destabilizing effect of lead 

he metal was added to liposomal suspensions at different concen- 

rations. Fluorescence of each sample was recorded for 30 min. 

The percentage of efflux was calculated by the following equation: 

F % = 

( F t − F 0 ) 

( F 100 − F 0 ) 
× 100 , 

here F 0 and F t are the fluorescence at 530 nm in the absence and in 

he presence of Pb 2 + , respectively. 

.3.9. Dynamic light scattering 

Dynamic light scattering (DLS) measurements of particle sizes 

ere carried on a Malvern Zetasizer nano System. This instrument 

as equipped with a 4 mW He–Ne laser of 633 nm wavelength, and an 

valanche photodiode detector (quantum efficiency > 50% at 633 nm) 

ocated at 173 ◦ from the incident beam direction in a backscatter po- 

ition. The temperature of the sample holder was stabilized at 37 ◦C 

hrough a Peltier thermostat. Samples were introduced into plastic 

0–2000- μl capacity disposable cuvettes (UVette, Eppendorf, Ham- 

urg, Germany). 

. Results and discussion 

.1. Chronic Pb 2 + intoxication 

Chronic treatments of rats with Pb 2 + as indicated under ’Methods’ 

aused highly increased plasma lead levels ( Table 1 ). Plasma iron and 

articularly calcium were concomitantly decreased. Under the same 

onditions red blood cell osmolality hardly changed, but erythrocyte 

embranes became more fragile, thus hemolysis increased ( Table 1 ). 

ll the above results are in agreement with the previous similar study 

y Missoun et al. [ 25 ]. Also in Table 1 polarisation of DPH fluorescence 

mission, considered to reflect molecular membrane order, increased 

arkedly in the intoxicated rats erythrocyte ghosts membranes. In- 

reased membrane order of the extent found here could mean a high 

egree of membrane rigidity, and the latter to increased hemolysis 

 26 ]. 

The above changes in red blood cells were accompanied by an ab- 

ormal morphology, Pb 2 + stimulated the transition from the normal 

iconcave shape to echinocyte morphology ( Fig. 1 B). Erythrocytes 

arger than normal are also observed (arrows). This is in contrast with 

he normal morphology of the erythrocytes from control rats ( Fig. 

 A). 

The distribution of toxins, especially Pb 2 + inside the cells has 

een the subject of recent studies in one of our laboratories [ 27 , 28 ]. 

b 2 + affects many organ systems, mainly through its effect on blood. 

ollowing exposure, Pb 2 + is taken up in the bloodstream and trans- 

orted to other tissues. In blood, 99% of Pb 2 + is associated with ery- 

hrocytes leaving about 1% free in plasma [ 9 , 29 ]. In the present work 

e provide evidence that Pb 2 + blood level is increased in chroni- 

ally treated rats as compared to controls. Chronic Pb 2 + exposure 

ecreases both the blood calcium and iron levels as compared to 
controls. The metabolisms of calcium and lead are similar in certain 

respects and have a number of potential sites for interaction. It has 

been reported previously that Pb 2 + can be transported into the ery- 

throcytes through the Ca 2 + transport systems and that this might 

alter calcium homeostasis [ 30 ]. 

3.2. Acute Pb 2 + intoxication 

Properties of red blood cell membranes were examined 1 h af- 

ter Pb 2 + addition. Pb 2 + caused a dose-dependent increase in the 

number of echinocytes ( Fig. 2 ). At the highest concentrations tested 

abnormally large red blood cells were also observed. Overall, the mor- 

phological changes induced by acute Pb 2 + intoxication were similar 

to those observed after chronic intoxication except that, with acute 

treatments, Pb 2 + concentrations one or two orders of magnitude 

higher than in the chronic treatments were required ( Fig. 1 ). 

Submicromolar concentrations of lead induced hemolysis, the ef- 

fect being only moderate (up to 4%) ( Fig. 3 ). Hemolysis increased but 

slowly with Pb 2 + concentrations > 1 μM. An increased hemolysis was 

also observed after chronic intoxication ( Table 1 ). 

The acute effects of Pb 2 + on membrane order, measured as polar- 

isation of the fluorescence emission of DPH, were interesting. Pb 2 + 

concentrations in the 100–700 μM range increased DPH polarisation 

( Fig. 4 ), which is interpreted as an increase in membrane lipid chain 

order [ 31 ]. However when the effect of Pb 2 + concentrations above 

700 μM was considered, a decreased polarisation was observed ( Fig. 

4 ), a phenomenon that may involve direct Pb 2 + interaction with 

membrane integral proteins. The data below 700 μM Pb 2 + are in 

agreement with the clear increase in DPH polarisation observed after 

chronic lead intoxication ( Table 1 ), only Pb 2 + concentrations about 

two orders of magnitude higher were required to produce the same 

effect with acute treatments. Amoruso et al. [ 32 ] also observed an in- 

creased DPH polarisation after acute treatment of erythrocytes with 

Pb 2 + . 
DPH is a highly non-polar molecule, that distributes uniformly 

within the membrane hydrophobic matrix. TMA–DPH however is an 

amphipathic molecule, that orients itself at the lipid–water interface, 

thus providing information on lipid chain order in the region close to 

the phospholipid headgroups [ 33 ]. The acute effects of Pb 2 + on TMA–

DPH polarisation in erythrocyte ghost membrane are shown in Fig. 

5 . Polarisation (lipid chain order) decreases continuously with Pb 2 + 

concentration, the decrease being steeper between 100 and 1000 μM 

Pb 2 + . Thus both DPH and TMA–DPH provide complementary infor- 

mation showing that acute treatments with lead concentrations up 

to 700 μM cause an overall ordering of membrane lipid chains, with 

a localized disordering in the chain regions close to the interface. 

Jang et al. [ 34 ] observed that low levels of lead induce phos- 

phatidylserine exposure and erythrophagocytosis, through inhibition 
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Fig. 2. Erythrocyte morphology of control and acutely intoxicated cells. May- 

Grunwald–Giemsa stain. The cells were treated for 1 h with the Pb 2 + concentrations 

indicated under each picture. 

Fig. 3. Hemolysis after acute (1 h) Pb 2 + treatments. Average of three measurements. 

S.E.M. roughly the size of the symbols, or smaller. 

 

 

 

 

 

 

Fig. 4. DPH fluorescence polarisation in erythrocyte ghosts after acute (1 h) Pb 2 + 

treatments. Average values ± S.E.M. ( n = 3). 

Fig. 5. TMA–DPH fluorescence polarisation in erythrocyte ghosts after acute (1 h) Pb 2 + 

treatments. Average values ± S.E.M. ( n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the phospholipid translocase flippase. These results were observed

both after acute and subchronical Pb 2 + intoxication. The increased

lipid order revealed through increased DPH polarization in both acute

and chronical intoxication may be at the origin of the observed hemol-

ysis ( Fig. 3 ) and of splenic sequestration and erythrophagocytosis [ 34 ].

Hemolysis secondary to an increased membrane order / rigidity has

been observed [ 26 ] in a previous study in one of our laboratories. 
3.3. Leakage from lipid vesicles 

As a further effort to understand the molecular effects of Pb 2 + 

on membranes a number of studies were carried out with model

membranes, namely large unilamellar vesicles (LUV) about 100 nm in

diameter. LUV of three different compositions were prepared, namely

pure PC, pure PI and PC:PA (8:2 mol ratio). PC is intended to represent

the mostly neutral lipid composition of the cell plasma membrane

outer monolayer. The negatively-charged PI and PC:PA should provide

an increased interaction with the metal. 

Liposomal leakage, or release of trapped solutes, was measured

looking for a parallel of Pb 2 + -induced hemolysis as seen in Fig.

3 , i.e. lead-induced liposomal leakage at the same concentrations

that caused hemolysis ( Fig. 6 ). Pb 2 + was effective on LUV of all

three compositions tested, but sensitivity decreased in the order

PI > PC:PA > PC. A strict parallelism cannot be established between

liposomal leakage and hemolysis, because in the former case the re-

leased solutes have a much smaller molecular weight than hemolysis

in the latter. Still, it can be qualitatively ascertained that Pb 2 + in-

creases the permeability of both model and cell membranes. 

The hemolysis phenomenon is commonly regarded as connected

with the lipid part of the erythrocyte membrane. The agreement

found between the results of both sets of studies in erythrocytes and

in liposomes provides evidence that Pb 2 + acts directly on the lipid

matrix. However one cannot exclude an action, directly or via the lipid

phase, on membrane proteins [ 35 ]. Addition of Pb 2 + to blood causes
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Fig. 6. Pb 2 + induced release of aqueous liposomal contents. Large unilamellar vesicles 

of different lipid compositions were used: PC ( � ), PC:PA (80:20 mol ratio) (o), or PI ( •). 

Average values ± S.E.M. ( n = 3). 

Fig. 7. Pb 2 + -induced liposome aggregation (increase in particle size) measured by 

quasi-elastic light scattering as a function of Pb 2 + concentration. Initial vesicle size 

was 0.1 μM. LUV composition was PC ( � ), PC:PA (80:20 mol ratio) (o),or PI ( •). Average 

of three measurements. S.E.M. roughly the size of the symbols, or smaller. 
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Fig. 8. Pb 2 + -induced TMA–DPH fluorescence polarisation in liposomal membranes. 

LUV composition was: PC ( � ), PC:PA (80:20 mol ratio) (o), or PI ( •). Average val- 

ues ± S.E.M. ( n = 3). 
embrane leakage which means that more water can enter the cell 

efore haemolysis occurs [ 36 ]. The changes in erythrocyte shape, ob- 

erved in this work, may also be related to the interference of Pb 2 + 

ith Fe found to be decreased at the blood level. Other studies have 

lso demonstrated that micromolar concentrations of Pb 2 + can per- 

eate the membrane and disrupt the liposome transmembrane pH 

radient, resulting in the alkalinization of the intraliposomal aqueous 

pace [ 37 ]. 

.4. Further liposomal studies 

To confirm that the higher effect of Pb 2 + on negatively-charged 

esicles was related to electrostatic interactions the size of Pb 2 + - 
esicle aggregates was measured by quasi-elastic light scattering as 

 function of lead concentration. The results in Fig. 7 show that Pb 2 + 

id not cause aggregation of PC vesicles, while aggregation was ob- 

erved with PC:PA and even more with PI vesicles, i.e. the same order 

n which leakage was detected. The data in Fig. 7 confirm the electro- 

tatic interaction of Pb 2 + and PC:PA or PI liposomes, and suggest that 

esicle–vesicle aggregation may help in the Pb 2 + -induced release of 

queous vesicular contents. 

Lead effects on the molecular order of lipids in liposomes were 

ssayed with the amphipathic probe TMA–DPH. With all three LUV 
compositions Pb 2 + was seen to decrease TMA–DPH polarisation, i.e. 

to decrease membrane order ( Fig. 8 ), in agreement with the erythro- 

cyte ghost observations ( Fig. 5 ). TMA–DPH is located at the lipid–

water interface, as discussed above. Perhaps the physical properties 

in this region of the bilayer are governed mainly by its interfacial na- 

ture, independently of the presence or absence of proteins. This would 

explain the very similar results of TMA–DPH polarisation in erythro- 

cyte ghost membranes ( Fig. 5 ) and in liposomes ( Fig. 8 ). However 

in the deeper regions of the hydrophobic matrix, that are explored 

by DPH, the presence of intrinsic proteins with their inherent lipid 

disordering capacity [ 38 ] would interfere with the effects of Pb 2 + , 
not excluding direct Pb 2 + –protein interactions, giving rise to a more 

complex DPH polarisation response. 

4. Concluding remarks 

The above results demonstrate the capacity of Pb 2 + to affect cell 

membrane biophysics. This aspect of lead toxicology has hardly been 

considered in earlier studies. Three different systems have been stud- 

ied, namely chronically exposed erythrocytes, acutely exposed ery- 

throcytes, and model membranes (LUV). A comparison of the differ- 

ent results allows us to conclude that in all cases lead: (i) increases 

membrane permeability, (ii) increases the overall membrane lipid 

order (at the toxicologically relevant concentrations), and (iii) alters 

erythrocyte morphology, giving rise to macrocytic and echinocytic 

forms. Pb 2 + effects on red blood cells after acute treatments repro- 

duce faithfully the effects of chronic intoxication except that acute 

effects require lead concentrations 2–3 orders of magnitude higher. 

Liposomes exhibit a similar sensitivity to Pb 2 + than erythrocytes in 

acute treatments. The parallelism between membrane effects of Pb 2 + 

in the three systems under study reflects that the data are relevant 

to human intoxication by lead. In particular the observation that ex- 

posure to low (1–2 μM) Pb 2 + concentrations for extended periods 

of time has the same effects on membranes to that of acute treat- 

ments with 50–500 μM Pb 2 + supports the contention that the data 

in this paper can be at the origin of certain signs, e.g. anemia, of lead 

intoxication in humans. 
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