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Abstract 

Background:  To compare the changes in quantitative parameters and the size and degree of 18F-fluorodeoxyglucose 
([18F]FDG) uptake of malignant tumor lesions between Bayesian penalized-likelihood (BPL) and non-BPL reconstruc‑
tion algorithms.

Methods:  Positron emission tomography/computed tomography images of 86 malignant tumor lesions were 
reconstructed using the algorithms of ordered subset expectation maximization (OSEM), OSEM + time of flight (TOF), 
OSEM + TOF + point spread function (PSF), and BPL. [18F]FDG parameters of maximum standardized uptake value 
(SUVmax), SUVmean, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and signal-to-background ratio 
(SBR) of these lesions were measured. Quantitative parameters between the different reconstruction algorithms 
were compared, and correlations between parameter variation and lesion size or the degree of [18F]FDG uptake were 
analyzed.

Results:  After BPL reconstruction, SUVmax, SUVmean, and SBR were significantly increased, MTV was significantly 
decreased. The difference values of %ΔSUVmax, %ΔSUVmean, %ΔSBR, and the absolute value of %ΔMTV between 
BPL and OSEM + TOF were 40.00%, 38.50%, 33.60%, and 33.20%, respectively, which were significantly higher 
than those between BPL and OSEM + TOF + PSF. Similar results were observed in the comparison of OSEM and 
OSEM + TOF + PSF with BPL. The %ΔSUVmax, %ΔSUVmean, and %ΔSBR were all significantly negatively correlated 
with the size and degree of [18F]FDG uptake in the lesions, whereas significant positive correlations were observed for 
%ΔMTV and %ΔTLG.

Conclusion:  The BPL reconstruction algorithm significantly increased SUVmax, SUVmean, and SBR and decreased 
MTV of tumor lesions, especially in small or relatively hypometabolic lesions.
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Background
18F-fluorodeoxyglucose positron emission tomography 
combined with computed tomography ([18F]FDG-PET/
CT) imaging technology is widely used in clinical prac-
tice, not only for disease diagnosis especially of malignant 
tumors but also for treatment monitoring. The quantita-
tive analysis of a lesion’s characteristics is conducive to 
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improving disease diagnosis and treatment monitor-
ing [1]. However, the accurate quantification of PET/
CT parameters is challenged by lesion size, volume, and 
contrast, which are mainly influenced by reconstruction 
algorithm [2]. As an emerging reconstruction technol-
ogy, the Bayesian penalized-likelihood (BPL) reconstruc-
tion algorithm takes the accuracy of PET/CT quantitative 
parameters a step forward without sacrificing high-qual-
ity images [3, 4]. Different from the traditional ordered 
subset expectation maximization (OSEM) reconstruc-
tion algorithm, BPL effectively converges with PET imag-
ing and improves image quality by controlling the noise 
and potentially increasing the number of iterations in 
high-activity lesions, thereby achieving the best balance 
between image quality and accurate quantification.

Previous studies have shown that changes of [18F]FDG 
uptake in tumor lesions by BPL construction can be 
affected by lesion size and the degree of [18F]FDG uptake 
[4–8]. These studies showed that BPL can increase [18F]
FDG uptake in non-small cell lung cancer lesions, espe-
cially small lesions [6–8], resulting in improvements of 
the sensitivity and accuracy for lung nodule diagnosis. 
Furthermore, changes in maximum standardized uptake 
value (SUVmax) in lesions reconstructed by BPL, which 
have different levels of [18F]FDG, are also significantly 
different [6].

In the past, research mainly focused on certain kinds 
of malignant diseases, such as lung cancer, liver cancer, 
prostate cancer and their metastatic diseases. However, 
there were many other kinds of malignant tumors that 
were less studied in clinical practice. The role of BPL 
reconstruction algorithm on different kinds of malig-
nant tumors remains unsolved. Hence, we conducted this 
study to analyze the effect of BPL reconstruction technol-
ogy on [18F]FDG standard uptake parameters and volume 
metabolism parameters of different kinds of malignant 
tumor lesions. Additionally, the relationship between 
these parameters and the size or degree of FDG uptake in 
lesions was also explored. We anticipated to find an accu-
rate reconstruction algorithm that may provide clear vis-
ibility of small malignant lesions, thus improving tumor 
staging, treatment planning, response monitoring, and 
prognosis prediction.

Methods
Patients
We retrospectively searched our database for patients 
who underwent [18F]FDG PET/CT examination in our 
hospital’s nuclear medicine department from May 2019 
to October 2019 due to suspicious or confirmed malig-
nant tumors. Patients with hypermetabolic lesions on a 
PET scan, which were confirmed to be primary malig-
nant tumors or metastatic lesions by histopathology, 

were eligible for this study. The study was approved 
by the institutional review board of Sir Run Run Shaw 
Hospital (Zhejiang, China). All procedures performed 
in studies involving human participants were in accord-
ance with the ethical standards of the institutional and/
or national research committee and with the 1964 Hel-
sinki declaration and its later amendments or comparable 
ethical standards. The informed consent requirement for 
this retrospective study was waived by The Ethics Com-
mittee of Sir Run Run Shaw Hospital, Affiliated to School 
of Medicine, Zhejiang University.

[18F]FDG‑PET/CT imaging protocol
All patients underwent a PET/CT scan with a novel 
digital detector scanner (Discovery MI; GE Healthcare, 
Milwaukee, WI, USA) based on PET/CT procedure 
guidelines for imaging [9]. The patients were required 
to fast for at least 6  h before PET/CT scans, and the 
serum glucose levels were required to be below 200 mg/
dL at the time of [18F]FDG injection. Then the patients 
were given an intravenous injection of 3.7 MBq/kg FDG. 
Imaging commenced approximately 60  min after the 
injection and covered the skull base to upper thighs with 
the patients’ arms over their heads. Helical CT scan was 
performed with a pitch of 0.984, voltage of 120 kV, auto 
mA ranging from 30 to 180 mA, and noise index of 25. 
And the CT scans for attenuation correction were con-
ducted without contrast agent. After the CT scan, the 
PET scan was immediately acquired in a three-dimen-
sional mode with anatomical region identical to the CT 
scan. The PET acquisition was 2.79 mm in slice thickness 
and 1.5 min per bed position, with 6–8 bed positions per 
patient (depending on patient size) and an overlap of 23% 
(17 slices).

PET reconstruction
PET images were reconstructed using OSEM (without 
point spread function modeling; GE Healthcare) with 
two iterations, 24 subsets, and a 6.4 mm Gaussian filter, 
which is a typical standard of care. After PET acquisi-
tion, the raw data were reconstructed using four differ-
ent reconstruction algorithms per patient: 1) OSEM (two 
iterations/24 subsets, 6.4 mm Gaussian filter); 2) OSEM 
(two iterations/24 subsets, 6.4 mm Gaussian filter) + time 
of flight (TOF); 3) OSEM (two iterations/24 subsets, 
6.4 mm Gaussian filter) + TOF + PSF; and 4) BPL with a 
β-value of 400. The β-value is a penalization factor asso-
ciated with the regularization effect on BPL reconstruc-
tion [10]. Among them, reconstruction algorithms 1–3 
were non-BPL algorithms, and 4 was a BPL algorithm. 
All datasets were reconstructed with a 256 × 256-pixel 
matrix (voxels of 2.73 × 2.73 × 2.78  mm3). The stand-
ard PET reconstruction algorithm used at our center 
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is BPL, namely the Q.Clear reconstruction algorithm 
(GE Healthcare). The reconstructed PET images were 
viewed on the GE Advantage Workstation (AW4.7; GE 
Healthcare), and the CT components were available for 
image fusion. Four reconstructed PET/CT images were 
selected to show the same slice of a lesion, and volume 
of interests (VOIs) of lesions were automatically out-
lined. To compute the metabolic total volume (MTV), a 
42% VOI on the SUVmax was selected for each lesion in 
all reconstructions. TLG was calculated as MTV multi-
plied by SUVmean. Quantitative parameters including 
standard uptake parameters (SUVmax and SUVmean), 
and volume metabolism parameters (MTV and total 
lesion glycolysis [TLG]) of the lesion VOIs were auto-
matically measured. Meanwhile, a 1 cm3 spherical VOI 
was drawn on the parenchyma of the right lobe of liver, 
and the SUVmean of the liver VOI was measured as a 
quantitative background parameter. The tumor appar-
ent signal-to-background ratio (SBR) was defined as the 
lesion’s SUVmax divided by the liver SUVmean and by 
calculating the change rate of the quantitative parameter 
(%Δ) between the BPL group and non-BPL group, such 
as %ΔSUV = (SUVBPL-SUV non-BPL) × 100%/SUVnon-BPL.

Statistical analysis
All data were non-normally distributed and are presented 
as the median and inter quartile range (IQR) (P25, P75). 
The Kruskal–Wallis H test with Bonferroni correction 
for the post hoc test was used to compare the differ-
ences in quantitative parameters between reconstruction 
groups. The correlation between the change rate of quan-
titative parameters and the size and degree of the lesion’s 
FDG uptake was determined by Spearman’s correlation 

analysis. The results were considered statistically signifi-
cant at P < 0.05. All statistical analyses were performed 
using IBM SPSS Statistics 22.0 (IBM Corporation, 
Armonk, NY, USA).

Results
Clinicopathological characteristics
A total of 86 lesions were obtained from 53 patients (30 
males and 23 females) who met the criterion. The median 
and IQR (P25, P75) of long-axis diameter of the lesions 
were 18.5 and 18.3 mm (3.2, 91.5). The median and IQR 
(P25, P75) of age were 63 and 16.5  years (23, 87). The 
median and IQR (P25, P75) of weight were 58.1 and 
9.25 kg (41, 85.8). The malignant tumors originated from 
the head, neck, lung, digestive tract, lymphatic system, 
bone, or urinary system (Table 1).

Influence of different reconstruction algorithms 
on the quantitative parameters of PET‑CT
[18F]FDG standard uptake parameters (SUVmax, 
SUVmean, and SBR) of the tumor lesions are shown in 
Table 2. The SUVmax, SUVmean, and SBR values for the 
PET scans reconstructed by the BPL algorithm were sig-
nificantly greater than those by OSEM, OSEM + TOF, or 
OSEM + TOF + PSF algorithm (X2 = 38.78, X2 = 38.21, 
X2 = 33.62, respectively; all P < 0.001). After pair-wise 
comparison, the SUVmax, SUVmean, and SBR val-
ues were significantly different between OSEM and 
BPL, OSEM + TOF and BPL, and OSEM + TOF + PSF 
and BPL (all adjusted P < 0.001 for the SUVmax; 
all adjusted P < 0.001 for the SUVmean; adjusted 
P = 0.001, 0.001, 0.008 for the SBR). However, the SUV-
max, SUVmean and SBR values had no significantly 

Table 1  Clinicopathological characteristics

Variable Number (%)/Median, IQR (P25, P75), range

Female/male, n (%) 30 (56.60%)/23 (43.40%)

Age, years 63.00, 16.50 (53.00, 69.50), 24.00–89.00

Body weight, kg 58.10, 9.25 (53.87, 63.12), 41.00–85.80

BMI (kg/m2) 21.75, 4.38 (19.53, 23.90), 18.25–30.25

PET/CT scan post-injection time, min 56.00, 17.50 (50.5, 68.00), 45.00–88.00

Blood glucose level at time of injection, mg/dl 113.50, 23.96 (104.04, 127.91), 73.80–185.40

Tumor length, mm 18.50, 18.30 (11.70, 30.00), 3.20–91.50

The source of malignant tumors

Head and neck 14 (23.33%)

Lung 9 (15.00%)

Gastrointestinal system 13 (21.67%)

Lymphatic system 9 (15.00%)

Bone 4 (6.67%)

Urinary system 11 (18.33%)
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differences between OSEM and OSEM + TOF (adjusted 
P = 1.000, 0.283, and 1.000, respectively), OSEM 
and OSEM + TOF + PSF (adjusted P = 1.000, 0.305, 
and 1.000, respectively), and OSEM + TOF and 
OSEM + TOF + PSF (adjusted P = 1.000, 0.144, and 
1.000, respectively). In contrast, the MTV for the PET 
scans reconstructed by the BPL algorithm was sig-
nificantly lower than that by OSEM, OSEM + TOF, or 
OSEM + TOF + PSF algorithm (X2 = 12.69, P = 0.005). 
After pair-wise comparison, the MTVs were differ-
ent between BPL and OSEM, and between BPL and 
OSEM + TOF (adjusted P = 0.006, 0.028, respectively). 
The MTVs were not significantly different between 
BPL and OSEM + TOF + PSF, OSEM + TOF + PSF and 
OSEM + TOF, OSEM + TOF + PSF and OSEM, and 
OSEM + TOF and OSEM (adjusted P = 0.343, 1.000, 
1.000 and 1.000, respectively). Regarding the TLG, no 
significant difference was found among the four recon-
struction algorithms (X2 = 0.72, P = 0.868). Regarding the 
TLG, no significant difference was found among the four 
reconstruction algorithms (X2 = 0.72, P = 0.868).

The different rates of quantitative parameters such as 
%ΔSUVmax, %ΔSUVmean, %ΔSBR, and the absolute 
value of %ΔMTV between OSEM and BPL were 42.2%, 
46.7%, 42.8%, and 37.6%, respectively, which were sig-
nificantly higher than those between OSEM + TOF 
and BPL (40.0%, 38.5%, 33.6%, and 33.2%, respectively) 
and between OSEM + TOF + PSF and BPL (26.7%, 
27.9%, 21.4%, and 21.7%, respectively) (X2 = 25.45 and 
P < 0.001 for %ΔSUVmax, X2 = 22.37 and P < 0.001 for 
%ΔSUVmean, X2 = 35.26 and P < 0.001 for %ΔSBR, and 
X2 = 8.67 and P = 0.013 for %ΔMTV). After pair-wise 
comparisons, the %ΔSUVmax, %ΔSUVmean, %ΔSBR, 
and %ΔMTV of OSEM + TOF + PSF vs. OSEM + TOF 
were significantly different from those of BPL (adjusted 

P = 0.008, adjusted P < 0.001, adjusted P = 0.003, adjusted 
P = 0.046, respectively); the %ΔSUVmax, %ΔSUVmean, 
%ΔSBR, and %ΔMTV of OSEM + TOF + PSF vs. OSEM 
were significantly different from those of BPL (adjusted 
P = 0.022, adjusted P < 0.001, adjusted P < 0.001, adjusted 
P = 0.024, respectively). However, compared to BPL, the 
%ΔSUVmax, %ΔSUVmean, %ΔMTV, and %ΔSBR had no 
significant differences between OSEM + TOF and OSEM 
(adjusted P = 0.139, 0.124, 1.000, 0.025, respectively). 
There was no significant difference in %ΔTLG between 
the reconstruction algorithms (X2 = 2.88, P = 0.238; 
Table 3).

Relationship between the change rate of quantitative 
parameters and the size or degree of FDG uptake 
in the lesions
The %ΔSUVmax, %ΔSUVmean, and %ΔSBR in the 
OSEM, OSEM + TOF, and OSEM + TOF + PSF recon-
struction groups were negatively correlated with the 
size (P < 0.001) and degree of FDG uptake (P < 0.05) of 
the lesions, whereas the %ΔMTV and %ΔTLG were 
positively correlated with the size (P < 0.001) and degree 
of FDG uptake (P < 0.001) of the lesions (Tables  4, 5, 6; 
Figs. 1, 2, 3).

Discussion
Our study demonstrated that the BPL reconstruc-
tion algorithm significantly increased the SUVmax, 
SUVmean, and SBR while significantly decreasing the 
MTV of malignant tumor lesions compared with the 
OSEM and OSEM + TOF reconstruction algorithms. 
The changes were more obvious in small tumor lesions or 
lesions with relatively hypometabolic tumors.

[18F]FDG PET/CT is widely used in clinical practice 
for the quantitative analysis of malignant lesions such as 

Table 2  Comparison of quantitative parameters of [18F]FDG using different reconstruction algorithms for malignant tumor lesions 
(Kruskal–Wallis H test)

Reconstruction algorithms Quantitative parameters (Median P25, P75)

SUVmax SUVmean SBR MTV TLG

OSEM 8.07 4.75 4.36 5.15 23.86

(5.37, 11.39) (3.04, 7.18) (2.79, 6.43) (3.03, 12.48) (11.17, 70.64)

OSEM + TOF 8.38 5.01 4.65 4.86 25.97

(6.08, 12.08) (3.51, 7.53) (3.23, 6.76) (2.57, 12.54) (11.35, 74.00)

OSEM + TOF + PSF 9.01 5.39 5.2 4.31 23.62

(6.85, 12.67) (3.97, 7.73) (3.74, 7.31) (2.21, 11.05) (10.06, 73.92)

BPL 11.75 7.42 6.68 3.08 22.59

(9.97, 16.82) (5.83, 10.56) (5.19, 8.94) (1.13, 9.66) (7.02, 79.95)

X2 38.78 38.21 33.62 12.26 0.72

p value  < 0.001  < 0.001  < 0.001 0.005 0.868



Page 5 of 9Liu et al. BMC Med Imaging          (2021) 21:133 	

diagnosis, treatment monitoring, and prognosis assess-
ment. Signal acquisition and reconstruction algorithms 
have the greatest impact on the accuracy of quantitative 

parameters. Currently, the OSEM algorithm using 
repeated iterations remains the primary method used for 
the reconstruction of PET/CT imaging. With increasing 

Table 3  Comparison of the change rate of quantitative parameters in OSEM, OSEM + TOF, and OSEM + TOF + PSF groups as 
compared to BPL group using Kruskal–Wallis H test

Reconstruction algorithms Change rate of quantitative parameters % (median P25, P75)

%ΔSUVmax %ΔSUVmean %ΔSBR %ΔMTV %ΔTLG

OSEM 42.20% 46.70% 42.80%  − 37.60%  − 2.60%

(26.1%, 85.1%) (27.0%, 90.4%) (27.1%, 85.7%) (58.8%, − 14.0%) (− 23.1%, 9.2%)

OSEM + TOF 40.00% 38.50% 33.60%  − 33.20%  − 6.80%

(20.9%, 68.1%) (21.3%, 71.5%) (19.2%, 64.6%) (55.6%, 17.5%) (− 22.9%, 3.8%)

OSEM + TOF + PSF 26.70% 27.90% 21.40%  − 21.70%  − 3.30%

(15.4%, 49.0%) (15.2%, 54.9%) (12.5%, 46.1%) (− 42.8%, − 8.3%) (− 15.0%, 7.5%)

X2 25.45 22.37 35.32 8.67 2.87

P value  < 0.001  < 0.001  < 0.001 0.013 0.238

Table 4  Correlation between the change rate of quantitative parameters and the size of lesions in the OSEM, OSEM + TOF, and 
OSEM + TOF + PSF groups as compared to the BPL group using Spearman’s correlation analysis

Reconstruction algorithms Change rate of quantitative parameters P value (r)

%ΔSUVmax %ΔSUVmean %ΔSBR %ΔMTV %ΔTLG

OSEM  < 0.001 (− 0.786)  < 0.001 (− 0.867)  < 0.001 (− 0.708)  < 0.001 (0.716)  < 0.001 (0.454)

OSEM + TOF  < 0.001 (− 0.714)  < 0.001 (− 0.817)  < 0.001 (− 0.581)  < 0.001 (0.699)  < 0.001 (0.399)

OSEM + TOF + PSF  < 0.001 (− 0.709)  < 0.001 (− 0.822)  < 0.001 (− 0.570)  < 0.001 (0.648)  < 0.001 (0.343)

Table 5  Correlation between the change rate of quantitative parameters and the SUVmean of lesions in the OSEM, OSEM + TOF, and 
OSEM + TOF + PSF groups as compared to the BPL group using Spearman’s correlation analysis

Reconstruction algorithms Change rate of quantitative parameters P value (r)

%ΔSUVmax %ΔSUVmean %ΔSBR %ΔMTV %ΔTLG

OSEM  < 0.001 (− 0.572)  < 0.001 (− 0.627)  < 0.001 (− 0.524)  < 0.001 (0.730)  < 0.001 (0.668)

OSEM + TOF  < 0.001 (− 0.368)  < 0.001 (− 0.425) 0.0139 (− 0.274)  < 0.001 (0.661)  < 0.001 (0.663)

OSEM + TOF + PSF  < 0.001 (− 0.387)  < 0.001 (− 0.420) 0.0138 (− 0.265)  < 0.001 − 0.628  < 0.001 (0.658)

Table 6  Correlation between the change rate of quantitative parameters and the SUVmax of lesions in the OSEM, OSEM + TOF, and 
OSEM + TOF + PSF groups compared to the BPL group using Spearman’s correlation analysis

Reconstruction algorithms Change rate of quantitative parameters p value (r)

%ΔSUVmax %ΔSUVmean %ΔSBR %ΔMTV %ΔTLG

OSEM  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

(− 0.563) (− 0.610) (− 0.516)  − 0.702  − 0.635

OSEM + TOF  < 0.001  < 0.001 0.0139  < 0.001  < 0.001

(− 0.367) (− 0.425) (− 0.272)  − 0.643  − 0.623

OSEM + TOF + PSF  < 0.001  < 0.001 0.0138  < 0.001  < 0.001

(− 0.372) (− 0.405) (− 0.253)  − 0.604  − 0.64
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iterations, focal maxima of activity further increases, 
and may overestimate the true activity, as well as image 
noise increases. To limit the image noise, OSEM data are 
usually smoothed with a filter. However, this decreases 
contrast recovery of “hot” lesions which may result in 
underestimation of the true activity. Furthermore, OSEM 
algorithm may not be fully convergent. Based on this 
context, combining or replacing OSEM with other recon-
struction algorithms may improve the accuracy of quan-
titative parameters of tumor lesions’ [18F]FDG uptake. 
BPL is a reconstruction method that can achieve more 
appropriate convergence through more iterations, and 
control the image noise at a suitable level [3]. The noise 
suppression function can be controlled by adjusting the 
penalization factor (β), which is the only variable that 
allows user to input. Reducing the penalization factor (β) 

increases the contrast recovery coefficients and the back-
ground variability. In a NEMA phantom research by Teoh 
et al., a higher contrast recovery coefficient was achieved 
by BPL reconstruction than those by OSEM + TOF and 
OSEM + PSF; that is, the accuracy of the quantitative 
parameters was improved by the BPL algorithm [1, 10, 
11]. And, the signal-to-noise ratio can be improved by 
BPL at equal contrast recovery [12]. These advantages 
of BPL reconstruction can increase the accuracy of [18F]
FDG quantitative parameters without compromising the 
image quality compared with the OSEM method, with a 
particular improvement in small tumor lesions.

Our study compared the [18F]FDG standard uptake 
parameters and volume metabolism parameters of malig-
nant tumor lesions in four PET/CT reconstruction algo-
rithms. The results showed that the BPL reconstruction 

Fig. 1  Scatter plot of correlation analysis between the change rate of quantitative parameters and the lesion size in the OSEM (a), OSEM + TOF (b), 
or OSEM + TOF + PSF (c) group compared with the BPL group. The change rate of quantitative parameters increased for ΔSUVmax, ΔSUVmean, and 
ΔSBR, and decreased for ΔMTV and ΔTLG, as the lesion size decreased

Fig. 2  Scatter plot of correlation analysis between the degree of lesion uptake SUVmean and the change rate of quantitative parameters in the 
OSEM (a), OSEM + TOF (b), or OSEM + TOF + PSF (c) group compared with the BPL group. The lower amount of lesion uptake resulted in increased 
change rates for ΔSUVmax, ΔSUVmean, and ΔSBR, and decreased change rates for ΔMTV and ΔTLG

Fig. 3  Scatter plot of correlation analysis between SUVmax and the change rate of quantitative parameters in the OSEM (a), OSEM + TOF (b), or 
OSEM + TOF + PSF (c) group compared with the BPL group. The lower amount of lesion uptake resulted in increased change rates for ΔSUVmax, 
ΔSUVmean, and ΔSBR, and decreased change rates for ΔMTV and ΔTLG
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algorithm, which based on TOF and PSF, significantly 
increased the standard uptake parameters (SUVmax, 
SUVmean, and SBR) of [18F]FDG in tumors, while MTV 
was significantly decreased. And, these standard uptake 
parameters were significantly higher in BPL than in 
OSEM, OSEM + TOF, and OSEM + TOF + PSF by pair-
wise comparisons. But, MTV in BPL was significantly 
lower than OSEM and OSEM + TOF. Murphy et al. com-
pared the effects of BPL and OSEM reconstruction algo-
rithms on [18F]FDG metabolic parameters in malignant 
solitary pulmonary nodules in the context of non-small 
cell lung cancer, mediastinal metastatic lymph nodes, 
and colorectal cancer with liver metastases [6, 7, 13]. 
Their results showed that the SUVmax of correspond-
ing lesions reconstructed by the BPL were 8.3 (3.2–13.4), 
7.0 (1.3–25.3), and 11.6 (2.6–25.7), respectively, which 
were significantly higher than those by OSEM (P < 0.001). 
Similarly, Reynés-Llompart et al. compared the [18F]FDG 
metabolic parameters SUVmax and SUVmean of tumor 
lesions between PSF and BPL reconstruction algorithms. 
Their results were consistent with our findings, but no 
significant difference in mean lesion volume was found 
between these two algorithms. This may be for the reason 
that the convergence function was affected by different 
size lesions when using BPL algorithm [11]; the research 
objects were lung nodules in the study by Reynés-Llom-
part’s et al., whereas the range of lesion size was wide in 
our study. Matti et al. noted that the BPL reconstruction 
algorithm can improve the accuracy of SUVmax and 
SUVmean of [18F]FDG in hypermetabolized lesions with-
out changing the metabolic parameters of background 
tissue, thus resulting in the improvement of SBR of 
tumor lesions and image quality [12]. However, some lit-
erature has suggested that BPL only increases the appar-
ent [18F]FDG metabolic parameters and may not improve 
the ability to distinguish benign and malignant lesions 
[6, 7]. When lesions had low SUV, [18F]FDG PET/CT 
often could not accurately evaluate true metabolic activ-
ity, and when both non-malignant and malignant lesions 
had a high degree of [18F]FDG uptake, [18F]FDG PET/CT 
was not specific for distinguishing the nature of nodular 
lesions. Thus, the benefit of using BPL is mainly to pro-
vide better lesion visibility and more accurate quantita-
tive parameters for clinical practices.

In this study, we found that the different rates regard-
ing %ΔSUVmax, %ΔSUVmean, %ΔSBR, and the absolute 
values of %ΔMTV between the BPL and OSEM + TOF 
were significantly higher than those between the BPL 
and OSEM + TOF + PSF. Similar results were observed 
between OSEM and OSEM + TOF + PSF as com-
pared to BPL. Furthermore, %ΔSUVmax, %ΔSUVmean, 
and %ΔSBR in the OSEM, OSEM + TOF, and 
OSEM + TOF + PSF groups were significantly negatively 

correlated with lesion size and the degree of lesion FDG 
uptake, suggesting that the BPL reconstruction technol-
ogy had a more significant convergent effect on small 
lesions and low degree [18F]FDG uptake lesions. Con-
sequently, by increasing metabolic parameters and the 
detection sensitivity of small lesions, BPL may help find 
out the small lesions with low degree [18F]FDG uptake 
and provide further guidance for tumor staging, evalua-
tion, and treatment decisions in clinical practice.

Consistent with a study by Parvizi [5], our results also 
confirmed that BPL reduced the MTV of tumor lesions. 
There are two possible reasons, one of which is the effec-
tive convergence by BPL that PET images with lower 
noise and higher contrast through image noise control-
ling, edge-preservation, and edge artifacts suppressing 
[14] can increase the SUVmax of a measured lesion, the 
other reason may be the different methods used for seg-
mentation, as the automatic outline of MTV was based 
on the lesion’s SUVmax. BPL increased the SUVmean 
while decreased the MTV of tumor lesions, which results 
in no significant change in its TLG. Yamaguchi et al. con-
firmed that the BPL reconstruction algorithm is a feasi-
ble method for the suppression of edge artifacts deriving 
from PSF correction [14], because the edge suppression 
included in the BPL reconstruction allows suppression of 
excessive noise that would otherwise develop with high 
numbers of iterations. By limiting this noise, more itera-
tions can be performed to enable full convergence of the 
algorithm. In our study, the maximum number of itera-
tions in the BPL reconstruction as opposed to OSEM 
was 25, which can achieve full convergence of the algo-
rithm. However, the suppression effect of BPL on noise 
is affected by sphere-to-background ratios and sphere 
size. When reconstructed by BPL, the suppression of 
edges is the most obvious and the boundary is sharpest 
when images of 10  mm spheres are at a high SBR and 
without background [14]. Additionally, our study further 
clarified that %ΔMTV was significantly positively cor-
related with the lesion size and the degree of the lesion’s 
uptake. However, due to the partial volume effect caused 
by the limited spatial resolution of conventional PET sys-
tems, radiotracer uptake is usually underestimated when 
lesions are three times smaller than the spatial resolution 
[15]. The partial-volume effect correction with a recovery 
coefficient method is important for improving the quan-
tification accuracy of further clinical evaluations.

[18F]FDG-PET/CT quantitative parameters (such as 
SUVmax, SUVmean and MTV) as imaging metabolic 
indicators have unique advantages in clinical diagnosis, 
staging, post-treatment staging, and prognosis assess-
ment of patients with malignant tumors [16–18]. The 
BPL reconstruction algorithm can improve the accuracy 
of quantitative parameters through effective convergence 
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and promotes its utility as a biomarker of tumor metabo-
lism. Meanwhile, accurate image segmentation is neces-
sary for proper disease detection, diagnosis, treatment 
planning, and follow-up. Many PET-based automatic 
segmentation methods such as thresholding-based, sto-
chastic and learning-based, region-based, boundary-
based, and multi-modality methods have been proposed 
[19], but no consensus has been reached on the optimal 
delineation method. In this study, we chose the thresh-
olding-based PET image segmentation method, which 
converts a gray-level image into a binary image by defin-
ing voxels greater than some value as the foreground and 
other voxels as the background [19]. The most frequent 
thresholding value used in the clinical setting is 40–43% 
of SUVmax, and we adopted a 42% thresholding value 
in the current study. Recently, a few more advanced 
PET image segmentation methods were studied, which 
are less sensitive to SUVmax variations such as: (1) a 
method that uses fully convolutional networks with 
auxiliary paths and uses dual-modality PET-CT images 
to achieve automatic segmentation of nasopharyngeal 
carcinoma on PET-CT images [20], which can achieve 
better performance than existing methods based only 
on CT images and purely fully convolutional networks; 
(2) a fully automatic and operator independent method 
based on an extension of the random walk algorithm 
for the BTV delineation of brain metastases for Gamma 
Knife treatments, which has the advantage of automati-
cally identifying target and background random walk 
seeds and has an adaptive threshold to discriminate 
target from background voxels [21]; and (3) a new fully 
three-dimensional methodology for tumor delineation 
in functional images based on active contours and a slice 
marching approach, which are an active surface defined 
in the three-dimensional space and can segment all PET 
slices at once. The algorithm reduces the need for manual 
input to a minimum and produces tumor segmentations 
that are independent from the initial input, thus making 
the result extremely robust and repeatable [22]. However, 
these image segmentation methods are implemented on 
the basis of software application. As a clinician, it is dif-
ficult to make such a software application, and its clinical 
application is complex. Although the thresholding-based 
PET image segmentation method is vulnerable to SUV-
max variations, it is easier to implement in clinical prac-
tice. Furthermore, based on this method, we obtained 
meaningful clinical results.

There are several limitations in the current analysis. 
Firstly, the number of lesions from different tumor enti-
ties is relatively small that the results obtained need to 
be verified in a larger cohort. Secondly, only data from 
clinical scans are presented and the ground truth for SUV 
and MTV is lacking, which leads to the uncertainty of 

diagnostic efficacy of these parameters. Thirdly, we only 
examined one set of reconstruction parameters for each 
of the algorithms although previous studies have shown 
that the differences between algorithms are dependent 
both on the settings for the OSEM-based algorithm as 
well as the beta parameter used with the BPL reconstruc-
tion [23]. Last but not the least, the thresholding-based 
PET image segmentation method used in our study is 
affected by SUVmax variations and may need consider-
able adjustments for different PET images.

Conclusion
In conclusion, the BPL reconstruction algorithm sig-
nificantly increases the SUVmax, SUVmean, and SBR of 
tumor lesions and decreases the MTV of tumor lesions 
compared with the OSEM and OSEM + TOF reconstruc-
tion algorithms. The lesion size and degree of lesion’s 
FDG uptake appear to be the main influencing factors in 
the different rates of PET/CT parameters between BPL 
and non-BPL reconstruction algorithms. The changes in 
small lesions and hypometabolic lesions are more obvi-
ous. Therefore, the advantage of BPL may help find out 
the small lesions with low degree [18F]FDG uptake and 
may facilitate more accurate diagnosis.
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