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Abstract: Novel UV-curable polyurethane acrylate (PUA) resins were developed from rubber seed oil
(RSO). Firstly, hydroxylated rubber seed oil (HRSO) was prepared via an alcoholysis reaction of RSO
with glycerol, and then HRSO was reacted with isophorone diisocyanate (IPDI) and hydroxyethyl
acrylate (HEA) to produce the RSO-based PUA (RSO-PUA) oligomer. FT-IR and 1H NMR spectra
collectively revealed that the obtained RSO-PUA was successfully synthesized, and the calculated
C=C functionality of oligomer was 2.27 per fatty acid. Subsequently, a series of UV-curable resins were
prepared and their ultimate properties, as well as UV-curing kinetics, were investigated. Notably, the
UV-cured materials with 40% trimethylolpropane triacrylate (TMPTA) displayed a tensile strength
of 11.7 MPa, an adhesion of 2 grade, a pencil hardness of 3H, a flexibility of 2 mm, and a glass
transition temperature up to 109.4 ◦C. Finally, the optimal resin was used for digital light processing
(DLP) 3D printing. The critical exposure energy of RSO-PUA (15.20 mJ/cm2) was lower than a
commercial resin. In general, this work offered a simple method to prepare woody plant oil-based
high-performance PUA resins that could be applied in the 3D printing industry.

Keywords: rubber seed oil; polyurethane acrylates; UV-curable resins; high-performance; 3D printing

1. Introduction

Ultraviolet (UV)-curable technology is an instantaneous and effective method for
converting liquid ingredients into a crosslinked solid polymer network [1]. UV-curable
materials have gained widespread attention for the advantages of high curing efficiency,
low energy consumption, low solvent emission, low costs, and moderate curing condi-
tion. They are widely used in the fields of coatings, adhesives, and high value-added
products [2,3]. However, most of the UV-curable raw materials were prepared from petro-
chemical products. One major drawback of them lies in the excessive dependence on the
upstream supply chains, which leads to the unstable supply of raw materials and high
prices. Besides, petrochemical products are non-renewable, which causes more pressure
on environmental supervision [4]. For the purposes of reducing the consumption of fos-
sil feedstock and endowing materials with biocompatible and biodegradable properties,
various resources of renewable building blocks [5–7], including plant oil [8–11], natural
phenolic [12–17], natural acid [2,18–21], and so forth [1,22–24], have been employed as
starting materials to prepare UV-curable materials [25].

As one of the most common UV-curable resins, polyurethane acrylate (PUA) has at-
tracted much attention in UV-curable industry attributing to its excellent flexibility, promi-

Molecules 2021, 26, 5455. https://doi.org/10.3390/molecules26185455 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5768-5184
https://orcid.org/0000-0002-8860-0750
https://doi.org/10.3390/molecules26185455
https://doi.org/10.3390/molecules26185455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26185455
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26185455?type=check_update&version=1


Molecules 2021, 26, 5455 2 of 14

nent adhesion and a variety of adjustable features [26,27]. However, PUA resins generally
exhibit low tensile strength and slow UV-curing speed for insufficient crosslink density,
which limits their practical applications in some fields [28]. Therefore, various works
regarding improving the properties of PUA’s mechanical properties, as well as coating
properties, have been reported. In Li’s [29] work, castor oil/pentaerythritol triacrylate-
based waterborne polyurethane acrylate (WPUA) was developed and mechanical property
performance of the cured WPUA was improved, which related to the formation of the
compact cross-linked structure. Wei et al. [28] reported a series of castor oil-based UV-
curable PUA resins via a thiol-ene click chemistry. The resultant cured films exhibited high
acrylate double-bond conversion and excellent flexibility and water resistance. Our group
obtained [30,31] biobased polyfunctional PUA oligomers in the presence of pentaerythritol
triacrylate with a high performance, and the relationship between structure and perfor-
mance, as well as the UV-curing behaviors of the resultant bioresins, were investigated
systematically. Although the promotion of functionality in above-mentioned methods has
been achieved, the disadvantage of high molecular weight emerged during the research
of such PUAs, which led to a high viscosity for the UV curable materials. The utilization
of fatty acids in polyol synthesis gave narrower molecular weight distribution compared
to a mixture of fatty acids in the triglyceride structure. Paraskar et al. [32] designed and
synthesized PUA oligomers by utilizing renewable dimer fatty acids. The resulting biomass
coatings exhibited exceptional results, including the thermal degradation temperature of
382–422 ◦C, glass transition temperature of 56.38–66.27 ◦C, and the tensile strength of
17.3–30.6 MPa. These results indicated that biobased UV-curable PUA materials exhibited
great potential to replace the petroleum-based ones.

Plant oils have been extensively utilized to develop oil-based PUA materials owing
to environmental friendliness, low price, biodegradability, and sufficient source. Woody
plants oil, such as rubber seed oil, are preferrable for the reason that they don’t compete
with agricultural food plants for farmland [33]. In our previous work, we acquired hydrox-
ylated woody plant oils via epoxidation and hydroxylation reactions, and then synthesized
polyfunctionality oil-based PUA oligomers, and finally produced high-performance woody
plant-oils-based UV-cured materials [34]. However, the synthetic procedures for the hy-
droxylated woody plant oil precursors were complicated, and the oligomers tended to gel
at room temperature due to the high amount of carbon–carbon double bonds. To overcome
the above obstacles, a facile method via the alcoholysis of rubber seed oil (RSO) was utilized
to synthesize hydroxylated RSO (HRSO). The resulting HRSO reacted with the hydrox-
yethyl acrylate (HEA)-modified IPDI and the high-functional RSO-based PUA (RSO-PUA)
oligomer was synthesized. Finally, diluents were employed to co-photopolymerize with
RSO-PUA and the ultimate properties of the resultant materials, as well as the UV-curable
behavior of the bioresin, were carefully studied, and the DLP 3D printability of the optimal
resin was also demonstrated.

2. Materials and Methods
2.1. Materials

Rubber seed oil was obtained from Southwest Forestry University Academy of
Forestry. From Sahn Chemical Technology Co., Ltd. (Shanghai, China), the following were
purchased: 2-Hydroxy-2-methylpropiophenone (Darocur 1173, 98%), 4-methoxyphenol
(98%), triethylene glycol diacrylate (TEGDA, 98%), and trimethylolpropane triacrylate
(TMPTA, 99%). Glycerol was obtained from Nanjing Chemical Reagent Co., Ltd. (Nanjing,
China). Dibutyltin dilaurate (DBTDL, ≥95%) was provided from Shanghai Titan Scientific
Co., Ltd. (Shanghai, China). Isophorone diisocyanate (IPDI, 99%) was purchased from
Jiuding Chemistry Co., Ltd. (Jiaxing, China). Hydroxyethyl acrylate (HEA, ≥97%) ob-
tained from Macklin Chemical Reagent Co., Ltd. (Shanghai, China). Commercial resin was
purchased from Shenzhen Creality 3D Technology Corporation (Shenzhen, China). All of
the solvents were used as received without further purification.



Molecules 2021, 26, 5455 3 of 14

2.2. Synthesis of HRSO

The hydroxylation of RSO with glycerol was carried out to produce HRSO, based on
previous works [35,36]. About 255.9 g (0.30 mol) of RSO, 69.3 g (0.75 mol) of glycerol, and
3.3 g of Ca(OH)2 were placed together in a 500 mL four-neck round-bottom flask equipped
with a mechanical stirrer, a thermometer, a nitrogen (N2) gas inlet, and a refluxing condenser
with a calcium drier. The flask was placed in a heating mantle with a temperature controller.
The reaction mixture was heated to about 160 ◦C for 20 min under N2, and 220 ◦C for 2 h
at this temperature. At the end of the reaction, the product was cooled rapidly by ice water
bath to atmospheric temperature. The obtained product of HRSO was a brown paste at
room temperature (Scheme 1).
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2.3. Synthesis of RSO-PUA

Typically, 44.6 g (0.2 mol) of IPDI, normal hexane, 0.3 g of 4-methoxyphenol and
0.9 g of DBTDL were heated to 50 ◦C in a four-necked flask with a mechanical stirrer and
thermometer under N2. 23.2 g of (0.2 mol). HEA was slowly dropped into the flask at
50 ◦C for 4 h and obtained the prepolymer hydroxyethyl acrylate-modified isophorone
diisocyanate (HEA-IPDI). Next, HRSO was slowly added to HEA-IPDI and heated to 50 ◦C
for 5 h. Finally, the product RSO-PUA was light yellow, transparent liquid resin at room
temperature.

2.4. Curing of RSO-PUA Resins

As shown in Table 1, the UV-curable samples were obtained by blending the RSO-PUA
diluents (the chemical structures were shown in Figure S1) and photoinitiator 1173 for
20 min at room temperature. The mixtures were degassed in vacuum dryer for about 10 min.
The resulting samples were then cast into homemade polytetrafluoroethylene molds or
coated on polished tinplate sheets by a film maker. Finally, the cast or coated samples
were cured by a UV light-curing microprocessor (Intelli-Ray 400 W, Uvitron International
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Corporation, Springfield, MA, USA). The exposure intensity and time for all the samples
was 100 mW/cm2 and 5 min, respectively.

Table 1. Composition and gel content for the UV-curable RSO-PUA samples.

Samples RSO-PUA (%) HEA (%) TEGDA (%) TMPTA (%) D1173 (%) Gel Content (%)

RSO-PUA 97 0 0 0 3 83.9 ± 0.9
RSO-PUA/10% HEA 87 10 0 0 3 91.6 ± 0.7
RSO-PUA/20% HEA 77 20 0 0 3 91.8 ± 0.8
RSO-PUA/30% HEA 67 30 0 0 3 91.8 ± 0.1
RSO-PUA/40% HEA 57 40 0 0 3 93.0 ± 0.3

RSO-PUA/40% TEGDA 57 0 40 0 3 95.0 ± 0.9
RSO-PUA/40% TMPTA 57 0 0 40 3 98.5 ± 1.4

2.5. Digital Light Processing (DLP) Three-Dimensional (3D) Printing

The model was designed in ProE 3.0 (Parametric Technology Corporation, Boston,
MA, USA) and printed by the DLP 3D printing method. A custom-built microlithography
system with a 405 nm UV-light, was used to cure the RSO-PUA resin layer by layer. The
football-ene structure was printed using a LD-002H 3D-printer (Shenzhen Creality 3D
Technology Corporation, Shenzhen, China). The exposure time for each layer was set to
8–10 s. After printing, the surface of obtained football-ene model was washed with ethanol,
and the structure was postcured by the Intelli-Ray 400W UV light-curing microprocessor
with an exposure intensity of 100 mW/cm2 for 10 min.

2.6. Characterization

FT-IR spectra of samples were conducted using a Nicolet iS10 IR spectrometer (Thermo-
Fisher, WalthaM, MA, USA) with a scanning range from 4000 to 500 cm−1. 1H NMR spectra
of samples were recorded using a DRX-300 spectrometer (Bruker, Germany) with CDCl3.

Gel content (Cgel) of the UV-cured samples was measured via Soxhlet extraction.
Typically, the specimen with a weight of approximately 0.5 g was weighted, wrapped in a
filter paper, and refluxed for 24 h. Finally the specimen was dried at 60 ◦C until a constant
mass was obtained. The Cgel data was calculated from the mass ratio of the UV-cured
specimen before and after extraction.

The fractured surfaces of the UV-cured resins were studied with a Hitachi 3400e1
(Hitachi Instrument Corporation, Tokyo, Japan) scanning electron microscope (SEM) in-
strument operated at 12 kV. The fractured films were stained on a copper grid with a
conductive adhesive. The cross sections were coated with gold prior to SEM observation.
Dynamic mechanical analysis (DMA) of the UV-cured samples was conducted on a Q800
solids analyzer (TA Corporation, Westlake, OH, USA) within a film-tension mode with an
oscillating frequency of 1 Hz. All the samples with a size of 40 × 6 × 1 mm3 were swept
from −80 ◦C to 200 ◦C and a heating rate of 3 ◦C/min.

Thermogravimetric analysis (TGA) of the UV-cured samples was performed on an
STA 409PC thermogravimetry instrument (Netzsch Corporation, Selb, Germany). The
samples were heated from 40 to 800 ◦C under nitrogen gas at a flow rate of 100 mL/min
and at a heating rate of 10 ◦C/min.

Mechanical properties of the UV-cured samples were tested using a SANS7 CMT-4304
Universal tester (Shenzhen Xinsansi Jiliang Instrument Corporation, Shenzhen, China) with
a cross-head speed of 5 mm min−1. The dimension of all specimens was 60 × 10 × 1 mm3.
The calculated values were determined from an average value of five specimens.

Coating properties of the UV-cured coatings including adhesion, pencil hardness,
and flexibility were measured in GB 1720-79(89), GB/T 6739-2006, and GB/T 6739-1996,
respectively. Detailed procedures for the coating tests were reported in our previous
works [37].

Swelling properties of the UV-cured samples were determined including water,
ethanol, acetone, and toluene. Specimens were weighed precisely and immersed into
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various solvents at atmospheric temperature for 48 h. Then they were dried and weighed
again. Swelling degree of the specimens was calculated through the following equation:

S =
W1 −W0

W1
× 100%

where W0 and W1 were the weight of the sample before and after immersion in solvents,
respectively.

UV-curing behaviors of the resultant liquid resins were investigated by a modified
Nicolet 5700 spectrometer (Thermo-Nicolet Instrument, Waltham, MA, USA). The conver-
sion of carbon–carbon double bond (αC=C) was determined by monitoring the change of
absorption at about 810 cm−1, which was calculated according to the following formula:

αC=C =
A0 − At

At
× 100%

where A0 and At were the C=C peak areas at the original time and t time, respectively.

3. Result and Discussion
3.1. Structural Characterization of RSO-PUA Oligomer

The chemical structures of the RSO-based intermediate and final product were char-
acterized by FT-IR and 1H NMR. The FT-IR spectra of RSO, HRSO, and RSO-PUA are
depicted in Figure 1. The FT-IR spectrum of IPDI-HEA is shown in Figure S2. In the
spectrum of RSO, the characteristic peak at 3008 cm−1 was derived from the stretching
vibration band of =C–H [38]. The peak occurred at 2931 cm−1 and 2854 cm−1, which arose
from the C–H asymmetric stretch vibration in methylene and methyl group stretching on
the chain, the strong peak at 1744 cm−1 was ascribed to the C=O groups of triglyceride [10].
Comparing the spectrum of HRSO with that of RSO, a broadband appeared at 3380 cm−1

for hydroxyl stretching frequency, the stretching vibration peak of C–O– at 1164 cm−1

was weakened. The variation indicated that the RSO was successfully hydroxylated with
glycerol. In the spectrum of RSO-PUA, the peak at 3380 cm−1 corresponding to hydroxyl
vanished, a new peak at 3363 cm−1 attributed to the –NH bonds of carbamate was observed;
the peaks at 1536 cm−1 and 774 cm−1 were attributed to urea stretching C–N bending and
N–H vibration, respectively. Moreover, the absorption peak at 2265 cm−1 was not observed
in the spectrum of RSO-PUA, which represented the –NCO vibrations from IPDI [39]. All
the changes indicated that HRSO was successfully grafted with HEA-IPDI.

1H NMR spectra of HRSO and RSO-PUA are presented in Figure 2. The 1H NMR
spectrum of RSO is shown in Figure S2. In spectrum of HRSO, the peaks at 3.4–4.0 ppm
were attributed to –CH2– and –CH– protons of glycerol group. In the spectrum of RSO-
PUA, the peaks at 5.7–6.4 ppm were attributed to the –C=CH2– protons of the acrylate
group [35]. The peaks which appeared at 3.8–4.3 ppm represented the protons of glycerol
moiety and methylene of IPDI-HEA; the peaks which occurred at 2.7–2.8 and 3.5−3.7 ppm
were assigned to the protons linked to carbamates. The appearance of all chemical shifts
indicated that RSO−PUA was successfully synthesized. For plant oil triglycerides, the
peak at 2.3 ppm, corresponding to the methylene protons attached to the ester group, could
be taken as reference, since the intensity of the peak should not change throughout all the
reactions. The peaks at 5.7–6.5 ppm, corresponding to the protons of the C=C groups, were
all from HEA. Therefore, the introduced αC=C of the RSO−PUA resin was estimated by 1H
NMR and could be determined by the following equation [40]:

αC=C =
A5.7−6.5ppm/3

A2.3ppm/2
=

2A5.7−6.5ppm

3A2.3ppm
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The introduced αC=C of RSO-PUA product was 2.27 per fatty acid, which was equal to
6.81 per triglyceride.

3.2. Gel Contents

The Cgel is the insoluble fraction representing the degree of cross-linking of the UV-
cured RSO-PUA films, and the data was assessed with the aid of Soxhlet extraction [41].
The values of Cgel are listed in Table 1. As the content of HEA increased from 0 to 40, the Cgel
of RSO-PUA/HEA samples rose from 83.9% up to 93.0%, which indicated that the addition
of diluent promoted the degree of cross-linking. Additionally, the samples cured with
tri-functional diluent (TEGDA) and di-functional (TMPTA) diluent exhibited higher gel
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content than mono-functional diluents (HEA), ranked by the order RSO-PUA/40% TMPTA
(98.5%) > RSO-PUA/40% TEGDA (95.0%) > RSO-PUA/40% HEA (93.0%), indicating that
the high-functionality diluents could enhance the degree of cross-linking of the UV-cured
samples [32].

3.3. Properties of the UV-Cured RSO-PUA Materials
3.3.1. Dynamic Mechanical Analysis

DMA technique was employed to investigate the thermal–mechanical properties of
the prepared resins. The curves of tan δ and the storage modulus of the UV-cured RSO-PUA
materials as a function of temperature are shown in Figure 3. The corresponding data,
such as storage modulus (E′), glass transition temperature (Tg), and cross-link density (νe)
are summarized in Table 2. As can be seen in Figure 3, high E′ values of all samples were
observed in the glassy state, but quickly decreased in the high-temperature region, and
eventually approached 0 MPa in a rubbery state. As the content of HEA growing, the
storage modulus at 25 ◦C (E′25) of the RSO-PUA/HEA materials changed from 1.5 GPa
to 0.9 GPa; the reason is that the addition of diluent weakened the physical crosslinking
density of the cured films through the intermolecular forces of hydrogen bonding (urethane
groups) [10]. The Tg showed a similar variation trend, and RSO-PUA/40% TMPTA exhib-
ited the highest Tg of 109.4 ◦C, due to its highest cross-link density, which was calculated
below. Moreover, the tan δ peak became less intensive and broader with the increased
diluent, due to the less uniform cross-linked network structure in the cured materials. Tg
was obtained from peak temperatures of the tan δ curves, and νe was determined according
to the following equation [2,42]:

νe =
E′

3RT
where E′ is the storage modulus in the rubbery plateau region (the E′ at the temperature of
Tg was employed for the calculation of νe), R represents the universal gas constant, and T
denotes the absolute temperature. As shown in Table 2, as the content of HEA increased
from 0 to 40%, the cured resins exhibited a high νe of above 100 × 103 mol/m3. Owing to
the more carbon–carbon double bonds introduced by polyfunctionality diluent [11], the
RSO-PUA/40% TEGDA and RSO-PUA/40% TMPTA resins showed a higher νe than the
RSO-PUA/HEA series, especially for the RSO-PUA/40% TMPTA revealing the highest νe
(241.2 × 103 mol/m3) among the cured materials.
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Table 2. Thermal properties of the cured RSO-PUA resins.

Samples E′25
a

(GPa)
Tg

b

(◦C)
νe

c

(103 mol/m3)
T5

d

(◦C)
T10

e

(◦C)
Tmax

f

(◦C)
wchar

g

(%)

RSO-PUA 1.5 89.3 168.4 241.9 266.9 431.5 0.8
RSO-PUA/10% HEA 1.6 82.5 184.3 221.9 266.9 422.0 4.4
RSO-PUA/20% HEA 1.3 78.6 144.4 219.4 264.4 418.0 4.9
RSO-PUA/30% HEA 1.4 69.3 163.2 204.2 259.2 421.8 4.5
RSO-PUA/40% HEA 0.9 57.7 105.2 229.1 271.6 425.3 2.6

RSO-PUA/40% TEGDA 1.7 74.8 194.4 246.6 279.1 420.6 4.9
RSO-PUA/40% TMPTA 2.3 109.4 241.2 261.6 291.6 437.1 5.7

a Storage modulus at 25 ◦C. b Glass transition temperature. c Crosslink density. d 5% weight loss temperature. e 10% weight loss
temperature. f Maximum decomposition temperature. g Char yield.

3.3.2. Thermogravimetric Analysis

The TGA and their corresponding derivative weight loss (DTG) of the developed
RSO-PUA samples under the N2 atmosphere are plotted in Figure 4, and related data of the
5% weight loss temperature (T5%), 10% weight loss (T10%) and maximum decomposition
temperature of weight loss rate (Tmax) are listed in Table 2. The cured materials of RSO-
PUA/HEA displayed inferior thermal stability compared with that of RSO-PUA/40%
TEGDA and RSO-PUA/40% TMPTA cured samples. The reason probably lies in that RSO-
PUA/HEA-cured materials possessed lower crosslink densities, which were calculated
in DMA [11]. The decomposition of the RSO-PUA materials consisted of two phases as
indicated by the appearance of two main weight-loss regions with peak maxima around
300–330 ◦C and 410–440 ◦C in the DTG curves, respectively. First, the weight loss below
270 ◦C can be attributed to the removal of solvent and moisture and the decomposition of
micromolecules [43]. Second, the decomposition stage corresponded to the hard segments
breakage of urethane linkage. Finally, the step above 500 ◦C can be assigned to the slow
degradation of soft segments decomposing and char residue. In short, all UV-cured resins
showed high thermal stability, suggesting that they had the potential to be used as UV-
curable coatings for relative high-temperature-resistance substrates.
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3.3.3. Mechanical Properties

The stress–strain curves of RSO-PUA samples are depicted in Figure 5, and detailed
data is summarized in Table 3. Figure S5 presents the comparison of RSO-PUA/40%HEA
resin and commercial resin, and the corresponding data are listed in Table S1. As the
content of HEA increased from 10 to 40%, the tensile strength and tensile modulus of the
cured RSO-PUA/HEA materials dropped from the maximum values of 16.3 MPa and
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330.6 MPa to 5.4 MPa and 113.3 MPa, respectively. The decreased νe (showed by the DMA
above) most likely accounts for the variation in ductility and stiffness [41]. The tensile
strength of the pure RSO-PUA sample was similar to that of RSO-PUA with polyfunction-
ality diluent (TEGDA and TMPTA), which may due to the carbon–carbon double bond
functionality of the RSO-PUA oligomer (2.27 per aliphatic acid) and polyfunctional diluent
was approximate. Overall, the RSO-PUA/10%HEA and RSO-PUA/20%HEA film achieved
the best mechanical property among all samples with approximately 16 MPa in tensile
strength and 7% strain in elongation at break.
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Table 3. Mechanical properties and coating properties of the cured RSO-PUA resins.

Samples σ a (MPa) E b (MPa) ε c (%) Ad. d P.H. e Fl. f (mm)

RSO-PUA 11.2 ± 2.6 314.8 ± 65.4 5.2 ± 0.2 2 2H 2
RSO-PUA/10% HEA 16.3 ± 0.6 330.6 ± 42.2 8.2 ± 0.7 2 2H 2
RSO-PUA/20% HEA 16.2 ± 1.0 354.1 ± 38.9 6.7 ± 1.7 2 H 2
RSO-PUA/30% HEA 10.2 ± 0.3 251.0 ± 14.3 11.4 ± 1.8 2 2H 2
RSO-PUA/40% HEA 5.4 ± 0.8 113.3 ± 16.0 39.8 ± 5.4 2 3H 2

RSO-PUA/40% TEGDA 12.5 ± 0.9 304.0 ± 32.4 6.5 ± 1.0 7 3H 18
RSO-PUA/40% TMPTA 11.7 ± 0.9 443.6 ± 0.4 6.7 ± 1.3 2 3H 2

a Tensile strength; b Tensile modulus; c Elongation at break. d Adhesion of coatings. e Pencil hardness of coatings. f Flexibility of coatings.

3.3.4. Coating Properties

The surface properties such as the pencil hardness, flexibility and adhesion of the
obtained RSO-PUA coatings were measured and the related results are summarized in
Table 3. With the growth of HEA from 0 to 40%, the adhesion and flexibility maintained
unchanged at the superior values of 2 mm and 2 grade, and the pencil hardness dropped
from 2H to H and then grew to 3H. The variation of hardness is possibly attributed to
the changed values of νe [35]. Moreover, as the C=C functionality of diluent increased
from 1 to 3, the pencil hardness maintained unchanged at 3H, the adhesion and flexibility
still demonstrated at 2 grade and 2 mm. Despite this, the RSO-PUA/40% TEGDA films
displayed an inferior adhesion and flexibility, which could also be ascribed to the decrease
in hydroxyl concentration compared with HEA [40].
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3.3.5. Fractured Surface Morphology Analysis

A morphological study was assessed using SEM, and the corresponding fractured
surface SEM images of the UV-cured RSO-PUA materials are illustrated in Figure S4.
Ductile fracture allowed the cracks or defects to propagate in different directions, which
gave rough cleavage. In the brittle fracture, the polymer chains in structure glided on
each other, which resulted in smooth cleavage. As the HEA content increased from 0 to
30%, the RSO-PUA/HEA resin had a higher area associated with ductile fracture, where
the roughness could be seen in the image. However, the RSO-PUA resins with 40%
diluent (HEA, TEGDA, TMPTA) had a higher fraction of the brittle fracture and a slight
ductile fracture region, where the flake type of morphology with a short, smooth area was
observed.

3.3.6. Swelling Properties

The swelling properties of the UV-cured RSO-PUA materials were investigated and
the corresponding results were summarized in Table 4. Firstly, the water absorption of all
the UV-cured RSO-PUA coatings was below 0.5%, which can be ascribed to the higher νe.
As we know, the more compact network of coatings resulted in smaller porous volume [43].
Second, the obtained materials exhibited better resistance to water than to organic solvents
(ethanol, acetone, and toluene). Furthermore, as the HEA content increased from 0 to 40%,
the absorbed amount of water, and organic solvent did not show a clear decreasing trend,
while the above values for both the polyfunctional diluent systems were clearly lower
than that of monofunctional diluent, especially for the RSO-PUA/40% TMPTA materials.
That was because TMPTA possessed the analogous swelling characteristic to the RSO-PUA
oligomer and possessed highest νe.

Table 4. Swelling properties and UV-curing behaviors of the cured RSO-PUA resins.

Samples
Swelling (%)

αf
a (%) Rp

b (s−1)
Water Ethanol Acetone Toluene

RSO-PUA 0.22 2.87 6.71 5.52 65.5 5.5
RSO-PUA/10% HEA 0.49 1.42 6.45 5.04 84.5 15.8
RSO-PUA/20% HEA 0.35 2.24 7.50 2.56 87.0 15.3
RSO-PUA/30% HEA 0.35 3.25 7.67 3.23 97.4 22.1
RSO-PUA/40% HEA 0.38 1.96 4.06 2.51 93.1 20.5

RSO-PUA/40% TEGDA 0.48 1.14 2.17 0.29 66.4 10.0
RSO-PUA/40% TMPTA 0.27 0.78 0.93 0.48 70.3 12.1

a Final C=C conversion; b Maximum C=C conversion rate.

3.4. UV-Curing Kinetics of the RSO-PUA Resins

As shown in Figure 6, the UV-curing behaviors of RSO-PUA materials were performed
with RT-IR, and the related data were presented in Table 4. As the HEA content rose from 0
to 40%, both the C=C conversions (αf) and maximum C=C conversion rate (Rp) of RSO-
PUA/HEA resins increased from 65.5% to 97.4% and 5.5 s−1 to 22.2 s−1, respectively, apart
from the values of RSO-PUA/40% HEA, which dropped slightly to 93.1% and 20.5 s−1,
respectively. The variation possibly lies in that the increased dosage of HEA decreased
the viscosity of the RSO-PUA resins and increased the colliding chance for C=C groups,
while excess HEA can be homopolymerized during the co-polymerization of RSO-PUA
with HEA, leading to a decreased HEA concentration for the RSO-PUA diluting and co-
polymerization [44]. Besides, when the C=C functionality of the diluent increased from 1
to 3, the αf and Rp exhibited the declined trend for the polyfunctional diluent, meaning
that the use of the diluent with the higher functionality would hamper the αf and Rp of the
RSO-PUA resins [40]. In addition, the Rp values for all the resins reached a maximum value
within <10 s, suggesting that the polymerization rate was excellent. The high-functionality
of the developed RSO-PUA oligomer may account for the excellent polymerization rate.
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3.5. 3D Printing Performance

The parameters of penetration depth (Dp) and the threshold dose of energy (Ec) were
employed to assess the curing properties of UV-curing printing resins [44]. The two values
could be calculated according to the following equations derived from the Beer–Lambert
law [45,46]:

Zd = Dp ln
td
t0

Ec = I0t0

where Zd is the cure depth, t0 is the critical cure time, td is the exposure time, and I0
is the intensity at Zd = 0. By measuring and plotting the cure depth of the resin as a
function of the different exposure times, the data of Dp and t0 was obtained from the
slope and the intercept of the fitted line, respectively [46]. As with previous reports, the
viscosity of a polymer solution higher than 3 Pa·s was not suitable for DLP-based 3D
printing [3]. Combined with the overall properties and viscosity of the RSO-PUA resin, the
RSO-PUA/HEA40% was selected as the print model. The fitted working curves are shown
in Figure 7a, and the detailed data are listed in Table 5. The Dp value of RSO-PUA/HEA40%
resin was 0.327 mm, which was comparable to that of DLP-based 3D printing commercial
resin. To reduce the Dp, the UV-photo absorber was usually added to the commercial
resin and lower Dp is related to higher printing resolution. Besides, the Ec data of RSO-
PUA/HEA40% was lower 1.12 mJ/cm2 than that of commercial resin [47,48], which was
likely due to the high functionality of the RSO-PUA oligomer [48]. Thus, the Dp and Ec
values of RSO-PUA/HEA40% were suitable for general DLP-based 3D printing.
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Table 5. The printing parameters of RSO-PUA/HEA40% resin and commercial resin.

Sample Penetration
Depth (mm)

Critical Cure
Time (s)

Critical Exposure
Energy (mJ/cm2) R2

RSO-PUA/HEA40% 0.327 1.90 15.20 0.99
Commercial resin 0.314 2.04 16.32 0.98

An object of football-ene was printed by the DLP-3D printer, and the surface of the
football-ene was measured using an optical microscope to observe the layer thickness.
As shown in Figure 7c, the layer thickness of DLP-3D printing RSO-PUA/HEA40% resin
was 50.453 µm, which was very close to the setting value (50 µm) by the slice software.
In addition, the surface of the model showed no obvious cracks or gapes between the
layers, meaning the excellent adhesion between layers. Therefore, the printed model with
RSO-PUA was available for general printing.

4. Conclusions

In this work, the novel RSO-based PUA oligomer was first synthesized and then a
series of UV-curable resins were prepared by blending the pure RSO-PUA with various
diluents. Properties of the cured materials involving thermal properties, dynamical me-
chanical properties, mechanical properties, coating performance, and solvent resistance,
were studied. The obtained UV-cured RSO-PUA resins demonstrated a superior gel content
(up to 98.5%), high Tg (up to 109.4 ◦C), excellent thermal stabilities (T5% up to 270 ◦C), and
a high mechanical strength (up to 16.3 MPa). The high content of diluent and the increase
of diluent functionality were beneficial to the gel content, Tg and thermal stabilities of the
UV-cured resins. Additionally, the cured resins exhibited excellent hardness and flexibility,
strong adhesion, and remarkable water resistance. The optimal resin showed lower Ec
than the commercial resin and the football-ene model was successfully printed by DLP
3D printing. In summary, this work provides a facile strategy to fabricate woody plant
oil-based UV-curable PUA resin for DLP 3D printing.

Supplementary Materials: The following are available online, Figure S1: Chemical structures of
the adopted diluents, Figure S2: FT-IR spectra of IPDI-HEA, Figure S3: 1H NMR spectra of RSO,
Figure S4: The fractured surface SEM images of the UV-cured RSO-PUA resins (Magnification: 1000).
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