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Inflammasomes are fundamental innate immune mechanisms that promote inflammation
and induce an inflammatory form of programmed cell death, pyroptosis. Pyroptotic
inflammasome has been reported to be closely associated with tumorigenesis and
prognosis of multiple cancers. Emerging studies show that the inflammasome
assembly into a higher-order supramolecular complex has been utilized to evaluate the
status of the innate immune response. The inflammasomes are now regarded as cellular
signaling hubs of the innate immunity that drive the production of inflammatory cytokines
and consequent recruitment of immune cells to the tumor sites. Herein, we provided an
overview of molecular characteristics and biological properties of canonical and non-
canonical inflammasome signaling in cancer immunology and immunotherapy. We also
focus on the mechanism of regulating pyroptotic inflammasome in tumor cells, as well as
the potential roles of inflammasome-mediated pyroptotic cell death in cancers, to explore
the potential diagnostic and therapeutic markers contributing to the prevention and
treatment of cancers.
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INTRODUCTION

Inflammasome, a major class of signalosomes in innate immunity, is a cytosolic multiprotein
platform that formed by the oligomerization of a sensor, an adaptor apoptosis-associated speck-like
(ASC) and caspases in response to pathogen-associated molecules and cellular stress (1, 2). These
inflammasome components are expressed at low levels in normal tissue cells to prevent
inappropriate activation, and are primed, activated and assembled through homotypical death
domain (DD) interactions (3–6). The DD domains, from caspase recruitment domain (CARD),
pyrin domain (PYD), to death effector domain (DED), were found to self-assemble into higher-
order helical filaments in inflammasome (1). The higher-order inflammasome complexes carry out
intricate signaling and key effector functions in innate immunity and inflammation.
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Inflammasome activation induces pyroptosis, a type of
programmed cell death. Studies have shown that the
gasdermin family members (Gasdermins, GSDMs) play vital
roles in inflammasome-induced pyroptosis (7–9). The
inflammasome-induced pyroptosis depends on the formation
of plasma membrane pores by the pyroptosis effectors GSDMs
(7). Emerging studies had indicated that inflammasome
activation plays a central role in the tumorigenesis (including
immunosuppression, proliferation, angiogenesis and metastasis)
and tumor suppression (10). The pyroptosis initiated by
inflammasomes induces innate immune responses in cancer
tissues, and targeting pyroptosis has exhibited potential anti-
tumor capabilities in cancer treatment (8). Thus, targeting the
inflammasome and pyroptosis is a promising strategy for cancer
immunotherapy. The inflammasome and its related pyroptosis-
trigged immune activation in cancer tissues will provide cancer
patients with more effective anti-tumor immune responses and a
better prognosis (9).

Activation of cell death effector GSDMs also has some
connections with a type of cell apoptosis, NETosis, which is
related to the formation of inflammasome and noncanonical
inflammasome signaling (11, 12). In previous studies, NETosis
was believed to associate with the immune defenses, helping to
resist various pathogens (13, 14). While emerging studies have
shown that noncanonical inflammasome signaling-elicited
NETosis also has a positive impact on the tumorigenesis by
protecting tumor cells against immune attack and promoting
tumor cell metastasis (15–17).

Currently, with an increasing number of studies in innate
immunity, the inflammasome assembly into a functional higher-
order complex functions as hub platforms for inflammatory
cytokine production, and has been considered to utilize in
evaluating the activation and regulation status of the innate
immune response (2, 18, 19). The inflammasomes are now
regarded as cellular signaling hubs of the innate immunity that
drive the inflammatory signaling and consequent recruitment of
immune cells to the tumor sites, but activation of different
inflammasomes may exhibit the exact opposite outcomes in
cancers, anti-tumor or pro-tumor effects (20–23). In-depth
understanding the functions of these canonical and non-
canonical inflammasomes is critical for revealing the molecular
mechanisms that govern the innate immune response and
inflammatory signaling in cancer Immunotherapy (10, 24).
Frontiers in Immunology | www.frontiersin.org 2
CANONICAL AND NON-CANONICAL
INFLAMMASOME SIGNALING IN
TUMOR IMMUNITY
Canonical inflammasomes, assembled by sensor proteins
(including pyrin domain containing related protein family
(NLRP), absent in melanoma (AIM) 2, interferon-g inducible
factor (IFI) 16, RIG-I, and CARD-domain-containing (NLRC) 4),
play key roles in immune surveillance of pathogens infections
and danger signals by proteolytically activating caspases 1 and/or
11 (caspase-4/5 in humans) that cleaves interleukin-1b (IL-1b),
interleukin-18 (IL-18) and the pore-forming protein gasdermin
D (GSDMD), leading to cytokine maturation and pyroptosis
(Table 1) (25, 26). Canonical inflammasome-induced pyroptosis
is typically marked by the induction of rapid polymerization
of the bipartite adapter ASC into large helical filaments with
the sensors and caspases to form a single supramolecular
ASC punctum (also known as ASC specks), which mediates
robust cellular responses and acts as an important hallmark
for inflammasome activation (27–29). NAIPs, which could
recognize the bacterial ligands, recruit NLRC4 to assembly the
NAIP-NLRC4 inflammasome complex, and directly activate the
caspase 1 without the adaptor ASC (30–32).

The non-canonical inflammasome activation mediates a
caspase 11 (caspase 4/5 in human) dependent innate immune
response to the invasion of gram-negative bacteria (33–35). The
cytosolic sensor caspase 11 functions as a signal initiator and
mediates the recognition of gram-negative bacteria via directly
interacting with cytosolic lipopolysaccharide (LPS) and
assembling a higher order structure called the non-canonical
caspase 11 inflammasome (33). Besides caspase 11, innate
immune sensor ZBP1 and the inhibition of kinase TAK1 could
regulate the assembly of RIPK1/RIPK3-FADD-caspase-8 cell
death complex and induce the Pyroptosis, Apoptosis, and
Necroptosis (PAN-optosis) (Table 1) (36, 37). These active
caspases cleave and activate GSDMD to promote pyroptosis,
and then trigger a secondary activation of the canonical NLRP3
inflammasome for cytokine release (Figure 1) (38, 39).

The effects of both canonical and non-canonical Inflammasomes
activation-induced pyroptosis may be a double-edged sword on
cancers (40). The role of inflammasome activation in promoting
tumorigenesis has been previously reviewed by rajendra karki et al.,
which indicates that inflammasome components could induce
TABLE 1 | Canonical and non-canonical Inflammasomes.

Sensor proteins Adaptor - Caspase Activated
caspases

Cleaved proteins Cytokine
release

Cell death

Canonical
inflammasomes

NLRP family adaptor protein ASC -
caspase-1

caspase-1 GSDMD, pro-IL-1b, pro-IL-
18

IL-1b,
IL-18

pyroptosis; apoptosis;
AIM2
IFI16
RIG-I
NAIP-NLRC4 caspase-1

Non-canonical
Inflammasomes

NLRP family caspase-11 caspase-1, 11 GSDMD, pro-IL-1a, pro-IL-
1b, pro-IL-18

IL-1a,
IL-1b,
IL-18

pyroptosis; apoptosis;
necroptosisZBP1 dependent - NLRP3 caspase-8, 6

Inhibition of TAK1 or IkappaB
kinase (IKK)

caspase-8
TAK1 dependent -
caspase-8

caspase-8
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cancer cell proliferation, survival and metastasis, and promote
cancer cells to evade immune surveillance (10). Except the direct
killing of cancer cells and cancer related microenvironmental cells
by pyroptosis, the release of inflammasome-dependent cytokines
(IL-1b, IL-18, et al.) and other costimulatory molecules (either from
the cancer cells or from the cells in the tumor microenvironment)
will significantly reshape the cancer immune microenvironment.
The composition of cancer immune microenvironment will
determine the effect of pyroptosis on cancer. On the one hand,
pyroptosis may promote the cancer occurrence by recruiting the
immunosuppressive immune cells (such as myeloid-derived
suppressor cells, MDSC) (41–43) and inducing chronic
inflammation (10, 44, 45); on the other hand, it may also inhibit
the cancer occurrence by recruiting the NK and CD8+ T cells to the
cancer microenvironment (8).
GSDMs AND GSDMs-DEPENDENT
CANONICAL INFLAMMASOME SIGNALING
MODULATE TUMOR IMMUNITY

The GSDMs, pyroptosis executors, are consists of gasdermin A
(GSDMA), gasdermin B (GSDMB), gasdermin C (GSDMC),
gasdermin D (GSDMD), gasdermin E (GSDME), and
Autosomal Recessive Deafness Type 59 Protein (DFNB59 or
PJVK) in homo sapiens, and displayed different tissue expression
patterns (46, 47). In 2015, Kayagaki, N. et al. (38), Shi, J. et al.
(48) and He, W. T. et al. (49) firstly discovered GSDMD, the
executor of pyroptosis, and confirmed that it was cleaved by
caspase 1 and caspase 4. Since this discovery, more and more
gasdermins were characterized to play vital roles in
inflammasome and pyroptosis. Further protein structure
Frontiers in Immunology | www.frontiersin.org 3
analysis of these GSDMs confirmed that by cleaving and
releasing their N-terminal domains, these GSDMs can induce
cell death by forming large oligomeric pores on cell membrane,
disrupting the integrity of cell membrane and releasing the
inflammatory mediators (50–54). These functions and
mechanisms recently had been reported to relate with cancer
therapy, especially the GSDMD and GSDME (8, 55, 56).

GSDMA, GSDMC and PJVK are not detected in most human
tissues (both tumor tissues and normal tissues), while GSDMB,
GSDMD and GSDME are highly expressed in most human
tissues (both tumor tissues and normal tissues), especially
GSDMD (47). These also indicate that different GSDMs may
perform different functions in cancer development and cancer
therapy (Table 2).

GSDMA, especially GSDMA3, is expressed in the epidermis
and frequently silenced in gastric cancer cell lines (76).
Mutations in GSDMA3 with gain-of-function are associated
with skin inflammation and hair loss (77). GSDMA3-N
domains could form membrane-disrupting pores during
pyroptosis (50). Dysregulated GSDMA3 could cause cell
necrosis and chronic inflammation (52), and potentially
influence the cancer immunotherapy (55).

GSDMB, which has been proven as an independent poor
prognostic biomarker in breast cancer, is overexpressed in about
60% of HER2 breast cancers (78). The highly expressed GSDMB
significantly promotes cancer cell migration and develops cancer
cell resistance to anti-HER2 therapies (79). Knockout GSDMB, or
intracellular-delivered anti-GSDMB through nanocapsules could
neutralize the effects of GSDMB, reduce the aggressiveness of
HER2 breast cancer, and enhance the sensitivity to trastuzumab
(80). These results indicate that GSDMB may play a positive role in
cancer development. However, Zhou Z et al. found that GSDMB
positive cells showed greater sensitivity to granzyme A-mediated
FIGURE 1 | Canonical and non-canonical Inflammasome signaling pathways.
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cytotoxic lymphocyte killing mechanism, and the upregulation of
GSDMB expression in tumor cells might be due to the activation of
the interferon gamma signaling (57) (Figure 2B). While the
interferon gamma signaling also could trigger the expression of
immune checkpoints, such as PD-L1 and PD-L2 (81, 82), which
provided the explanation for the poor prognosis of GSDMB-
positive tumors. In addition, these studies also indicated that
cancer immunotherapy with the immune checkpoint inhibitors
might be a better strategy for treating the GSDMB-positive tumors.
We are looking forward to see the similar clinical trials for this
cancer subtype in the future (83).

GSDMC, another effector of pyroptosis, correlates with poor
survival in cancer patients (84, 85). GSDMC is cleaved by caspase-8
with TNFa treatment, and also can be cleaved by caspase-6 in
response to reactive oxygen species (ROS) insult in cancer cells. The
elevated expression level of GSDMC, which could be induced by the
nuclear translocated PD-L1, is required for the switching TNFa-
induced apoptosis to pyroptosis in cancer cells (58). In tumor
microenvironment, the tumor-associated macrophages could secret
the TNFa, and induce tumor necrosis through the activation of
caspase-8, the translocation of PD-L1, and the cleavage of GSDMC
(Figure 2A). This GSDMC-dependent inflammasome signaling
Frontiers in Immunology | www.frontiersin.org 4
and pyroptosis pathway will significantly change the tumor
microenvironment, promote tumor progression and increase the
resistance to chemotherapy, radiotherapy and immunotherapy.

The functions of GSDMD and GSDME aremuch clearer (48, 51,
54, 59–61). Studies had showed that GSDMD and GSDME-
mediated canonical inflammasome signaling and pyroptosis play
vital roles in the immune response of cancer tissues through
modulating the tumor immune microenvironment. The GSDMD
could be cleaved by activated caspase 4/11 (63, 65) and caspase 8
(64, 66), and activated caspase 1 (activated by AIM2 or NLRP3
inflammasome) (67–69). The GSDME could be cleaved by activated
caspase 1 and caspase 3, and then trigger the transition of cancer
cells from apoptosis to pyroptosis (9, 70, 86). The transition highly
relies on the expression level of GSDME in cancer cells (56). The
cleavage of GSDMD and GSDME in cancer cells could be induced
by various therapeutic strategies, including chemotherapy drugs (56,
71–74, 87), molecular target therapies (62, 88), or immune cell
therapy (8, 75). The GSDME is constitutively expressed in many
normal tissues, which explains why the chemotherapy drugs could
induce direct damage in normal tissues (56). Remarkably, these
damages in tumor tissues have a positive function; the damage-
induced cleavage of gasdermins, inflammasome activation and
TABLE 2 | Function of GSDMs in anti-tumor immunotherapy.

GSDMs Upstream Effector Activated
Caspase

Effector cells Target Cells Cell death Reference

GSDMA3 — — Immune cells GSDMA3+ tumor
cells

(52, 55)

GSDMB Granzyme A (Directly cleave GSDMB) — NK-92MI/CAR-T/
TCR-T cells/
CTLs

GSDMB+ cells (57)

GSDMC TNFa Caspase-8 Macrophages Cancer cells (58)
GSDMD Bacterial Endotoxin - Lipopolysaccharide

(LPS)
Caspase-11 Gram-negative

bacteria
Macrophages,
Endothelial cells

pyroptosis (38, 59–61)

bacterial lipopolysaccharide Caspase-1 and
Caspase-4/5/
11

— mouse bone
marrow
Macrophages

inflammasome-activated caspase-1 and
LPS-activated caspase-11/4/5

(48, 51, 54)

The inhibition of TAK1 or IkappaB kinase
(IKK) by the Yersinia effector protein
YopJ

Caspase-8/
RIPK1

— Macrophages NLRP3 inflammasome-dependent release
of interleukin-1beta (IL-1beta)

(37)

intracellular protease inhibitors Serpinb1a
and Serpinb6a

Cathepsin G
(CatG)

— Monocyte and
Neutrophil

(62)

GSDMB Caspase-4 — Leukocytes non-canonical pyroptosis (63)
Liver injury Caspase-8 — Hepatocyte (64)
— Caspase-4/11 — Hepatocyte (65)
— FADD and

Caspase-8
— intestinal

epithelial cell
(IEC)

MLKL-induced necroptosis and caspase-
8-GSDMD-dependent pyroptosis-like
death

(66)

AIM2 inflammasome Caspase-1 — HEK293 cells (67, 68)
NLRP3 inflammasome Caspase-1 — Neutrophils (69)

GSDME Bid-caspase-9-caspase-3 axis Caspase-1 — GSDMD-low/null
cell types

(70)

BRAFi + MEKi Caspase 3 — — (9)
chemotherapy drugs or TNFa Caspase-3 — GSDME+ tumor/

primary cells
(56, 71–74)

Granzyme B Caspase 3 CAR-T cells GSDME+

leukemic/target
cells

(75)

Granzyme B Caspase 3 NK and CD8+ T
lymphocytes

GSDME+ tumor
cells

(8)
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subsequent pyroptosis will promote the recruitment and activation
of the tumor-infiltrating NK and CD8+ T lymphocytes in tumor
sites (8). Thus, GSDMs-mediated inflammasome activation and
pyroptosis could turn “cold” tumor into “hot” by modulating tumor
immune microenvironment, and consequently regulate antitumor
immunity (Figure 2C).

The expression pattern of GSDME is distinguished from
GSDMD. The GSDME gene is frequently silenced in cancer cells,
and loss of function (LOF) of GSDME by mutations or
hypermethylation of promoter region in cancer cells will
significantly reduce the anti-tumor innate immune responses (8,
40). Zhang Z et al. reported that the granzyme B released by cytotoxic
T cells could cleave GSDME in cancer cells, and the granzyme B/
GSDME-mediated pyroptosis suppressed tumor growth through a
perforin-dependent T-cell killing mechanism (8). Thus, it will be
beneficial to target GSDME or to elevate tumor-derived GSDME
expression level in cancer treatment. While the excessive activation of
inflammasome-induced pyroptosis in cancer treatment, such as in
CAR-T therapy, could also cause serious consequences; The CAR-T
cells elicited GSDME–mediated cancer cell pyroptosis and released
pyroptosis-related factors. The pyroptosis-related factors activated
caspase 1 for GSDMD cleavage in macrophages, and resulted in the
release of more cytokines and the subsequent cytokine release
syndrome (CRS) (75) (Figure 2B).
NONCANONICAL INFLAMMASOME
SIGNALING-ELICITED NETOSIS
PROMOTES TUMORIGENESIS

NETosis, a proinflammatory cell death modality originally
identified in neutrophil, provides host defense against extracellular
Frontiers in Immunology | www.frontiersin.org 5
intruders in response to various stimuli. NETosis differs from
apoptosis and necrosis, but has some connections with the
activation of pyroptosis executor GSDMD (12). Various stimuli
promote the release of NE from the neutrophil granules, and NE
cleaves and activates GSDMD, leading to nuclear and plasma
membrane rupture and neutrophil cell lysis by NETosis
(Figure 3A). Exposure of neutrophil to cytosolic LPS also
activates the noncanonical inflammasome signaling and triggers
GSDMD-dependent NETosis (12, 89). Both Caspase-11 and
GSDMD are required for NETosis at multiple stages, including
nuclear delobulation, chromatin decondensation, nuclear
membrane permeabilization and plasma membrane rupture (89).

Neutrophil extracellular traps (NETs) are the regulated outcome of
NETosis, and the release of NETs is linked with tumorigenesis (90–92).
Tumor cells can recruit myeloid cells, mostly neutrophils, by secreting
CXCR1 and CXCR2 agonists ELR positive CXCL chemokines, such as
CXCL1, CXCL2, and CXCL8 (93). The tumor-derived ELR positive
CXCL chemokines are the major mediators of cancer-promoted
NETosis and NETs (91). The NETs released from neutrophils are
enriched on the tumor surface to form a barrier, which effectively
reduces the contact of CD8+ T cells and NK cells with tumor cells, and
thus protects tumors from immune cytotoxicity (Figure 3B).

Excessive NETs produced by sustained inflammation contribute
to reawakenment of dormant cancer cells (94). The sustained lung
inflammation induced by tobacco smoke or LPS instillation recruits
and activates neutrophils, and the subsequent NETs formation is
greatly induced in the cancer cell dormancy mouse model. The two
NETs-associated proteases neutrophil elastase (NE) and matrix
metalloproteinase 9 (MMP9) remodel the extracellular matrix
(ECM) by hydrolyzing laminin. The proteolytic remodeling
laminin induces the proliferation of dormant cancer cells through
activating the cell surface ECM receptor integrin a3b1 (94). In
mouse models of small bowel tumors, tumor development is related
A C

B

FIGURE 2 | Canonical inflammasome signaling in cancer immunology. (A) GSDMC-dependent inflammasome signaling and pyroptosis pathway. (B) Granzyme A/B-
mediated cytotoxic lymphocyte killing mechanism and GSDMB/GSDMD/GSDME induce tumor cell pyroptosis. (C) GSDMs-mediated inflammasome activation and
pyroptosis regulate antitumor immunity.
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with the accumulation of low-density neutrophils (LDNs). The
LDNs aggregation-induced up-regulation of complement 3a
receptor (C3aR) and activation of the complement cascade lead to
NETosis, coagulation and differentiation of neutrophils into N2
type, which in turn promote tumorigenesis (95).

NETs also play an important role in promoting tumor
metastasis. The transmembrane protein CCDC25 is a NET-DNA
(the DNA component of NETs) receptor on cancer cells, which
activate the integrin‐linked kinase (ILK)/b-parvin pathway by
binding to extracellular DNA to enhance the mobility of cells,
thereby promoting tumor metastasis (96) (Figure 3B). In tissues of
lung and retina, NETosis can induce apoptosis of senescent vascular
endothelial cells and promote the formation of new blood vessels
that are conducive to tumor growth (97, 98). In addition, NETs can
continuously deposit in the lungs, which might be the reason why
lung is one of the most common sites of cancer metastasis (99).
PYROPTOTIC INFLAMMASOME
SIGNALING ACTS AS A CRITICAL
REGULATOR OF INFLAMMATION AND
TILS WITHIN TUMOR
MICROENVIRONMENT

The activation of canonical or non-canonical inflammasome
signaling in the cytosolic compartment will lead to pyroptosis (34,
100, 101), which are critical defense mechanisms against
endogenous (tissue or cellular injury) or exogenous danger signals
(infections, such as microbes) (34, 100–102). The dysregulation of
inflammasome activation in cancer development and progression is
controversial, due to the inconsistent findings on potential cancer
promotion and immunotherapy (103). As the potent contributors
to the activation of inflammatory cytokines in cancer tissues, the
Frontiers in Immunology | www.frontiersin.org 6
excessive inflammasome signaling will lead to the cancer
progression (10, 104, 105). Thus, inhibition of inflammasome
with some certain inhibitors could potentially be used for clinical
cancer treatment (106, 107). Meanwhile, in the treatment of cancer,
various drugs could induce the activation of inflammasome-related
pyroptosis and cause the release of proinflammatory cytokines.
Subsequently, the activated inflammatory cytokines could recruit
the NK or cytotoxic T cells to the tumor site for killing cancer cells,
and eventually delay the tumor progression (108, 109).

Regulation of inflammasome activation might reinforce anti-
tumor immunity by boosting the recruitment of TILs (110).
Mechanismly, the checkpoint molecule, T cell immunoglobulin
and mucin-containing molecule 3 (TIM-3) in DC cells restrains
anti-tumor immunity through suppressing inflammasome
activation; TIM-3-deficient DCs promote the recruitment of
stem-like CD8+ TILs and boost antigen-specific immunity via
increasing accumulation of reactive oxygen species resulting in
driving inflammasome activation (111). Additionally, the
pyroptotic inflammasome-cytokine (IL-18) pathway effectively
regulates the NK-cell-mediated tumor attack through promoting
the maturation of NK cells and surface expression of the death
ligand FasL, which consequently leads to elevate the tumoricidal
activity of NK cells (108). Thus, inhibition of inflammasome
activation, or downstream effector cytokines might abrogate the
protective anti-tumor immunity and expanded TILs.

Recently, emerging insights in cancer immunology indicate that
the roles of pyroptotic inflammasomes on tumor immunotherapies
may highly rely on the tumor stage and the tumormicroenvironment
(105). In early-stages of cancer development, the pyroptotic
inflammasomes participate in the innate immune response, recruit
tumor-infiltrating lymphocytes and promote inflammatory cell death
of cancer. The immune cells recruited to tumor sites retain their
immunosurveillance properties and anti-tumor immunity prevails
(Elimination phase) (112), while the ESCRT-III-mediated plasma
A B

FIGURE 3 | NETosis elicited by noncanonical inflammasome signaling promotes tumorigenesis. (A) Various stimuli promote the release of NE from the granules, and
NE cleaves and activates GSDMD, leading to nuclear and plasma membrane rupture and neutrophil cell lysis by NETosis. (B) Tumor-secreted ligands induce
extrusion of NETs, and NETs protect tumor cells from CTL and NK cytotoxicity. The extracellular NETs-DNA binds to the transmembrane protein CCDC25 on tumor
cells, and thus improve tumor cell migration.
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membrane repair in pyroptotic cells strongly inhibits pyroptotic cell
death (113, 114). A dynamic interplay of pyroptosis with ESCRT-
mediated membrane repair in cancer cells occurs in immune
equilibrium phase. In addition, cancer cells also develop a series of
pyroptosis-resistance strategies to escape immune attack and establish
a protumor immune microenvironment (escape phase) (Figure 4A).
The levels of pyroptotic inflammasomes regulate the inflammation
and TILs within tumor microenvironment, and affect the balance
between cancer cell elimination and immune escape (Figure 4B).

The inflammasomes have been considered as cellular
signaling hubs of the innate immunity that drive the
production of inflammatory cytokines, promote inflammation
and induce pyroptosis in cancer cells. While inflammasome
signaling hubs function in innate immune response, the
inflammasome activation links with diverse physiological and
pathological processes, such as autophagy (2, 115), cellular stress
response (116), cell-cycle progression (117). In these processes,
inflammasomes activation is tightly regulated by DDX3X-
mediated assembly of stress granules, HDAC6-associated
autophagosomal degradation, and NEK7-dependent mitotic
spindle formation and cytokinesis (2, 115–117).
CONCLUSION

Inflammasome signaling has shifted the paradigm for the hub
platform in innate immune responses. The inflammasomes are
considered as cellular signaling hubs of the innate immunity that
drive the production of inflammatory cytokines, promote
inflammation and induce pyroptosis in cancer cells. The
polymerization of pattern recognition receptors, adaptor ASC,
and effectors caspases into higher-order supramolecular
complexes facilitates signal transduction cascades and proximity-
Frontiers in Immunology | www.frontiersin.org 7
facilitated enzyme activation. In these complexes, pattern
recognition receptors (sensor proteins) and adaptor ASC form the
center (ASC specks), whereas caspases make up the filaments. The
inflammasome activation and assembly into higher-order
supramolecular complexes function as inflammasome hub
platforms for inflammatory cytokine production, and have been
utilized to evaluate the status of the innate immune response.

The pyroptotic inflammasome regulates inflammation, TILs
within tumor microenvironment, and the consequent recruitment
of immune cells to the tumor sites. But the ESCRT-III-mediated
plasma membrane repair in pyroptotic cells strongly inhibits
pyroptosis in cancer cells. Thus, a dynamic interplay of pyroptosis
withmembrane repair in cancer cells occurs in immune equilibrium
phase. The level of pyroptotic inflammasomes might related with
the balance between cancer cell elimination and immune escape.
With the inflammasome examples in cancer immunology presented
here, we could see that the regulation of inflammasome level with
some certain agonists or antagonists would potentially be used for
future clinical cancer treatment.
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