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ABSTRACT: Although increased synchrony of
the neural activity in the basal ganglia may underlie the
motor deficiencies exhibited in Parkinson’s disease (PD),
how this synchrony arises, propagates through the basal
ganglia, and changes under dopamine replacement
remains unknown. Gap junctions could play a major role
in modifying this synchrony, because they show func-
tional plasticity under the influence of dopamine and after
neural injury. In this study, confocal imaging was used to
detect connexin-36, the major neural gap junction pro-
tein, in postmortem tissues of PD patients and control
subjects in the putamen, subthalamic nucleus (STN), and
external and internal globus pallidus (GPe and GPi,
respectively). Moreover, we quantified how gap junctions
affect synchrony in an existing computational model of
the basal ganglia. We detected connexin-36 in the human
putamen, GPe, and GPi, but not in the STN. Furthermore,
we found that the number of connexin-36 spots in PD tis-
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sues increased by 50% in the putamen, 43% in the GPe,
and 109% in the GPi compared with controls. In the com-
putational model, gap junctions in the GPe and GPi
strongly influenced synchrony. The basal ganglia became
especially susceptible to synchronize with input from the
cortex when gap junctions were numerous and high in
conductance. In conclusion, connexin-36 expression in
the human GPe and GPi suggests that gap junctional
coupling exists within these nuclei. In PD, neural injury
and dopamine depletion could increase this coupling.
Therefore, we propose that gap junctions act as a power-
ful modulator of synchrony in the basal ganglia. © 2014
International Parkinson and Movement Disorder Society
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In patients with Parkinson’s disease (PD) and corre-
sponding animal models, unusually high amounts of syn-
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chrony, bursting, and low-frequency oscillations have
been recorded.! These abnormalities are thought to
underlie the motor symptoms of PD, but whether they
are causal remains unclear.? Still, the mechanisms for the
emergence and transmission of synchrony and oscilla-
tions in the basal ganglia remain debated. Experimental
and computational studies have shown that interactions
between the subthalamic nucleus (STN) and the external
segment of the globus pallidus (GPe) are important for
the emergence of synchrony.>® Other studies highlighted
the role of synaptic input from the cortex to the STN.”"'!
Changes in the intrinsic properties of the GPe can also
lead to synchrony.'?" Whereas the healthy GPe shows
almost no correlations between pairs of neurons despite
the presence of local axon collaterals and correlated
inputs,'®!” synchronization in the B frequency band (13-
30 Hz) is prominent after dopamine loss.'®'®!? There-
fore, a decorrelation mechanism has been suggested to
exist in the healthy GPe.'” Given the pacemaking func-
tion of GPe neurons, intra-GPe synaptic coupling may
play an important role in synchronization and
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desynchronization in the GPe. However, few experimen-
tal studies have described changes in the GPe after dopa-
mine loss that would explain the clear shifts in network
dynamics seen in PD. Furthermore, how these mecha-
nisms may change under dopamine replacement remains
unclear.

Pallidal gap junctions (GJs) could provide such an
intrinsic mechanism of synchronization. Gap junctional
coupling (GJC) in cortex and striatum has already been
proposed to contribute to the pathology of PD.2%?* In
striatum and cortex, gap junctions between interneurons
consist of connexin-36 (Cx36),%>*® which has also been
found in the rat globus pallidus (GP), corresponding to the
human GPe.?” Various other neurological pathologies are
thought to involve altered GJC, including epilepsy, stroke,
spreading depression, and ischemia.?®3® All of these path-
ologies involve neural injury, which is in general associated
with remodeling of GJs.*! Fernandez-Suarez et al.*
reported the death of parvalbumin-positive y-aminobutyric
acid (GABA)ergic neurons in the GPe of animal models of
PD, raising the possibility of GJ remodeling. Dopamine
can also influence gap junctional coupling: for example,
GJs in the retina change their conductance in response to
variations in the dopamine level.>**> Most studies on GJs
in the brain found a decrease in GJ conductance with
increased dopamine levels.”' Dye coupling, an indication
for GJC, was increased in the striatum after dopamine loss
in rats.***” Dopamine modulation of GJC in the striatum
also has been associated with stereotypic behavior,®®
emphasizing the potential impact of GJC on clinical char-
acteristics. Although the presence of GJs in the human
GPe, internal globus pallidus (GPi), and STN would signif-
icantly impact information processing in the basal ganglia,
whether they exist and how they may remodel after dopa-
mine depletion remains unknown.

We therefore studied Cx36 expression in the puta-
men, GPe, GPi, and STN of postmortem tissues from
PD patients and control subjects. Furthermore, we
incorporated GJs into a basic conductance-based
computational model of the basal ganglia to examine
their potential influence on synchrony. Based on our
findings, we hypothesize that GJs exist between
GABAergic neurons of the GPe and GPi and suggest
that they undergo redistribution because of neural
injury in PD and exhibit up-regulated conductances
after dopamine depletion. The existence of numerous
high-conductance GJs in the GPe may diminish the
ability of pallidal neurons to desynchronize corre-
lated input.

Materials and Methods

Human Tissue Preparation

Human tissue was obtained from The Netherlands
Brain Bank, Netherlands Institute for Neuroscience,
Amsterdam. All material was collected from donors

JUNCTIONAL
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for or from whom written informed consent for a
brain autopsy and the use of the material and clinical
information for research purposes had been obtained
by the Netherlands Brain Bank. One control subject
that showed a local bacterial proliferation in the basal
ganglia was excluded (not shown in Table 1). All
patients were men between 71 and 96 years of age.
The control and PD patient groups were matched in
age (82 = 11 years) and postmortem delay (5.1 = 1.4
h). Based on their clinical information, the control
subjects did not suffer from any neurological disease.
Quantitative scores on the severity of motor symptoms
in the PD patients were not available. The formalin-
fixed, paraffin-embedded tissues were deparaffinized
using xylene and ethanol. Biopsy specimens were
taken from putamen (part of the striatum), GPe, and
GPi (6 PD patients and 6 control subjects as described
in Table 1) and STN (2 PD patients and 2 control sub-
jects, partly coinciding with the previous group). Tis-
sues were immersed in 25% sucrose for at least 48
hours before being frozen to prevent tissue damage.
Frozen biopsy specimens were then sectioned using a
cryostat along the coronal plane at a thickness of
60 pum.

Fluorescent Labeling and Confocal Imaging
for Cx36 Detection

We used triple labeling to image Cx36 on GABAer-
gic neurons. Free-floating sections were first permeab-
ilized and blocked with phosphate buffered saline
containing 0.5% Triton-X-100 and 10% goat serum.
Next, sections were incubated in primary and second-
ary antibodies for approximately 24 hours and 8
hours, respectively. Dilutions (1:300) of mouse mono-
clonal immunoglobulin IgG1 anti-Cx36 (Invitrogen,
Carlsbad, USA) and rabbit polyclonal immunoglobulin
IgG anti-GAD-65/67 (Sigma, St. Louis, USA) were
used to detect GJs and GABAergic neurons, respec-
tively. 4’,6-Diamidino-2-phenylindole was applied in a
1:500 dilution to label the cell nuclei. The secondary
antibodies were conjugated to Alexa Fluor 488 and
633 (Invitrogen). To reduce autofluorescence, we
applied an autofluorescence eliminator reagent (Milli-
pore, Billerica, USA) for 10 min. The samples were
then rinsed in ethanol and mounted on glass slides
with Fluoromont-G (Electron Microscopy Sciences,
Hatfield, USA). Imaging was performed on a Nikon
A1 confocal microscope with a 100X oil lens. To
avoid bleed-through, we sequentially scanned the
specimens with individual lasers. A minimum of 20
images per tissue group was taken, with a resolution
of 1024 X 1024 pixels or 0.124 um in both directions.
Our tissue selection process was not blinded. How-
ever, we tried to minimize the effects of unblinded
sampling by selecting tissue areas solely based on the
4’,6-diamidino-2-phenylindole signal.
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TABLE 1. List of patients from whom tissue of putamen, GPe and GPi has been analyzed.
6
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0.02589 0.01636 0.03772 0.03738

0.03941 0.02427

0.01850 0.02625 0.01717

0.02812

0.01780

0.02217

(spots/mm?)
Cx36 Putamen

(spot area/%)
Cx36 GPe (spots/mm?)

1610.66
0.03765
1219.69
0.03335

1254.11

710.65
0.01110

1579.71
0.02556
1109.00
0.01718

1462.38
0.01658
2204.04
0.02505

1299.22
0.02531

1082.69
0.02450
778.60

1266.48 902.24 1001.31 370.92 919.42
0.01832 0.00750

1058.63
0.01559

0.02942

0.01881
709.13

0.02149

0.01339
556.38

Cx36 GPe (spot area/%)
Cx36 GPi (spots/mm?)

940.23
0.02264

1954.85
0.02467

2165.37
0.03772

771.33
0.01235

712.29

0.01539

0.01775

0.01307

0.00847

Cx36 GPi (spot area/%)

We show clinical information and detected Cx36 levels for individual subjects and patients. Occurrence of the PD symptoms tremor, stiffness and brady- or akinesia were described based on the clinical reports.

The symptoms were assumed to be absent if not mentioned in the report.

Quantification of the Cx36 Signal

Confocal micrographs were analyzed using
Image].>* We used a threshold segmentation approach
to quantitatively estimate the level of Cx36 expres-
sion: assuming that the image intensity histogram is a
bimodal distribution, the threshold was defined as the
arithmetic mean of p1, the peak intensity of the back-
ground noise, and p2, the highest signal intensity:

_(p1tD2)
=" (1)

Images without a bimodal intensity distribution or
with bright unspecific staining were rejected. In the
segmented image, only spots with an area between 4
and 40 pixels were considered. In this way, segmenta-
tion of noise and unspecific labeling was suppressed.

Gap Junctional Coupling in a Basic Model of
the Basal Ganglia

Depending on their architecture and strength, GJs
can be both synchronizing or desynchronizing**** and
can interact in a nonlinear way with inhibitory synap-
ses.*> Computational modeling can be used to study
how a correlated input from cortex to STN affects
synchronization, and how synchrony is spread to other
nuclei. We implemented the network model proposed
by Rubin and Terman,** including 16 cells to repre-
sent each of STN, GPe, and GPi, using MATLAB.*
As shown in Figure 1A, the STN received excitatory
input from the cortex, and both GPe and GPi received
inhibitory input from the striatum. We added GJs
between pairs of neurons inside the GPe and GPi. The
neural dynamics in the GPe and GPi were thus gov-
erned by:

dv
dt
where C,, is the membrane capacity, V the transmem-
brane voltage, and lioic, Lsyu, Iy and Iy, the ionic,
synaptic, GJ, and applied currents, respectively. GJs
were modeled as ohmic resistors:

Igj=ggy-, AV (3)

with GJ conductance g¢; . The AV represents the dif-
ference in transmembrane voltage between the con-
necting cells. We chose two different GJC
architectures (Fig. 1B) to estimate the effect of newly
synthesized GJ channels: (1) sparse coupling with an
average of 0.5 GJs per cell and (2) numerous coupling
with an average of 1 GJ per cell. To simulate dopa-
mine modulation of the GJ strength, the GJ conduct-
ance in the GPe (ggp.,) and GPi (ggp;) was varied
between 0 and 0.25 mS/cm?, a realistic range for neu-
ral GJs*® but low compared with the conductances of
chemical synapses. The STN received excitatory input
from the cortex in the form of white noise, either

Cn =_Iionic_Isyn_IG]+IﬂPP (2)
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FIG. 1. Placement of GJs added to the Rubin-Terman model [41]. (a) General setup of STN, GPe, GPi and inputs from striatum and cortex. Red indi-
cates inhibitory connections, blue excitatory connections, black GJC. (b) GJ architectures in the GPe and GPi. Numbers represent the 16 cells in
both nuclei, connected in groups of four via GJs and in the GPe also via inhibitory synapses (not shown). Light grey lines indicate the architecture
for sparse GJC, dark grey lines the architecture for numerous GJC. [Color figure can be viewed in the online issue, which is available at wileyonline-

library.com.]

completely correlated or completely uncorrelated. The
inhibitory input from the striatum to the GPe and GPi
was uncorrelated white noise. To quantify synchrony,
we performed principal component analysis on spike
activity as described in Lourens.*” In short, we calcu-
lated the number of principal components (PCs)
needed to describe 95% of the information contained
in the spike times for all 16 cells in each nucleus.
High synchronization is associated with a small num-
ber of PCs, indicating that little variation is needed to
describe the network state.

Results

Cx36 Is Present in the Human Putamen, GPe
and GPi, But Not in the STN

The STN tissues from neither PD patients nor con-
trol subjects showed significant levels of Cx36 (data
not shown) and were thus excluded from further
analysis. However, we found a clear punctuate pat-
tern of Cx36 labeling in the putamen, GPe, and GPi
of all subjects (Fig. 2), which was absent in a nega-
tive control without the primary antibody (data not
shown). Table 1 summarizes the clinical background
of all subjects and the results of the Cx36 quantifica-
tion. An average of 18, but at least 12 images per
tissue group could be included for image analysis.
The GJC in the putamen is well described and
thought to be increased after dopamine deple-
tion.?®*” We therefore used Cx36 expression in the
putamen as a reference for numerous GJCs. Control
subjects showed the most Cx36 expression in the
putamen; less Cx36 was found in their GPe and GPi.
Compared with controls, the number of Cx36 spots
in PD patients increased by 50% in the putamen,
43% in the GPe and 109% in the GPi (Fig. 3A). Fur-
thermore, the cumulative area of the Cx36 spots
increased significantly in the putamen and GPi of PD

patients, but no significant increase was detected in
the GPe (Fig. 3B).

Gap Junctional Coupling Controls Synchrony
in a Basic Model of the Basal Ganglia

Based on our experimental findings of Cx36 in the
human GPe and GPi, we used a small network model
to demonstrate the effect of GJC in these nuclei. Fig-
ure 4 shows the results of our principal component
analysis for different GJ densities, GJ conductances
gcre and ggp;, and cortical input. We compared the
number of PCs as we increased ggp. and ggp. to
model modulation of the GJ conductance by dopa-
mine. For sparse GJC and uncorrelated cortical input,
the increase in GJ conductance induced moderate syn-
chronization as indicated by a decrease in the number
of PCs (Fig. 4A). Similar results were achieved with
correlated cortical input to the STN (Fig. 4B). In con-
trast, cortical inputs impacted synchronization when
numerous GJs were present. When cortical input was
uncorrelated, higher GJC conductances in the sparse
architecture led to partial synchronization, generating
a minimum of 4 PCs (Fig. 4C). Under the influence of
correlated cortical input, a minimum of 2 PCs could
be achieved, indicating almost complete synchroniza-
tion (Fig. 4D). Thus, in our computational model, syn-
chrony in the basal ganglia depended on pallidal GJC
as well as the cortical input to STN. Although the
STN itself did not contain any GJs, pallidal GJs could
influence its synchrony. Furthermore, reducing the
number of GJs to on average 0.25 per cell led to
desynchronization at medium GJ conductances (data
not shown).

Discussion and Conclusions

We detected Cx36 in the human putamen, GPe, and
GPi, suggesting GJC in these nuclei. In contrast, no

Movement Disorders, Vol. 29, No. 12, 2014 1489
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Scale bar: 5 ym

FIG. 2. Cx36 in the human basal ganglia: Small high-resolution outtakes from confocal images. Cell nuclei are labelled by DAPI (blue), GABAergic
neurons by anti-GAD65/67 (red) and Cx36 by anti-Cx36 (green). Some Cx36 is present in the putamen, GPe and GPi of control subjects, while an
increase of Cx36 can be seen in the PD patients. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Cx36 was found in the human STN. A Cx36 remodel-
ing was seen in the GPe and GPi of the PD patients.
In a small network model of the basal ganglia, we
demonstrated that numerous high-conductance GJs
rendered the GPe more susceptible to synchronize
with cortical inputs transmitted via the STN. Cells of
the STN also showed synchrony dependent on pallidal
GJs, although they were not coupled via GJs them-
selves. We suggest pallidal GJC as a mechanism for
the transmission and reinforcement of neural syn-
chrony in the dopamine-depleted basal ganglia, which
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can be tested in vivo or in vitro in an animal model of
PD. We predict that the application of a GJ blocker
directly on the GPe and GPi will decrease neural syn-
chronization in the dopamine-depleted basal ganglia.
Should this prove true, seeing how GJ blocking affects
the motor signs of the animal would be interesting. A
direct involvement of GJC in the pathophysiology of
PD would open up novel treatment possibilities,
including pharmacological modulation of GJs.

Our findings of Cx36 in the human GPe and GPi are
novel. Cx36 has already been detected in healthy rat
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FIG. 3. Average expression of Cx36: (a) number of spots per mm?; (b) total area of the spots as a fraction of the total image. Cx36 spots are signifi-
cantly (p<0.05) increased in all three nuclei. The increase in cumulative area of detected Cx36 spots is significant only in putamen and GPi. The
standard errors of the mean are presented as thin bars. *p <0.05; **p<0.01 (two sample t-test).
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inputs from the cortex. Bars show the number of principal components dependent on GJ conductance in the GPe (9gpe) and in the GPi (ggp)).

Points with GJ conductance zero indicate the reference without GJC. If GJC

is sparse, a rise of GJ conductance leads to only moderate synchroni-

zation. Correlated input from the cortex is not able to completely synchronize activity in the basal ganglia (a and b). However, if GJC is nhumerous,
the basal ganglia are vulnerable to synchronize with increased gap junction conductances and also with correlated input from the cortex (c and d).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

GP.?” As with our human tissue, the level of Cx36 in the
rat GP was low compared with Cx36 in the rat striatum.
Kita*® also described single GJs in the rat GP using elec-
tron microscopy. Although the messenger ribonucleic
acid of Cx36 has been found in rat STN and GP,* no
GJs were found in the rat STN using electron micros-
copy.’® We also did not find significant levels of Cx36 in
the human STN. Gao et al.’! showed up-regulated

expression of Cx36 in the motor cortex and striatum of
a rat model of PD. In the striatum, they found an
increase of 38% using immunohistochemistry and 15%
with immunoblotting. Similarly, our immunohistochem-
istry of the putamen yielded a 50% increase in the num-
ber of Cx36 spots and a 42% increase in their area.

The use of human tissue imposed limitations on our
study. First, the total number of subjects was low, but
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all of them showed Cx36 in GPe and GPi. Further-
more, the tissue had postmortem delays between 3
and 8 hours. Although this is a short time for process-
ing human tissue, some proteins may have already
degenerated. Moreover, the tissue has been fixed in
formalin, which restricts the labeling quality and hin-
ders the possibility of immunoblotting. The quality of
the human tissue is therefore not comparable to
directly fixed animal tissue. Additionally, most PD
patients in this study were treated with L1-3,4-
dihydroxyphenylalanine (1-dopa), which also may
have effects on Cx36 expression. However, PD
patients # 7 and # 11 did not receive L-dopa the year
before their death, and their Cx36 levels were not
lower than those of the other PD patients. In general,
postmortem studies do not allow a definite statement
on whether the observed changes are causal, compen-
satory, or epiphenomenal for pathology. Studies with
animal models of PD will be appropriate to address
these questions in further detail.

We also considered limitations related to GJ func-
tionality and their role in the basal ganglia. First, detec-
tion of Cx36 on cell membranes does not directly
imply GJC, but also can indicate hemi-channels or non-
functional GJs. Fukuda et al.’? estimated that 2% to
5% of Cx36 spots indicate functional GJs in the open
configuration. In pathological states such as PD, the
average function of the GJs may change. Nevertheless,
the occurrence and the detected levels of Cx36 give
indications of GJC. We neglected potential GJC
between different nuclei, because GJs typically occur
between adjacent cells®® of the same type.’*>” How-
ever, we cannot exclude the possibility of GJC, for
example, to and from the striatum, because GJC
between different nuclei is potentially not explored yet.
Second, we did not investigate the expression of Cxs
other than Cx36. GJC between GABAergic neurons
mainly involves Cx36,2%*>%% but in particular glutama-
tergic neurons may express other Cxs such as Cx45.>’
Thus, we cannot provide a definite statement on the
absence of GJs in the human STN. Third, for GJC to
occur, we need to assume that anatomical contacts
exist between cells. Although local axon collaterals are
extensively present in the human GPe,*° they seem to
be low in number in the GPi.°" Finally, the computa-
tional model demonstrated synchronizing roles of pal-
lidal GJs depending on their strength and architecture,
but may not realistically reproduce the neural dynamics
in the whole basal ganglia. Specifically, it cannot repli-
cate oscillations within different frequency ranges. To
achieve this, the model would need to include more
cells and account for heterogeneity within the nuclei.

Based on our findings of Cx36 in the human GPe
and GPi, we hypothesize GJC in these nuclei. Further-
more, we suggest a remodeling of GJs after neural
injury and an increase of GJ conductance after dopa-
mine depletion in PD. In PD patients, dopamine loss

also occurs in the GPe (—82%) and GPi (—51%).%%
Application of dopamine to the GP of rat models of
PD improved the rats’ motor behavior.®®> Dye-coupling
in the striatum of 6-hydroxydopamine rat models of
PD, indicative of GJC, can increase up to fourfold.*®
A similar increase in GJC in the GPe and GPi after
dopamine depletion would be sufficient to trigger syn-
chronization in the basal ganglia. In our computa-
tional model, small changes in GJ conductance of
approximately 0.05 mS/cm?® could shift the basal gan-
glia to a synchronized state. We stress that the pathol-
ogy of PD also may involve altered GJC in the cortex,
striatum, substantia nigra, and retina. Using a compu-
tational model, Damodaran et al. [24] described how
altered GJC between fast-spiking interneurons of the
striatum can lead to an imbalance of the direct and
indirect pathways in PD. GJs in the cortex could be
involved in the generation of B oscillations.®* Modula-
tion of the GJs between dopaminergic cells of the sub-
stantia nigra pars compacta® may contribute to cell
death,®® and similar processes may occur in the retina.

Gap junction remodeling also may depend on fac-
tors other than neural injury and the dopamine level.
Palacios-Prado et al.®” demonstrated an increase in
GJC with decreasing intracellular magnesium concen-
tration. Given that the intracellular magnesium con-
centration is decreased in the resting brain of patients
with PD and other neurological diseases,’® GJC may
indeed increase in PD. In contrast, Sung et al.®®
showed that overexpression of a-synuclein, as seen in
PD brains, can decrease GJC. The role of GJs in
health and disease is far from understood, and their
interplay with chemical synapses can sculpt neural net-
work dynamics in various ways. ®
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