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Abstract: 3,4-Dihydroxyphenylethanol (DOPET) is a poly-
phenol found in olive oil. The present study evaluated the
protective role of DOPET on LPS provoked septic cardiac
injury in a murine model. Four groups were used in the
study (n = 3): control, LPS, DOPET alone, and DOPET +
LPS. LPS (15 mg/kg; i.p.); they were used to induce car-
diac sepsis. The cardiac markers like LDH, CK-MB, and
troponin-T, as well as inflammatory cytokines like TNF-α
and IL-6 were measured in the serum. The antioxidants
and oxidative stress parameters were measured in cardiac
tissues. RT-PCR and western blot methods were done to
evaluate the expression of inflammatory mediators and
apoptotic markers. DOPET significantly decreased the car-
diac markers (LDH, CK-MB, and troponin-T) and TNF-α
and IL-6 level in the serum. DOPET effectively reduced
the levels of MDA and NO in LPS intoxicated rats. DOPET
also increased the levels of antioxidants like SOD, CAT,
GPx, and GSH in LPS intoxicated rats. The mRNA levels of
TNF-α, IL-6, and NF-κB were significantly downregulated
by DOPET in cardiac tissues of LPS rats. The protein expres-
sion of Bcl-2 was upregulated, and Bax and caspase-3 were
downregulated by DOPET. DOPET effectively attenuates
LPS-induced cardiac dysfunction through its antioxidant,
anti-inflammatory, and anti-apoptotic mechanisms.
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mation, apoptosis

1 Introduction

Sepsis is a noxious systemic inflammatory, infectious dis-
ease mediated by the presence of microorganisms that
cause high hospital-related mortality [1]. The mortality
observed during sepsis is due to multiple organ failure
and has a rate between 12 and 40% [2]. Sepsis is broadly
divided into three stages based on the severity of symp-
toms. It includes sepsis, severe sepsis, and septic shock.
Among all, septic shock is the most complicated and
common cause of mortality [3]. Excessive production of
pro-inflammatory cytokines like (TNF-α, IL-1β, and IL-6),
chemokines, and other inflammatory molecules are asso-
ciated with sepsis [4]. Cardiac or myocardial damage is
none of the major complications of sepsis, albeit other
organs like lungs, liver, and brain are affected depending
on the severity of inflammation [5]. Sepsis-mediated car-
diac damage is due to the overproduction of free radicals,
which elicits oxidative and apoptotic damage to the heart
and causes a wide range of physiological alterations in
the heart [6]. Further elevated levels of pro-inflammatory
cytokines are also a major reaction in the pathogenesis of
sepsis-induced cardiac damage [7]. Lipopolysaccharide
(LPS), a major antigenic component in the bacterial cell
wall, is widely used in preclinical research to induce a
septic reaction at high doses [8]. LPS-mediated myocar-
dial injury is due to the accelerated generation of free
radicals, which causes oxidative stress to cardiomyocytes
and leads to the loss of myocardial membrane damage,
increased accumulation of calcium, and mitochondrial
damage [9]. Further, previous reports suggest that TNF-α
and IL-6 are the main cytokines involved in the progression
of heart failure phenotypes, encompassing myocardial dys-
function and progressive left ventricular dysfunction sepsis
developed patients [10]. Reports show that LPS induction
increases the production of TNF-α and IL-6 mediated
through stimulation of nuclear factor (NF)-κB signalling
pathway in cardiomyocytes [11]. Thus, prevention of
inflammation, apoptosis, and oxidative stress may be
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clinically effective therapeutic target for the manage-
ment of sepsis.

Natural products elicit potential effects in the preven-
tion of a wide range of human diseases. For example,
saffron biomolecules have been reported to employ dif-
ferent molecular mechanisms to alleviate gastric, colon,
liver cancers [12,13], and, most recently, to target COVID-
19 [14]. Food-derived proteins such as camel whey pro-
tein hydrolysates are shown to possess potent anticancer
properties [15,16]. Other herbal extracts have recently
been reported to ameliorate both fibrosis and liver cancer
[17,18]. Recently, natural products elicit potential effects
in the prevention of a wide range of cardiovascular dis-
eases and disorders. Previous randomized clinical studies
show that the combination of natural production effec-
tively reduced severe sepsis [19]. It has been reported that
Urtica Parviflora leafs significantly lowered plasma levels
of triacylglycerides (TAGs) and low-density lipoproteins
(LDLs) in rats treated with doxorubicin (DOX). Similar
results have been reported with other natural extracts like
Curcuma longa [20] and Flacourtia indica [21]. Treatment of
saponins (extract of Panax notoginseng) has been reported
to improve the left ventricular (LV) contractile function and
modulate intracellular calcium [22]. Thymoquinone has
been reported to attenuate cardiomyopathy in streptozo-
tocin-treated diabetic rats [23]. Similarly, lycopene has
been reported to attenuate diclofenac sodium and tulathro-
mycin-associated cardiotoxicity in mice [24]. Dihydroxy-
phenylethanol (DOPET), also known as hydroxytyrosol, is
the chief polyphenol component in olive oil [25]. Increasing
studies have shown the efficacy of DOPET in the ameliora-
tion of cardiovascular diseases [26]. Further, DOPET showed
a protective effect in the murine model of LPS induced
sepsis by reducing inflammation [27]. In this backdrop,
we have evaluated the efficacy of DOPET in the mitigation
of LPS-induced cardiac damage.

2 Materials and methods

2.1 Chemicals

DOPET and LPS were obtained from Sigma-Aldrich, USA.
The other reagents used in the study were obtained from
Merck, USA.

2.2 Animals

Male Wistar rats weighing about 180–200 g (obtained
from the Animal Center of the Shandong First Medical

University, China) were used in the present study. Rats
were segregated into four groups, namely, control group,
LPS group, DOPECT group and DOPECT + LPS group. The
animals were housed in a room maintained at a standard
temperature of 23 ± 1°C and subjected to 12 h dark/light
cycle. All rats were adapted to laboratory environment for
7 days.

Ethical approval: The research related to animal use has
been complied with all the relevant national regulations
and institutional policies for the care and use of animals,
and were approved by the Animal Care and Use Committee
of Shandong Medical University, China.

2.3 Study design

Control rats received saline for 7 days; the LPS group
received LPS (15 mg/kg; i.p.) on 7th day; the DOPET
group received DOPET (10mg/kg; i.p.) for 7 days; the
DOPET + LPS group received DOPET (10mg/kg; i.p.) for
7 days followed by LPS (15 mg/kg; i.p.) on 7th day. After
the experimental period, the animals were anesthetized,
and the blood was withdrawn by retro orbital puncture,
and the serum was separated after centrifugation. The
animals were euthanized by cervical decapitation, and
the heart was removed. Then, about 100mg of the heart
tissue was homogenized in 10% w/v cold Tris-HCl buffer
and centrifuged at 4°C. After centrifugation, the super-
natant was employed for biochemical analysis.

2.4 Assessment of cardiac injury

To assess the cardiac damage severity, the cardiac marker
enzymes, such as CK-MB and LDH, were measured in
serum based on the instructions provided in the kits pro-
cured from Nanjing Jiancheng Bioengineering Institute,
Nanjing, China. The serum levels of cardiac Troponin T
(cTnT) were analyzed based on ELISA assay as per the
information provided in the kit obtained from Roche
Diagnostics, Mannheim, Germany.

2.5 Assessment of cardiac antioxidants

The hearts were removed from the experimental rats after
being sacrificed by decapitation and placed on ice,
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followed by washing with ice-cold saline. Next, we pre-
pared 10% homogenate in potassium phosphate buffer
(100mM, pH 7.5). Centrifugation at 1,000×g for 20min
was performed at 4°C. Finally, the supernatant was col-
lected for performing the assay. The cardiac levels of anti-
oxidants like GSH, SOD, GPx, and CAT were evaluated
as per the instruction provided in the kits procured from
the Nanjing Jiancheng Bioengineering Institute, Nanjing,
China.

2.6 Analysis of oxidative stress

The oxidative stress markers such as MDA and NO in the
cardiac tissue were estimated according to the instructions
provided in the kit procured from Nanjing Jiancheng
Bioengineering Institute, Nanjing, China.

2.7 Serum levels of pro-inflammatory
cytokines

From the experimental rats, blood was taken from the
portal vein using a 1 mL syringe. It was followed by cen-
trifugation of blood samples at 12,000 rpm for 15min at 4°C.
Collection of serum was performed in a new Eppendorf
tube. The serum levels of TNF-α and IL-6 were measured
by the ELISA method based on the information provided in
the kit (R&D, Minneapolis, MN, USA).

2.8 RT-PCR analysis of inflammatory
mediators

The mRNA levels of TNF-α, IL-6, NF-κB, and β-actin were
analyzed by the reverse transcription (RT) PCR method.
Total RNA from the cardiac tissue was extracted using the
Trizol reagent as per instruction provided in the kit sup-
plied by Invitrogen. The genes expression of the target
proteins was performed by synthesizing cDNA from the
isolated RNA (1 µg) using the PCR primers procured from
SA Biosciences. The following PCR conditions were used
in the study, denaturation temperature (95°C) for 5 min,
40 cycles, each 30 s (95°C), annealing temperature at 65°C
for 30 s at 60°C of annealing temperature, and ended with
an extension temperature of 72°C for 10min. The fold
changes were measured using relative band intensity.

2.9 Detection of apoptosis by western
blotting method

The extraction of cardiac tissue proteins was done by using
RIPA lysis buffer (Beyotime, China). The protein levels of
BCL-2, Bax, and caspase-3 were determined by the SDS
PAGE electrophoresis procedure and SDS-PAGE (10%) was
employed during the estimation. The following primary anti-
bodies were employed during the analysis: rabbit anti-Bcl-2
(1:400), rabbit anti-Bax (1:400), rabbit anti-caspase-3 (1:400),
and rabbit anti-β-actin (1:400, Santa Cruz, USA). The horse
radish peroxidase-conjugated goat-anti-rabbit (Santa Cruz,
USA) antibody was used as a secondary antibody and incu-
bated at room 37°C for 2 h. ECL kits were used to visualize the
protein bands in the membrane and analyzed using the FR-
200 system (Shanghai FURI Technology).

2.10 Statistical analysis

GraphPad Prism 6 (GraphPad Software, La Jolla, CA) was
used for all statistical analyses. The data are expressed as
mean ± standard deviation (n = 3) and were compared
using one-way analysis of variance (ANOVA) and Bonferroni
multiple comparisons test. Differences were taken as signifi-
cant statistically at p < 0.05.

3 Results

3.1 DOPET effectively reduced the serum
levels of LDH, CK-MB, and troponin-T

In this study, toxic doses of LPS significantly (p < 0.05)
elevated the serum cardiac markers levels of LDH, CK-
MB, and troponin T in the control rats. However, supple-
mentation with DOPET significantly (p < 0.05) decreased
the concentrations of LDH, CK-MB, and troponin T in
LPS-intoxicated rats (Table 1).

3.2 DOPET effectively reduced LPS-induced
oxidative stress and inflammatory
cytokines levels in serum

LPS intoxicated rats revealed significant (p < 0.05) ele-
vated MDA levels (lipid peroxidation marker) and NO in
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heart homogenate as that of the control group. Of note,
DOPET administration effectively decreased the MDA and
NO levels to normal and thus prevented oxidative stress
(Figure 1a and b). LPS significantly (p < 0.05) increased
the serum pro-inflammatory cytokines levels such as TNF-α
and IL-6 as compared to the control rats. Meanwhile,
DOPET administration to LPS challenged rats significantly

reduced the level of the inflammatory cytokine to normal
(Figure 1c and d).

3.3 DOPET increased the anti-oxidant status
in cardiac tissues

Toxic insult of LPS showed a significant (p < 0.05)
reduced level of anti-oxidants SOD, CAT, GPx, and GSH
in the cardiac tissue homogenate as that of the control
group. Meanwhile, DOPET administration effectively
(p < 0.05) increased the anti-oxidant level to normal
as that of the LPS-intoxicated rats (Table 2).

3.4 DOPET reduced the mRNA expression
of TNF-α, IL-6, and NF-κB in
LPS-challenged rat

The cardiac tissue mRNA levels of TNF-α, IL-6, and NF-κB
were effectively (p < 0.05) upregulated in LPS-intoxicated

Table 1: Effect of DOPET on cardiac markers in LPS-mediated cardiac
damage

Groups LDH (IU/L) CK-MB (IU/L) Troponin T
(ng/mL)

Control 146.25 ± 5.43 111.76 ± 6.25 0.12 ± 0.02
LPS 564.98 ±

10.76a*
312.18 ±
12.76a*

0.76 ± 0.08a*

DOPET 150.85 ± 4.62 114.54 ± 7.12 0.16 ± 0.02
LPS + DOPET 256.87

± 7.56b*
187.10
± 8.45b*

0.35 ± 0.03b*

Data are depicted as mean ± SEM (n = 10).
aLPS vs control; bLPS + DOPET vs LPS; *significant (p < 0.05). LDH,
lactate dehydrogenase; CK-MB, creatine kinase-MB.

Figure 1: (a and b) Effect of DOPET on lipid peroxidation and nitric oxide level in cardiac tissues. Data are depicted as mean ± SEM (n = 10).
(a) LPS vs control; (b) LPS + DOPET vs LPS. * Significant (p < 0.05). MDA: malondialdehyde (nmol/mg protein); NO: nitric oxide (nmol/mg
protein). (c and d) Effect of DOPET on the levels of TNF-α and Il-6 in serum. Data are depicted as mean ± SEM (n = 10). (a) LPS vs control;
(b) LPS + DOPET vs LPS. * Significant (p < 0.05). TNF-α: tumour necrosis-α (pg/mL); IL-6: interleukin-6 (pg/mL).
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rats. However, DOPET administration significantly (p < 0.05)
downregulated the expression and thus prevented the
inflammation as compared to the LPS-induced cardiotoxi-
city rats. The expression and relative fold change are dis-
played in Figures 2a and b, respectively.

3.5 DOPET reduced cardiac apoptosis in
LPS-challenged rats

In this study, the protein expression of apoptotic markers
(Bcl-2, Bax, and caspase-3) were evaluated by the wes-
tern blot method. The LPS-intoxicated rats displayed a
decreased level of Bcl-2 and increased level of Bax and
caspase-3, and it was significant (p < 0.05) as that of the
control group. DOPET administration effectively (p < 0.05)
elevated the protein level of Bcl-2 and decreased the
levels of Bax and caspase-3. The protein expression of
apoptotic markers and the relative fold change are shown
in Figures 3a and b, respectively.

Table 2: Effect of DOPET on the anti-oxidant level in LPS mediated cardiac damage

Groups SOD
(U/mg protein)

CAT (nmol H2O2/min/
mg protein)

GPx (nmol
CDNB/min/mg protein)

GSH (µmol
GSH/mg protein)

Control 7.85 ± 0.52 6.56 ± 1.05 5.45 ± 0.72 2.75 ± 0.56
LPS 2.05 ± 0.19a* 3.12 ± 0.65a* 2.54 ± 0.24a* 0.65 ± 0.08a*
DOPET 7.19 ± 0.55 6.12 ± 0.72 5.07 ± 0.52 2.56 ± 0.32
LPS + DOPET 6.12 ± 0.42b* 5.86 ± 0.0.98b* 4.45 ± 0.36b* 2.12 ± 0.43b*

Data are depicted as mean ± SEM (n = 10).
aLPS vs control; bLPS + DOPET vs LPS; *significant (p < 0.05). SOD: superoxide dismutase; CAT: catalase; GPx: glutathione peroxidase; GSH:
reduced glutathione.

Figure 2: Effect of DOPET treatment on mRNA expression of inflam-
matory mediators. LPS-intoxicated rats showed significant (p < 0.05)
upregulation of TNF-α, IL-6, and NF-κB, and treatment with DOPET
markedly reduced the expression to normal (2a). Relative mRNA
expression of inflammatory mediators (2b). Data are depicted as
mean ± SEM (n = 3). (a) LPS vs control; (b) LPS + DOPET vs LPS.
* Significant (p < 0.05).

Figure 3: Effect of DOPET treatment on protein expression of apop-
totic markers. LPS-intoxicated rats showed significant (p < 0.05)
upregulation of Bax, caspase-3, and downregulation of Bcl-2 and
treatment with DOPET markedly restored the expression to normal
(a). Relative mRNA expression of apoptotic markers (b). Data are
depicted as mean ± SEM (n = 3). (a) LPS vs control; (b) LPS + DOPET
vs LPS. * Significant (p < 0.05).
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4 Discussion

Sepsis is an alarming clinical condition that causes mul-
tiple organ failure due to the alteration in the immune
system due to infection [28]. Sepsis is one of the major
reasons for global mortality, with a mortality rate of
30% [29]. Septic cardiomyopathy (SCM) is the most pre-
valent condition among septic patients, with an increased
mortality rate between 70 and 90% [30]. LPS is a major
endotoxin located in the outermost membrane of Gram-
negative bacteria, whichmediates the progression of many
pathological conditions by increased pro-inflammatory
cytokines and oxidative stress [31]. Thus, LPS is widely
used in preclinical studies to study the effect of new drugs
in preventing sepsis. DOPET, a potent polyphenol present
in olive oil, exerts cardiovascular benefits [32]. The present
study highlights that DOPET mitigated cardiac membrane
damage, oxidative stress, inflammation, and apoptosis in
a murine model of LPS-induced septic cardiomyopathy.

Patients with septic cardiomyopathy showed ele-
vated levels of cardiac markers in serum, indicating a
severe loss in cardiac membrane integrity. A previous
study shows the increased concentration of cTnI in septic
patients without evidence of coronary heart syndrome
[33]. Further, LDH and creatine kinase are the important
cardiac enzymes that orchestrate ATP production and
maintain cardiac membrane integrity [34]. In our study,
LPS insulted elevation of serum levels of LDH, CK-MB,
and cnTn1 rats, which substantiated the marked cardiac
membrane damage. Treatment with DOPET markedly
reduced the elevated level of cardiac markers through
its membrane-stabilizing potential, concordance with the
previous report [35].

LPS generated during sepsis can induce free radical
production by mitochondria [36]. The released free radi-
cals cause an imbalance between oxidants and anti-oxi-
dants and thus affect the cardiac defense system. Lipid
peroxidation is one of the major toxic events during
septic cardiomyopathy since the heart contains more
lipids and reduced anti-oxidant defense. Previous studies
have shown the marked involvement of lipid peroxida-
tion during sepsis conditions, and it has a significant
association with mortality [37]. In our study, LPS intoxi-
cated rats showed an increased level of MDA (lipid per-
oxidation markers) in the cardiac tissue reflecting the
oxidative stress. Treatment with DOPET markedly reduced
the MDA level to normal and thus inhibited the free radi-
cals. The free radical inhibitory potential of DOPET is due
to the presence of o-dihydroxyphenyl group, which termi-
nates the lipid peroxidation chain by donating a hydrogen
atom to a peroxyl reactive ion [38]. Further, the lipid

peroxidation in turn suppresses the anti-oxidants network
in the heart, which is due to the overutilization of these
anti-oxidants in scavenging the free radicals generated by
sepsis conditions [39]. In our study, septic cardiotoxicity
rats elicited a reduced level of anti-oxidants SOD, CAT,
GPx, and GSH, and DOPET treatment significantly boosted
the anti-oxidants and thus reduced the role of these anti-
oxidants in free radicals elimination during LPS-induced
cardiac sepsis. A previous study shows that DOPET increased
the anti-oxidant level in cadmium-induced cardiac oxidative
stress [40].

Rampant inflammation orchestrates a major role in
the progression of cardiac injury. LPS is employed to
provoke inflammation response, which is evident by the
increased level of pro-inflammatory cytokines [41]. Pre-
vious reports show that TNF-α is the major cytokine
involved in LPS-mediated septic shock with an increased
level of TNF-α in cardiac tissues and serum [42]. Further,
it has been shown that LPS-induced sepsis substantially
upregulates the expression of IL-6 in cardiac tissues
through increased production of collagen and causes
fibrosis of the heart. We found that LPS-induced sepsis
elicited increased the serum level and mRNA expression
of TNF-α and IL-6 in cardiac tissues. Further, DOPET
administration significantly reduced the serum concentra-
tion and downregulated the mRNA expression of inflam-
matory cytokines. A previous study showed that DOPET
reduced the protein expression of TNF-α and IL-6 in cad-
mium-induced cardiac oxidative stress [40].

Mounting evidence shows that NF-kB is linked to
rampant stimulation of various inflammatory mediators
such as cytokines and chemokines [43]. Reports indicate
that blocking of NF-kB signaling leads to the reduced
expression of TNF-α and IL-6 [44]. Earlier studies showed
that NF-kB and MAPK signalling pathway orchestrate a
pivotal role in LPS-mediated stimulation of inflammatory
mediators and their transcription, which is the cardinal
factor in the progression of septic cardiomyopathy [45].
The current study shows that LPS-intoxicated rats showed
upregulated mRNA levels of NF-kB in cardiac tissues, and
DOPET treatment inhibited the upregulation of NF-kB and
thus prevented the inflammation in septic cardiotoxicity.

During LPS-mediated sepsis, the rampant release of
inflammatory mediators imparts oxidative cardiotoxicity,
further promotes cardiac apoptosis, and finally, leads to
cardiac failure [46]. The Bcl-2-related apoptosis family
protein encompasses anti-apoptotic protein (Bcl-2), and
pro-apoptotic proteins (Bax) are the prime apoptosis reg-
ulators that orchestrate the mitochondrial apoptotic pathway
[47]. The caspase protein mediates an important role in apop-
tosis during stress conditions. During mitochondria-mediated
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intrinsic apoptosis, the activation of caspase-9 occurs, which
in turn activates the final effector molecule caspase-3 [48]. In
this study, LPS-mediated cardiotoxicity reveals downregulated
and upregulated protein expression of Bcl-2 and Bax, and
caspase-3, respectively. Meanwhile, DOPET mitigated apop-
tosis by inhibiting the protein level of Bax and caspase-3
and increasing the Bcl-2 protein level. A previous study shows
that DOPET reduced apoptosis in cadmium-induced cardiac
oxidative stress [40].

In conclusion, DOPET mitigated LPS-mediated septic
cardiotoxicity by restoring cardiac membrane integrity,
preventing oxidative stress, inflammation, and apoptosis.
Further studies are warranted to evaluate the involve-
ment of various signalling pathways in septic cardiomyo-
pathy and the effect of DOPET.
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