
nature communications

Article https://doi.org/10.1038/s41467-022-32318-9

Disease-associated mutations within the
yeast DNAJB6 homolog Sis1 slow conformer-
specific substrate processing and can be
corrected by the modulation of nucleotide
exchange factors

Ankan K. Bhadra 1, Michael J. Rau 2, Jil A. Daw3, James A. J. Fitzpatrick 1,2,4,
Conrad C. Weihl3 & Heather L. True 1

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic
misfolding and aggregation of proteins. As such, mutations or deficiencies
within the chaperone network can lead to disease. Dominant mutations within
DNAJB6 (Hsp40)—an Hsp70 co-chaperone—lead to a protein aggregation-
linkedmyopathy termed Limb-GirdleMuscular Dystrophy Type D1 (LGMDD1).
Here, we used the yeast prion model client in conjunction with in vitro cha-
perone activity assays to gain mechanistic insights into the molecular basis of
LGMDD1. Here, we show howmutations analogous to those found in LGMDD1
affect Sis1 (a functional homolog of human DNAJB6) function by altering the
structure of client protein aggregates, interfering with the Hsp70 ATPase
cycle, dimerization and substrate processing; poisoning the function of wild-
type protein. These results uncover the mechanisms through which LGMDD1-
associatedmutations alter chaperone activity, and provide insights relevant to
potential therapeutic interventions.

Limb-girdle muscular dystrophies (LGMDs) are a genetically hetero-
geneous family of muscle disorders that are either autosomal domi-
nant or recessive1. Although most recessive LGMDs are characterized
by a loss-of-function, the mechanistic nature of dominantly inherited
LGMDs is unclear. These late onset degenerative myopathies are uni-
fied by similar myopathologies that include myofibrillar disorganiza-
tion, impaired protein degradation, and the accumulation of protein
inclusions that contain structural muscle proteins such as desmin and
α-actinin and RNA binding proteins such as TDP-432–4. This toxic mis-
folding and aggregation of proteins is protected by the activity of
molecular chaperones, or heat shock proteins (HSPs). As such,

mutations in these chaperones can lead to diseases termed “chaper-
onopathies”. One such example is Limb-Girdle Muscular Dystrophy
TypeD1 (LGMDD1), causedbymutations inDNAJB6 (Hsp40), anHsp70
co-chaperone4. The originally identified LGMDD1 disease mutations
are present within the 12 amino acid stretchof the glycine/phenylanine
(G/F) rich domain3–7. DNAJB6 is expressed ubiquitously and partici-
pates in protein folding and disaggregation8–11; however, its role in
skeletal muscle protein homeostasis is unknown. In addition, DNAJB6
client proteins and DNAJB6 chaperone interactions in skeletal muscle
are not known. Fortunately, DNAJB clients are well-characterized in
yeast and thereby afford amodel system to study the effect of disease-
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causing mutants. Moreover, the understanding of DNAJB function
within the yeast chaperone network is more complete than in skeletal
muscle. Previously, we utilized a transdisciplinary approach to ascer-
tain the functionality of LGMDD1-associated mutants in model
systems12. Here, we generated homologous DNAJB6 LGMDD1 G/F
domain mutations in the essential yeast DNAJ protein Sis1 (DNAJB6-
F93L (Sis1-F106L), DNAJB6-N95L (Sis1-N108L), DNAJB6-D98Δ (Sis1-
D110Δ), and DNAJB6-F100I (Sis1-F115I)). Our goal is to accelerate our
understanding of mutant DNAJB6 dysfunction in LGMDD1 and thus
facilitate therapeutic target identification as well as to gain insight into
the relationship between protein quality control and myopathy.

TheHsp70/DNAJmachinery is vital to the protein quality control
network. The Hsp70 machine works in an ATP-dependent manner to
act on client proteins through a cycle of regulated binding and
release13. Client specificity of the Hsp70 machine is modulated by
DNAJ proteins (Hsp40s). By dictating client specificity, DNAJ proteins
have been described as the primary facilitators of the cellular protein
quality control system and play a pivotal role in determining the fate
of a misfolded protein—whether is refolded or degraded13. A variety
of disease-associated misfolded proteins have been shown to inter-
act or colocalize with DNAJ family members8,14. These effects are
generally, although not exclusively, dependent upon cooperation
with Hsp708,13. Strikingly, previous work from our lab suggests that
the LGMDD1 mutants not only show substrate specificity, but also
show conformation-specific effects12,15. These results were obtained
through analysis of LGMDD1 mutants in the DNAJ protein Sis1, which
has well-known yeast prion protein clients. Unlike mammalian
prions, yeast prions are non-toxic, but phenotypic and biochemical
assays enable rapid detection of [PRION+] cells16. Yeast chaperones
Hsp104, Hsp70 (Ssa1), and the Hsp40 (Sis1) regulate prion propa-
gation by acting on prion protein aggregates17. Alterations in cha-
perone level or function result in a failure to promote prion
propagation18,19.

One of the most interesting features of prions is the existence of
prion strains. Prion strains are distinct self-propagating protein
aggregate structures that cause changes in transmissibility and disease
pathology with the same aggregating protein20. Yeast prion strains
differ from each other based on phenotype, the ratio of soluble to
aggregated protein, and their ability to propagate the prion20. Pre-
viously, we found that homologous LGMDD1 mutations in Sis1 appear
to reduce functionality, as determined by changes in their ability to
modulate the aggregated state of select yeast prion strains12. We then
assessed the effect of these mutants in mammalian systems, including
mouse models, and LGMDD1 patient fibroblasts, where we analyzed
the aggregation of TDP-43, an RNA binding protein with a prion-like
domain that is a marker of degenerative disease including LGMDD1.
DNAJB6 mutant expression enhanced the aggregation and impaired
the dissolution of nuclear stress granules containing TDP-43 following
heat shock12. Recently, three novel pathogenic mutations associated
with LGMDD1 have been identified within the J domain of DNAJB621.
Interestingly, we found that homologous mutations in the Sis1 J
domain differentially alter the processing of specific yeast prion
strains, as well as a non-prion substrate15.

Here, we used the yeast prion model system, and in vitro cha-
perone activity assays to determine how LGMDD1 homologous mis-
sense mutations in the Sis1 G/F domain alter chaperone function with
andwithout Hsp70.We found that LGMDD1mutants inhibit theHsp70
ATPase cycle function in a client-conformer-specific manner. More-
over, both prion propagation and luciferase refolding activity were
enhanced in mutant strains by either deleting the NEF (Sse1) or by
using an Sse1-mutant, indicating that fine-tuning of substrate proces-
sing can rescue the mutant defects. To our knowledge, this is the first
mechanistic insight describing the effect of LGMDD1 mutants on
Hsp70/40 ATPase cycle. Additionally, these results suggest that the
development of a titrated approach using specific inhibitors of the

Hsp70/DNAJ cycle is a potential therapeutic strategy for this class of
myopathy-associated chaperonopathies.

Results
LGMDD1-associated homologous G/F domain mutants in Sis1
have variable substrate processing efficiency
In previous studies, we analyzed the functionality of LGMDD1
mutants in Sis1 using two yeast prion proteins that require Sis1 for
propagation: Rnq1 (which forms the [RNQ+] prion) and Sup35 (which
forms the [PSI+] prion). We found that LGMDD1 mutants had
conformer-specific processing defects, in that they promoted the
propagation of some prion strains but not all12. This suggests that the
mutant chaperones may recognize their normal clients in some
conformations but not others. Alternatively, the mutant chaperones
may recognize clients but not be able to effectively process the
misfolded protein. Hsp40 client processing for refolding requires
multiple steps: binding, dimerization, binding to Hsp70, and
nucleotide exchange-stimulated client release. We evaluated the
function of LGMDD1 mutants as compared to wild type (WT), by
purifying these proteins (Supplementary Fig. 1) and using them in
assays that address these steps.

One way to determine substrate processing of a chaperone that
interacts with amyloidogenic proteins is to evaluate the kinetics of
aggregation of client proteins in vitro. We assessed amyloid formation
of Rnq1 in the presence of Sis1-WT and LGMDD1 mutants (G/F domain
mutants Sis1-F106L, Sis1-N108L, Sis1-D110Δ and, Sis1-F115I). Rnq1 is a
well-known substrate of Sis122 and has been reported to form higher-
order aggregates in vitro23. Aggregation of Rnq1 was monitored by the
enhanced fluorescence emissionof the dyeThioflavin T (ThT), which is
used as a marker for cross β sheet conformation of amyloid fibrils24.
During the initial phase of incubation (lag phase), natively disordered
proteinmonomer did not show any change influorescence intensity of
ThT (Fig. 1a). This was followed by an increase in ThT fluorescence
intensity, indicative of the formation of fibrils. Finally, the fluorescence
intensity of the dye achieved a plateau (stationary phase). The lag
phase was increased in the presence of Sis1-WT as compared to Rnq1
without chaperone (Fig. 1a), indicating that the time required for
productive nucleation of unseeded Rnq1 was longer in the presence of
chaperone.However, the lagphase of Rnq1 fiber formationwas shorter
with LGMDD1mutants than Sis1-WT but longer than that of Rnq1 alone
(Fig. 1a). The overall fibril formation rate was also higher in the pre-
sence of themutants as compared to Sis1-WT (Fig. 1a). The time to 50%
ThT is shown in the inset (Fig. 1a). We also performed seeded kinetic
assays with Rnq1 fibers formed at 18, 25, and 37 °C.We found that fiber
elongation was faster (in the absence of chaperone) with seeded Rnq1
at 18 °C, than at 25 °C or 37 °C (Supplementary Fig. 2a–c). Similarly, in
the presence of Sis1-WT, the difference in fiber elongation using
Rnq1 seeds formed at the three temperatures was negligible (Supple-
mentary Fig. 2d–f). This suggests that the primary impact of Sis1 on
Rnq1 fiber formation is in the formation of amyloid-competent con-
formers (nucleation).

We then hypothesized that, if the primary chaperone effect is to
alter the nucleation of the amyloidogenic protein, the fibers formed
with and without chaperone could be structurally distinct. As such, we
assessed the morphology of Rnq1 fibrils formed at 18 °C with and
without chaperone by transmission electron microscopy (TEM). TEM
images show that Rnq1 forms long, elongated, branched fibrils in the
absence of chaperone (Fig. 1b). By contrast, Rnq1 fibers formed in the
presence of Sis1-WT were short and appeared immature or perhaps
bound to chaperone (Fig. 1b). This suggests that Sis1-WT might only
delay fibril formation rather than preventing it. In the presence of
LGMDD1 mutant (Sis1-F115I), very few fibers were visible (Fig. 1b), and
they were mostly distorted and appeared to be small oligomeric spe-
cies. Taken together with our ThT findings, these data suggest that
different ThT binding sites are present within these morphologically
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distinct Rnq1 aggregates. Additionally, these data suggest that the
interaction of LGMDD1mutantswith client alter client conformation in
a manner that is distinct from that of wildtype chaperone.

While the interaction with prion substrate showed that LGMDD1
mutants alter amyloid formation, DNAJ proteins typically act in
conjunction with Hsp70 to process substrates. We then asked

whether the LGMDD1 mutants could promote substrate refolding in
the presence of co-chaperones. Previously Aron et al. showed that
Sis1 lacking the G/F domain (Sis1ΔG/F) is defective in chaperone
activity and partially inhibits the ability of Sis1-WT to facilitate folding
of denatured luciferase protein25. Therefore, to test the ability of
LGMDD1 mutants to function in substrate refolding, we heat-
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denatured firefly luciferase and then monitored refolding in the
presence or absence of chaperones. We found that the LGMDD1
mutants were all compromised in their ability to refold luciferase
(Fig. 1c, see also controls Supplementary Fig. 2g). Taken together,
these results indicate that the LGMDD1 mutants are defective in
substrate processing.

LGMDD1-associated G/F domain mutants change the formation
of in vitro formed [RNQ+] prion strains
Given the striking differences in fibril formation kinetics and TEM
images, we wanted to determine whether LGMDD1 mutants alter the
formation of Rnq1 amyloid structures using a more sensitive and
quantitative method that is uniquely available in the yeast prion sys-
tem. This entails infecting yeast with amyloid generated in vitro and
assessing the resulting [RNQ+] prion strains. Previously, we found that
amyloid fibers of Rnq1PFD (prion-forming domain) formed at different
temperatures resulted in the generation of different prion strains26.

We hypothesized that Rnq1 amyloid structure, and resulting [RNQ
+] strain distribution, would differ in the presence of Sis1 and LGMDD1
mutants. We formed Rnq1 fibers at 18 °C in the presence and absence
of Sis1-WT and twoLGMDD1mutants.We transformedfibers formed in
the presence or absence of chaperone into cells expressing [RNQ+]
reporter protein (RRP) that did not have the prion ([rnq-]) (Fig. 2a and
Supplementary Fig. 3a). We developed and utilized this reporter strain
as a phenotypic indicator of [RNQ+] prion strain propagation26. Yeast
strains expressing the RRP reporter display different levels of ade1-14
nonsense suppression in [RNQ+] variants (Supplementary Fig. 3b). By
assessing colony color (white, light pink, or dark pink) as well as
growth on selective medium (SD-Ade), we scored [RNQ+] strains
(Fig. 2b and Supplementary Fig. 3b) that resulted after fiber infection.
Lighter colony color and more growth on SD-Ade medium was scored
as a stronger [RNQ+] strain, whereas darker colony color and less
growth on selectivemediumwas scored as a weaker [RNQ+] strain (see
“Methods” for more information). [RNQ+] strains were also verified for
the prion-specific trait of curability on medium containing guanidine
hydrochloride (Fig. 2b). To quantify the difference in [RNQ+] strains
formed in the presence of LGMDD1 mutants, we counted the pheno-
type of infected colonies from five different transformation sets for
each sample (Fig. 2b).With Rnq1 alone, ~58% of cells showed veryweak
[RNQ+] phenotypes. This fraction of very weak [RNQ+] was reduced to
less than20% in thepresence of Sis1-WTandwas further reduced in the
presence of the LGMDD1 mutants. There was a significant increase in
themedium [RNQ+] strainphenotype (44%+/− 4.5%) in the presenceof
Sis1-WT as compared to Rnq1 alone (14% +/− 1.4%).Whenwe compared
[RNQ+] strain distribution between Sis1-WT and LGMDD1 mutants, we
found that the proportion of weak Rnq1 strains was significantly
increased with both F106L and F115I (~20% in Sis1-WT vs. 50% in F106L
and 65% in F115I). Similarly, the population of medium [RNQ+] strain
was significantly decreased in F115I as compared to Sis1-WT (~20% in
F115I vs. 45% in Sis1-WT). The distribution of other [RNQ+] strains,
strong and very weak, with LGMDD1 mutants were similar to Sis1-WT.

Fig. 1 | LGMDD1 G/F domain mutants show variability in substrate processing.
a Kinetics of Rnq1 fibrillation in the presence of unseeded Rnq1 only (cyan blue),
Sis1-WT (black), Sis1-F106L (yellow), Sis1-N108L (red), Sis1-D110Δ (green), or Sis1-
F115I (blue) measured by ThT fluorescence assay. Inset: - Time to 50% ThT fluor-
escence was calculated by fitting the graph using the EC50 (Y = Bottom+ (Top-
Bottom)/(1 + 10^((lnEC50-X)*HillSlope)) equation in Graph pad prism. RFU is Rela-
tive fluorescence unit. Values shown are mean ± SEM, n = 3 biologically indepen-
dent samples. For (a; inset) each LGMDD1 mutant was compared with Sis1-WT
across and ***p <0.00019 for Sis1-F115I, **p <0.00446 for Sis1-N108L, *p <0.0489
for Sis1-F106L, NS= 0.25297 (non-significant) for Sis1-D110Δ values are reported for
unpaired, two-sided t-test. b The morphology of amyloid fibers formed from Rnq1

at 18 °C in vitro in the presence and absence of Sis1-WT and/or LGMDD1 mutant
were imaged by TEM. Experiments were performed in triplicate, representative
images shown. The scale bar represents 200 nm. c Refolding activity of heat-
denatured luciferase in the presence of LGMDD1 mutants. Luciferase along with
Ssa1-WT and Sis1-WT/mutants was incubated at 42 °C for 10min to heat denature
luciferase. At various time points, activity was measured by a luminometer after
adding substrate. Values shown are mean + SEM, n = 3 biologically independent
samples. For c; each LGMDD1 mutant was compared with Sis1-WT across all time-
points and ***p <0.001, **p <0.01, and *p <0.05 values are reported for unpaired,
two-sided t-test. Source data are provided as a Source data file.

Fig. 2 | Phenotypic distribution of [RNQ+] strain alters with LGMDD1 G/F
domain mutants. a Cartoon showing transformation of Rnq1 amyloid fibers
formed at 18 °C into [prion-/rnq−] 74-D694 yeast cells induces strains of the
[PRION+/RNQ+] prion. RRP was used to assess [RNQ+] phenotype. [RNQ+] prion
strains co-aggregate with RRP and cause different phenotypes; colony color on
YPD and growth on SD-ade medium are indicative of different levels of sup-
pression of the ade1-14 premature stop codon to produce Ade1 and represent
different [RNQ+] strains. Curability by growth and color on medium containing
GdnHCl was used to determine prion-dependence of phenotypes. The transfor-
mants from five separate experiments for each sample set were picked and >200
colonies for each set were scored as very weak, weak, medium, or strong [RNQ+]
b and graphed for statistical analysis c. In panel c, the blue color indicates the
comparison between Rnq1 (alone) and Rnq1 with Sis1-WT; NS = 0.197 for strong
[RNQ+], ***p < 0.00023 for medium [RNQ+], NS = 0.357 for weak [RNQ+],
***p < 0.00025 for very weak [RNQ+]. Black color indicates the comparison
between Sis1-WT and LGMDD1 mutants (F106L and F115I); (NS = 0.298 and 0.269)
for strong [RNQ+], (NS = 0.165 and **p < 0.008) for medium [RNQ+], (*p < 0.022
and **p < 0.008) for weak [RNQ+], (NS = 0.231 and 0.409) for very weak [RNQ+]. p-
values are reported for unpaired, two-sided t-test. Source data are provided as a
Source data file.
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Thus, the difference in distribution of [RNQ+] strains generated in the
presence of LGMDD1 mutants suggest that amyloid structures can be
altered by mutant chaperones.

LGMDD1-associated homologous mutants in Sis1 (Hsp40) alters
its ability to function with Ssa1 (Hsp70) efficiently
Hsp40s target substrates to their Hsp70 partners and regulate the
ATPase activity and substrate binding of the Hsp7013. The recogni-
tion of substrates depends on their conformation, and it has been
suggested that much of the Hsp40 conformation-dependent recog-
nition is dependent on the G/F domain22,27–29. Additionally, in our
previous work, we found client-conformer specific defects in vivo
with the LGMDD1 mutants12. Therefore, we asked whether the con-
formation of the client impacted the function of the mutants. We
measured the ability of Sis1-WT and LGMDD1 mutants to stimulate
the ATPase activity of Ssa1 in the presence and absence of different
Rnq1 protein conformers. We standardized the Rnq1 monomer
concentration and performed a phosphate standard curve with each
assay (Supplementary Fig. 4a). Notably, there was no difference
between Sis1-WT and LGMDD1 mutants stimulized Ssa1 ATP hydro-
lysis rate in the absence of any client protein (Supplementary Fig. 4b)
or in the presence of Rnq1 monomer (Supplementary Fig. 4c). This
may be due to the fact that “denatured monomer” presents a variety
of epitopes that can be recognized by chaperone whereas the
fibers likely have fewer sites for recognition. However, the stimula-
tion of Ssa1 ATP hydrolysis rate was significantly reduced with the
mutants in the presence of Rnq1 seeds formed at 18, 25, and 37 °C
(Fig. 3a–c). Taken together, these data suggest that the different
Rnq1 conformers afford differences in Sis1-mediated Hsp70
ATPase stimulation and the LGMDD1 mutants all show functional
deficiencies.

LGMDD1 G/F domain mutants alters both substrate and Hsp70
binding
The initial step in this chaperone cycle relies on the ability of Hsp40 to
bind to client. Thus, we wanted to test the physical and functional
interactions of LGMDD1 mutants with our Rnq1 and luciferase sub-
strates. We performed a binding assay utilizing a method previously
used to study interactions between the E. coli DnaJ and substrates30.
We found that LGMDD1mutants show significantly reduced binding to
denatured Rnq1 (similar substrate used for Supplementary Fig. 4c) and
luciferase substrates as compared to Sis1-WT (Fig. 4a, b) at low con-
centrations of substrate.

A key function for Hsp40s is stimulating Hsp70s. Our previous
work, suggests that the deleterious effect of the DNAJB6 G/F domain
mutants is Hsp70-dependent31. Thus, the LGMDD1 mutants might be
altered in their productive associationwithHsp70. Thesemutantsmay
affect the cyclebyeither reducingHsp70binding, sequesteringHsp70,
or they may be hyperactive and alter the refolding process. Therefore,
we performed binding assays to determine whether there was a pro-
ductive association between the LGMDD1mutants and Ssa1. We found
that the interaction between LGMDD1 mutants and Ssa1 was sig-
nificantly reduced both in the absence (Fig. 4c) and presence of client
proteins Rnq1 (Fig. 4d) and luciferase (Supplementary Fig. 5). This
indicates that the reduced interaction between themutants and Ssa1 is
client-independent. Thus, the decrease in Hsp70 ATPase activity with
LGMDD1 mutants (Fig. 3a–c) could, at least in part, be due to reduced
Hsp70 binding.

LGMDD1 G/F domain mutants show reduced dimerization
efficiency
Most of the canonical class I and class II J-proteins exist as
oligomers13. The efficient function of Sis1 requires the ability of the

Fig. 3 | Stimulation of ATPase activity of Ssa1 by LGMDD1 G/F domainmutants
is client-conformation specific. Stimulation of Ssa1 ATPase activity in the pre-
sence of Rnq1 seeds formed at a 18 °C, b 25 °C, and c 37 °C. Ssa1 (1 µM) in complex
with ATP (1mM) in the presence of Sis1-WT (black) or Sis1-mutants (Sis1-F106L
(yellow), Sis1-N108L (red), Sis1-D110Δ (green), or Sis1-F115I (blue)) (0.05 µM). The
fraction of ATP converted to ADP was determined. For a–c, a total of 10% seeds
were used in a reaction. In all cases, only Ssa1 with Rnq1 (orange), Sis1 with Ssa1

(dark purple) and were used as controls. For a–c, Sis1-WT was compared with
LGMDD1- mutants. Data are presented as mean values + SEM, n = 4 biologically
independent samples. For a (left to right); ***p < 1.29e−07, ***p < 6.29e−08,
***p < 4.78e−07, ***p < 2.41e−07; forb (left to right); ***p < 4.64e−05, ***p < 6.31e−05,
***p <0.0001, ***p <0.0001; and for c (left to right); **p <0.004, ***p < 2.63e−05,
**p <0.002, ***p < 9.59e−05. p-values are reported for unpaired, two-sided t-test.
Source data are provided as a Source data file.
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protein to form dimers. In fact, Sis1 (1–337aa), which lacks the
dimerizationmotif (Sis1-ΔDD), exhibited severe defects in chaperone
activity, but could regulate Hsp70 ATPase activity32. Sha et al. pro-
posed that the Sis1 cleft formed in dimers functions as a docking site
for the Hsp70 peptide-binding domain and that this interaction
facilitates the transfer of peptides from Sis1 to Hsp7033. Thus,
in order to further evaluate the chaperone activity of the these
mutants, we set out to measure their dimerization efficiency. We

performed binding assays to determine the relative competence of
both the self-association of the mutants as well as their association
with Sis1-WT. We found that there was a significant decrease in self-
association of all the mutants as compared to Sis1-WT (Fig. 5a). Sis1-
WT lacking the dimerization domain (Sis1-ΔDD) was used a
control and showed reduced dimerization as compared to Sis1-WT
(Supplementary Fig. 6). We also found that their ability to bind to
Sis1-WT was significantly reduced (Fig. 5b), indicating a possible

Fig. 4 | Sis1 binding to both substrate and Hsp70 is compromised in the pre-
sence of LGMDD1 G/F domain mutants. Binding of purified Sis1-WT (black), Sis1-
F106L (yellow), Sis1-N108L (red), Sis1-D110Δ (green), or Sis1-F115I (blue) to dena-
tured Rnq1 a and luciferase b. Rnq1 (400 ng) and luciferase (100ng) were immo-
bilized in microtiter plate wells and dilutions of purified Sis1-WT and Sis1-mutants
(0, 1, 3, 5, 8, 10, 20, 25, and 50nM)were incubatedwith each substrate. The amount
of Sis1 retained in the wells after extensive washings was detected using a
Sis1 specific antibody. For c; Ssa1 (200nM) was immobilized in microtiter plate
wells and dilutions (0, 1, 3, 5, 8, 10, 20, 25, and 50nM) of purified Sis1-WT (black),
and Sis1-mutants (Sis1-F106L (yellow), Sis1-N108L (red), Sis1-D110Δ (green), or Sis1-

F115I (blue)) or BSA (brown) as a control, were incubated with it. Bound Sis1 was
detected using an αSis1 antibody. d Denatured Rnq1 were premixed with Sis1-WT/
mutants and immobilized in microtiter plate wells and dilutions of Ssa1-WT
(0–100nM) were incubated with it. Bound Ssa1-WT was detected using an αSsa1
antibody. Only Ssa1 (cyan blue) was used as a control for d. Data represented as
mean values ± SEM, n = 3 biologically independent samples. For a–d, Sis1-WT was
compared to LGMDD1 mutants and ***p <0.001 values are reported for unpaired,
two-sided t-test. RFU stands for Relative fluorescence unit. Source data are pro-
vided as a Source data file.

Fig. 5 | LGMDD1 G/F domain mutants showed reduced dimerization. a For
homodimerization, uncleaved His-tagged Sis1-WT and mutants (20 nM) were
added into non-His-tagged (cleaved) Sis1-WT and mutants (200 nM) and adsorbed
in microtiter plate wells. b For heterodimerization, uncleaved His-tagged Sis1-WT
(20 nM) was added to cleaved mutants (200 nM) and adsorbed in microtiter plate
wells. In both a, b, following adsorption, ELISA was performed using an anti-His

antibody. Values shown are mean+ SEM, n = 3 biologically independent samples.
For a, b; all LGMDD1 mutants were compared with Sis1-WT; for F106L
(***p <0.0008 and **p <0.003), for N108L (**p <0.008 and **p <0.004), for D110Δ
(***p <0.0006 and **p <0.005), and for F115I (***p <0.0009 and **p <0.006) values
are reported for unpaired, two-sided t-test. Source data are provided as a Source
data file.
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explanation for the reduction in chaperone activity observed with
these mutants.

LGMDD1 G/F domain mutants inhibit Sis1-WT induced Ssa1
ATPase activity by reducing its dimerization and substrate
binding efficiency
Since LGMDD1 has been described as an autosomal dominant disease,
we set out to test the effect of LGMDD1 mutants on the Sis1-WT in
functional assays. We performed ATPase assays with mixtures of Sis1-
WT and LGMDD1 mutants F106L and F115I in the presence of Rnq1
fibers formed at 18 and 25 °C. We found a gradual decrease in the rate
of ATP hydrolysis that correlated with titrating Sis1-WT with F106L
(Fig. 6a and Supplementary Fig. 7a) and F115I (Fig. 6b and Supple-
mentary Fig. 7b).

Next, we wanted to determine whether the mutants also inhibit
the ability of wild-type protein to dimerize. We found that there was a
concomitant decrease in dimerization of Sis1-WT with the addition of
F106L (Supplementary Fig. 8a) and F115I (Supplementary Fig. 8b). We
then asked whether the mutants also inhibit the ability of wild-type
protein to bind substrates efficiently. The binding efficiency to Rnq1
(Supplementary Fig. 8c) and luciferase (Supplementary Fig. 8d) sub-
strates were slightly but significantly reduced when Sis1-WT was used
in equal proportion (1:1) with each of the LGMDD1 mutants F106L and
F115I. These data providemechanistic insight into the inhibition of Sis1-
WT-induced Ssa1 ATPase activity in the presence of LGMDD1
mutants (Fig. 6).

7. Modulating Hsp40-Hsp70 cycle by either deleting or inhibit-
ing nucleotide exchange factors (NEFs) can be beneficial with
respect to LGMDD1 G/F mutant effect in vivo
The lifetime of the Hsp70/40:substrate complex is dependent upon
nucleotide exchange. A key player in this is nucleotide exchange
factors (NEFs) that stimulate ADP release. In yeast, cytosolic Hsp70
interacts with three NEFs homologous to human counterparts: Sse1/
Sse2 (Hsp110), Fes1 (HspBP1), and Snl1 (Bag-1)34,35. Previously, we
found that LGMDD1 mutants impair viability and prion propagation
in yeast and these effects were rescued by reducing the association
with Hsp7031. Thus, we decided to investigate whether deleting
Hsp110 (Sse1) would have a similar rescuing effect. To assess the
impact of NEFs, we asked whether their deletion would enhance the
ability of LGMDD1 mutants to propagate [RNQ+] prion strains. We

used two established biochemical yeast prion assays that differ-
entiate soluble and aggregated protein: well-trap and boiled gel
assays. We found that the deletion of Sse1 partially rescues [RNQ+]
prion propagation (Fig. 7a, b and Supplementary Fig. 9a). However, it
was specific to Sse1, as the alteration of the other NEFs did not
demonstrate such rescuing (Supplementary Fig. 9b). This was not
surprising, as Sse1 is the principal NEF in yeast and performs 90% of
the NEF activity in the cell36.

In order to confirm that deletion of Sse1 does improve the [RNQ+]
prion propagation, we assessed the effect of a well characterized Sse1
mutant, (Sse1-G233D). This mutation eliminates ATP binding by Sse1,
and therefore binding to Ssa1, nearly completely. It therefore delays
release of ATP from Ssa1 but only because it never binds Ssa1, and is
essentially identical to strains lacking Sse137. We performed boiled gel
assays to examine the relative levels of soluble Rnq1 prion protein in
[RNQ+] cells. Indeed, we found a decrease in soluble Rnq1 protein in
LGMDD1 cells expressing Sse1-G233D (Supplementary Fig. 9c). This
indicates restoration of [RNQ+] prion propagation in LGMDD1mutants
with NEF modulation.

To further understand the impact of Sse1 on the LGMDD1 disease-
associatedmutants, we assessed the refolding of a non-prion substrate
(firefly luciferase; FFL). We utilized an in vivo refolding assay in which
FFL is denatured in cells by heat shock and its subsequent refolding,
which requires the Hsp40/Hsp70/Hsp104 chaperone machinery, is
measured by activity38,39. We transformed the Sse1 andΔsse1 yeast cells
carrying Sis1-WT, LGMDD1 mutants, and Sse1-G233D with GPD-lux
vector for the expression of FFL. Since Hsp104 is required for efficient
refolding of FFL, we used a Δhsp104 strain expressing FFL as a negative
control. We found that the FFL refolding activity was significantly
altered in Sse1 cells expressing F115I as compared to cells expressing
Sis1-WT (Fig. 7c). This difference in FFL refolding activity between
LGMDD1 mutants (F115I) and Sis1-WT was non-existent in Δsse1 yeast
cells (Fig. 7c). However,we observed that the FFL refolding activitywas
marginally higher in Δsse1 yeast cells expressing F115I as compared to
Sse1-WT cells expressing the same mutant protein (Fig. 7c). Interest-
ingly, Δsse1 yeast cells co-expressing F115I and Sse1-G233D showed
significant improvement in FFL refolding activity as compared to Sse1-
WT yeast cells (Fig. 7c). Taken together, our results indicate that
LGMDD1 mutants delay Hsp70 ATPase activity, possibly resulting in
the increased load of aggregation-prone muscular proteins observed
in LGMDD1 patients.

Fig. 6 | LGMDD1 G/F domain mutants inhibit Sis1-WT induced ATPase activity
of Ssa1. Stimulation of Ssa1 ATPase activity in the presenceof Rnq1 seeds formed at
18 °C. Sis1-mutants (Sis1-F106L a, or Sis1-F115I b) (0–0.08 µM) were titrated with
Sis1-WT (0.03 µM) in the presence of Ssa1 (1 µM) and ATP (1mM). The fraction of
ATP converted to ADPwas determined at 30min. Data represented asmean ± SEM,
n = 3 biologically independent samples. For a, b; values of the increasing

concentration of LGMDD1 mutants (0.01–0.08 µM) were compared with Sis1-WT
(0.03 µM) alone. For a (top to bottom); *p <0.049, **p <0.001, ***p <0.0008,
***p <0.0001, ***p <0.0003, ***p < 2.18e−05, ***p < 2.62e−06. Forb (top to bottom);
**p <0.007, *p <0.012, *p <0.01, ***p <0.0008, ***p <0.0001, ***p < 6.4e−05,
***p < 2.11e−05. p-values are reported for unpaired, two-sided t-test. Source data are
provided as a Source data file.
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Discussion
Proper functioning of protein chaperones, including that of Hsp70/
DNAJ, is important for the maintenance of muscle function40 (Sup-
plementary Fig. 10). Previously, we have shown that the LGMDD1
mutations in the G/F domain of DNAJB6 disrupt client processing in
both a substrate- and conformation-specificmanner12. Here, we delved
into the mechanism underlying the defect in client processing shown
by LGMDD1 G/F domain mutants. Our data show that the LGMDD1
mutants ability to stimulate Hsp70 ATPase activity was reduced as
compared to the wild-type protein (Fig. 8a), which may result in gen-
eral impairment of proteinquality control and accumulation of protein
inclusions in muscle. Analyzing the severity of the mutants, we find a
significant difference in many steps in the Hsp40/70- cycle. No aspect
of its functionality is unaffected by these disease causing G/F domain
mutants (Fig. 8a). All mutants showed decreased binding to substrate
(Fig. 4a, b), with D110Δ = F106L < F115 =N108L. Mutants also impact
dimerization similarly with D110Δ = F106L <N108L = F115I (Fig. 5). The
LGMDD1 mutants showed similar binding defects to Hsp70 (D110Δ

worse without client) (Fig. 4c). The mutants showed similar reduction
in Hsp70 ATPase stimulation, but it was client conformation-depen-
dent, as expected based on previous work12 (Fig. 3a–c and Supple-
mentary Fig. 4c). Finally, the mutants showed similar reduction in
luciferase refolding efficiency (Fig. 1c).

We also took advantage of the yeast prion model system and its
unique conformer:phenotype read-out. Prion proteins can form
several unique prion variants (or strains) that have slight differences
in their β-sheet structure that constitute distinct amyloid
conformations41. Such different structures are presumably the
underlying cause of the diverse phenotypic variation seen in both
yeast and prion diseases20. Several mammalian pathological proteins
have also been shown to adopt distinct self-propagating aggregates
or “strains” with different structures, which are presumably linked to
the phenotype diversities of degenerative diseases16,42–44. One such
example is Tau protein, deposition of whose pathological forms
results into Tauopathies, which includes Alzheimer’s disease, Fronto-
Temporal Dementia (FTD). Several studies support the “tau strain

Fig. 7 | Deletion or inhibition of Sse1 function rescues prion propagation of
[RNQ+] and restored impaired FFL refolding. a, b Deletion of Sse1 partially sup-
presses prion loss caused by LGMDD1 mutants. Analysis of prion propagation in
Sse1 and Δsse1 strains harboring s. d. medium [RNQ+], expressing either Sis1-WT or
Sis1-F115I or Sis1-F106L by well-trap assay. Cell lysates were incubated at room
temperature (−) or 100 °C and subjected to SDS-PAGE and western blot using an
αRnq1 antibody. Rnq1 that is not sequestered in aggregates will enter the gel in the
unboiled sample, which indicates destabilization of the [RNQ+] prion. The western
blotting was done in triplicate and representative image is shownhere. For a, b; the
lines above the bars shows the samples which were compared and **p <0.01,

*p <0.05, NS (non-significant) values are reported for unpaired, two-sided t-test.
c The refolding of firefly luciferase (FFL) was measured in the Sse1 and Δsse1 yeast
cells carrying Sis1-WT, LGMDD1 mutant (Sis1-F115I), and Sse1 mutant (Sse1-G233D)
along with a plasmid expressing FFL. Yeast were normalized, treated with cyclo-
heximide, and subjected to heat shock at 42 °C for 22min, followed by recovery at
30 °C. Luminescence was measured at the indicated time points during recovery.
Values shown are mean + SEM, n = 9 biologically independent samples. The table
shows the samples that were compared at each time points. ***p <0.001, **p <0.01,
*p <0.05, NS (non-significant) values are reported for unpaired, two-sided t-test.
Source data are provided as a Source data file.
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hypothesis”, which proposes that different aggregated tau con-
formers (distinct strains) have distinct pathology-initiating capacities
because they interact with endogenous tau differently45,46. In yeast,
the interaction between the prion protein Rnq1 and the Hsp40 Sis1 is
required for [RNQ+] propagation29. Therefore, we utilized this system
to ask whether the LGMDD1 mutants impacted the [RNQ+] prion
strains that form de novo. Strikingly, we found a change in [RNQ+]
prion strain formation when Rnq1 fibers were formed in the presence
of the LGMDD1 mutants as compared to wild type Sis1. These chan-
ges were a direct consequence of Hsp40 interaction alone and may
be a consequence of DNAJ proteins ability to act as “holdases”47,48.
“Holdases” are chaperones that do not use ATP and simply protect
their client protein from aggregation48. Unlike “holdases”, “foldases”
(like Hsp70) accelerate the transition of non-native conformations
towards native states in an ATP-dependentmanner. Interestingly, the
proteostasis network relies on a constant interplay between these
two kinds of chaperones. Putative “holdase” activity is not shown in
the Hsp40/70-cycle and may well be altered with the LGMDD1
mutants (Supplementary Fig. 10).

As a major role for Hsp40s is stimulating Hsp70s, another
important aspect of the LGMDD1 mutants might be a change in the
productive interaction with Hsp7025. Indeed, we found that these
LGMDD1 mutants were defective in binding to Ssa1 (Hsp70) as well as
to substrates (Rnq1 and luciferase). It had been shown previously that
there was no difference between Sis1-WT and the Sis1-G/F domain
knockout induced Ssa1 ATPase activity in absence of substrate25.
Interestingly, however, the LGMDD1 mutants showed a reduction in
the stimulation of ATPase activity of Hsp70.Moreover, in the presence
of substrate, the change in ATPase activity was client-conformer spe-
cific. Additionally, LGMDD1 mutants were defective in refolding heat-

denatured luciferase (similar to previous findings with Sis1ΔG/F25),
indicating a more global defect in substrate remodeling. These find-
ings fit with recent data that implicate the G/F-rich region of DNAJB1 in
an autoinhibitorymechanism that regulates themajor class B J-domain
proteins (JDPs)49. This inhibition can be released with second site
mutations (E50A, or F102A, and or ΔH5) in DNAJB149. A similar
mechanism has been suggested for both DNAJB6 and DNAJB8
proteins50,51. Our data suggest that the LGMDD1 G/F domain mutants
are not simply releasing the auto-inhibitory mechanism, however, as
they show reduced binding to Hsp70 in the absence of client, indi-
cating that the complex (Sis1-substrate-Hsp70) formed with Hsp70 is
indeed driven by the Sis1-substrate interaction.

The function and interaction of the various Hsp40 domains have
been studied extensively13,52. The efficiency of Hsp70 ATPase activity is
heavily dependent on the proper functioning of the J and G/F domains
of Hsp4052,53. Moreover, Hsp40 (Sis1) functions as a dimeric protein32.
Interestingly, we found that LGMDD1 mutants show a diminished
ability to form homodimers and heterodimers (with Sis1-WT). How-
ever, DNAJB6 has not been described as a dimer (and is instead poly-
dispersed) and has a CTD that is distinct from that of Sis1-WT or
DNAJB1. Thus, the decreased dimerization efficiencyobservedwith the
homologous mutants in Sis1 just provides further insight into other
possible changes with DNAJB6 G/F domain mutants.

Previously, it was suggested that the LGMDD1-causing mutations
exert a deleterious dominant negative effect on the wild-type protein3.
An excess of mutant (DNAJB6-F93L) to wild-type mRNA induced leth-
ality in embryos, while an excess of wild-type to mutant mRNA gave
rise to progressively increased rescue3. Consistent with this, we found
that titrating Sis1-WT with LGMDD1 mutants (F106L and F115I)
decreased Ssa1 ATPase activity.

Fig. 8 | Schematic diagram depicting possiblemechanism of LGMDD1mutants
and their effects on the Hsp70 ATPase cycle, as well as proposed therapeutic
intervention. a Cartoon depicting possible mechanistic insights as to how
LGMDD1 G/F domainmutants delay or inhibit the Hsp70 ATPase cycle. The dashed
red arrows indicate inhibition. Mutants were inefficient in terms of both homo and
hetero-dimerization and thatmaybe related to their reduced ability to assist Hsp70
in protein folding. In the first half of the Hsp70 ATPase cycle, LGMDD1 mutants
were incompetent in their ability to bind specific substrate conformers and Hsp70
(black dashed arrows), which delays the downstream processing of the substrate

through Hsp70-ATPase cycle. This inhibition could negatively impact Hsp70-
mediated ATP-hydrolysis. b Possible therapeutic route. In the second half of the
cycle, modulation of NEF inhibit the binding and exchange of nucleotide, which
delay the downstreamprocess of substrate release in the cycle. However, this delay
led to positive consequences in terms of yeast prion propagation (green arrow
represents restoration of normal function). Thus, altering the balance between the
two halves of the Hsp70-ATPase cycle may provide one route for therapeutic
intervention for these types of diseases.
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Interaction of the Hsp70/40 machinery with a misfolded client is
not sufficient to promote re-folding. The regulated cycle of client
release and the potential for re-engagement is important, and this is
dependent on nucleotide exchange. Indeed, changes in the availability
or function of nucleotide exchange factors (NEFs) alone change client
processing. Alterations in the NEF Sse1 were shown to alter yeast prion
propagation in a strain-dependent manner54. Sse1 has been proposed
to have multiple functions and can act as a disaggregase itself55,56. Our
data suggest that the effect of the LGMDD1 mutants on the propaga-
tion of the [RNQ+] strain can be rescued by the deletion of Sse1
(Hsp110). Notably, although the deletion of Sse1 alone showed partial
improvement in [RNQ+] prion propagation in yeast cells, it did not
show any difference in the refolding of luciferase, again perhaps
indicating substrate specificity. This indicates that for some clients,
thesemutantsmight be rescued bymodulating the time of interaction
with Hsp70/40.

We hypothesize that the observed defects in the LGMDD1
mutants result in cellular phenotypes that are client-conformer
specific. The Hsp70/DNAJ ATPase cycle is a process partitioned into
two interconnected events; DNAJ is vital in the first half whereas NEFs
play a significant role in the second half. Our data suggest that there
are numerous defects associated with DNAJB6 (Sis1) mutants which
result in either inhibition or delay in client processing in the first part
of the Hsp70-ATPase cycle. Hsp70 has been shown to suppress
proper substrate folding if it is not allowed to cycle off its client
protein in various contexts57,58. Henceforth a longer interaction of
LGMDD1 mutants with Hsp70 might lead to broader disruption of
Hsp70-dependent processes, as this could titrate Hsp70 away from
other clients59. Our data suggest that inhibiting the second half of the
ATPase cycle, can have positive consequences on client processing.
Interestingly, previous data suggest that the optimal NEF activity for
protein disaggregation occurs at a reduced ratio of NEF:Hsp70
(1:10)60–62, and perhaps the deletion of Sse1 recapitulates such
reduction in NEF activity in some manner (such as replacing the
optimal NEF with another, such as Fes1). Moreover, the armadillo-
type NEFs (budding yeast Fes1 and its human homolog HspBP1)
employ flexible N-terminal release domains (RDs) with substrate-
mimicking properties to ensure the efficient release of persistent
substrates from Hsp7063. This is plausible due to the fact that NEFs
perform dual functions: accelerating nucleotide exchange and
securing Hsp70-liberated substrates. Of note, the high selectivity of
exchange factors for their Hsp70 partner contributes to the func-
tional heterogeneity of Hsp70 chaperone system64. These results
indicate that fine-tuning of the two halves of the Hsp70 ATPase cycle
involving LGMDD1 mutants and NEFs during the processing of its
client proteins is critical (Fig. 8b). As such, we suggest that NEF
inhibitors could provide a possible therapeutic strategy for the
treatment of LGMDD1. There are certain aspects of DNAJB6 activity
which are imperfectly modeled by Sis1. Nevertheless, in the absence
of a clear mammalian substrate for DNAJB6, these findings with its
closest yeast homolog Sis1 and the impact of the LGMDD1 mutants
on client processing provide crucial mechanistic insight to begin to
explore therapeutic routes for this myopathy.

Method
Cloning, expression and purification of recombinant proteins
Sis1-WT, Sis1-mutants (F106L/N108L/D110Δ/F115I/ΔDD) and Ssa1-WT
were cloned into pPROEx-Htb vector obtained from Addgene. The
plasmid encodes a hexa-His-tag, a TEV cleavage site, and the
respective cloned gene for expression. All Sis1 mutants were gener-
ated using the Quick Change Mutagenesis Kit (Agilent Technologies
#200517). Primer sequences were generated using Agilent’s online
primer design program. Mutagenesis was confirmed by sequencing
the entire coding region of Sis1. Sis1-WT and Sis1-mutants were
expressed at 16 °C, whereas Ssa1-WT was expressed at 18 °C to

increase the fraction of soluble protein. All purification steps were
carried out at 4 °C. Protein purity was more than 99% as determined
by SDS/PAGE and Coomassie staining. Final protein concentration
was estimated by Bradford assay, using bovine serum albumin as the
standard. Following purification, all the proteins were frozen on
liquid nitrogen and stored at −80 °C till further use. Sis1-WT and
mutants were purified using standard protocol with some modifica-
tions. Briefly, these were purified from Escherichia coli strain Lemo
21(DE3) (New England Biolabs #C2528H) grown in 2X YT medium at
30 °C until OD600 = 0.6–0.8. The cultures were induced with 0.5mM
IPTG and grown overnight at 16 °C. Cells were harvested and lysed in
buffer A (50mM Sodium phosphate buffer (pH 7.4), 300mM NaCl,
5mM MgCl2, 10mM Immidazole, 0.1% Igepal, 0.01M TCEP (tris(2-
carboxyethyl)phosphine) (Thermo-Fisher Scientific #20491), pro-
tease inhibitor cocktail (EDTA-free) (Thermo-Fisher Scientific
#A32965) and a pinch of DNase I (Millipore Sigma #DN25). Cell debris
was cleared by centrifugation (20,000 × g) and the supernatant loa-
ded on cobalt-based Talon metal affinity resin (Thermo-Fisher Sci-
entific #89964). After washing, proteins were eluted as gradient
fractions with buffer A containing increasing concentrations of imi-
dazole (150–400mM) (Millipore Sigma #I0125). Purified proteins
were incubated with His-TEV (purified in the lab) protease at 30° for
1 h. The samples were extensively dialyzed at 4 °C and again passed
through Talon metal affinity resin to remove the cleaved His tag and
His-TEV protease. The pure proteins were concentrated and stored at
−80 °C. Similarly, Ssa1-WT protein was also purified using an estab-
lished procedure65. Briefly, protein was purified from Escherichia coli
strain Rosetta 2(DE3) (Novagen, EMD-millipore #71397-3) grown in
LB medium with 300mM NaCl at 30 °C until OD600 = 0.6–0.8. The
culture was induced with 0.5mM IPTG and grown overnight at 18 °C.
Cells were harvested and lysed in buffer A (20mM Hepes, 150mM
NaCl, 20mM MgCl2, 20mM KCl, protease inhibitor cocktail (EDTA-
free) using lysozyme (Millipore Sigma #L6873). The rest of the pro-
tocol was similar to that of Sis1-WT and mutants, with only exception
being that Ssa1-WT was eluted with buffer A containing 250mM
imidazole. Rnq1-WT full-length protein was purified exactly as
described in previous publication from our lab26.

Binding assays
Substrate-binding ELISA assays. This was performed as described
earlier25 with some modifications. Two different substrate proteins-
Rnq1 andfirefly luciferase (MilliporeSigma#SRE0045)were denatured
for 1 h at 25 °C in a buffer comprising of 3M guanidine HCl, 25mM
HEPES (pH 7.5), 50mM KCl, 5mM MgCl2, and 5mM DTT. Following
denaturation, substrates were diluted in 0.1M NaHCO3 and bound to
microtiter plate (CoStar 3590 EIA plates, Corning #CLS3590) at a
concentration of 0.4 µg/well for Rnq1 and 0.1 µg/well for luciferase,
respectively. Unbound substrate was removed by washing with phos-
phate buffered saline (PBS). Unreacted sites were blocked with 0.2M
glycine (100 µl/well) for 30min at 24 °C, followed bywashingwith PBS-
T (PBS containing 0.05% Tween 20). Non-specific binding was elimi-
nated by blocking with 0.5% fatty-acid-free bovine serum albumin
(BSA) (Millipore Sigma #A6003) in PBS for 6 h. The wells were subse-
quently washed with PBS-T. Sis1-WT and Sis1-mutants were serially
diluted in PBS-T (substituted with 0.5% BSA) and incubated with sub-
strate for overnight at 24 °C. After extensivewashingwith PBS-T, rabbit
anti-Sis1 antibody (CosmoBio #COP-080051) at a dilution of (1:15000)
was added and incubated for 2 h at 24 °C. This was followed by further
washings and the addition of donkey-anti-rabbit HRP-conjugated
(1:4000) (Millipore Sigma #AP182P) as secondary antibody. The
amount of Sis1 retained was determined by developing a reaction
using tetramethyl benzidine/H2O2 (TMB peroxidase EIA substrate) kit
(Bio-Rad #1721068)). The color was measured at 450 nm (SpectraMax
M2e fluorimetermicroplate reader) after terminating the reactionwith
0.02N H2SO4.
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Ssa1-binding assays. Ssa1 (200nM) was immobilized in microtiter
plate wells and dilutions of purified Sis1-WT and Sis1-mutants were
incubated with it. Bound Sis1 was detected as described above.

Substrate bound Sis1 combined with Ssa1 binding assays. Dena-
tured substrates (Rnq1 and luciferase) at a concentration of0.4μg/well
and 0.1 ug/well, respectively, were mixed with Sis1-WT and Sis-mutant
proteins (5 nM) and incubated for 1 h at 24 °C, prior to being adsorbed
in the microtiter well plates. Following the steps of incubations,
washings and blocking, serially diluted Ssa1-WT was added to each
well. Subsequently, the wells were probed with mouse-Hsp70 (Ssa1)
antibody (1:2000) (Abcam#ab-5439), followed by goat anti-mouse IgG
[H + L] HRP conjugated secondary antibody (1:4000) (Thermo-Fisher
Scientific #62-6520). The detection method used was similar to that
described above for detecting Sis1.

Homo/Hetero dimeric nature of Sis1 determining binding assays.
Serially diluted His-tagged cleaved Sis1-WT and Sis1-mutants were
adsorbed in the microtiter well plates. Following washings, serially
diluted uncleaved His-tagged Sis1-WT and Sis1-mutants were added to
thewells in the following combinations [(Cleavedmutants +Uncleaved
mutants = Homodimer); (Cleaved mutants + Uncleaved Sis1-WT =
Heterodimer) along with appropriate controls for the assay. This was
followed by washings, blocking and addition of mouse anti-His anti-
body (1:5000) (Novagen #37-2900). Rabbit anti-mouse HRP con-
jugated antiserum (1:4000) (Millipore Sigma #AP160P) was used as
secondary antibody. The detection method was similar to that
described above.

Amyloid fiber formation and thioflavin T kinetics
Purified Rnq1 was resuspended in 7M guanidine hydrochloride (Mil-
lipore Sigma #G3272) and the protein concentration was determined.
Rnq1 fibers were formed at 18, 25, and 37 °C with a starting monomer
concentration of 8 μm in Fiber-formation buffer (FFB) (50mM KPO4,
2M Urea, 150mM NaCl, pH 6). For the seeded kinetics experiments,
the fibers were seeded using 5% (w/w) seed. The fiber formation and
kinetics assays were performed in the presence of Thioflavin T dye
(Millipore Sigma #T3516) and acid-washed glass beads (Millipore
Sigma #G8772) for agitation as described earlier26. Kinetic assays of
fiber formationweredone in a SpectraMaxM2efluorimetermicroplate
reader. The change in Thioflavin-T fluorescence over time was mea-
sured using an excitation wavelength of 450nm and emission wave-
length of 481 nm.

Colorimetric determination of ATPase activity
The ATPase assay was performed as described before66 with some
modifications. Briefly, the ATPase reagent was made by combining
0.081% W/V Malachite Green (#M6880) with 2.3% W/V poly-vinyl
alcohol (#363138), 5.7% W/V ammonium heptamolybdate (#09878) in
6M HCl (#258148), and water in 2:1:1:2 ratios (all purchased from
Millipore Sigma with no further purification). This ATPase reagent was
freshly prepared every day and was left standing for 2 h to get a stable
green/golden solution, which was filtered through 0.45 μm syringe
filters (Millipore Sigma#SLHA033SS) before use. ATPase activity in the
absence of any client protein was tested by incubating Sis1-WT/
mutants, Ssa1-WT in the ratio of (0.05:1.0 µM) with 1mM ATP, in assay
buffer (0.02% Triton X-100, 40mM Tris–HCl, 175mM NaCl, and 5mM
MgCl2, pH 7.5) at 37 °C for different time-intervals as indicated in the
figure legends. At the end of incubation 25 µL of the reaction was
added to a well in a 96 well plate, followed by 800 µL of the ATPase
reagent and 100 µL of 34% sodium citrate to halt any further ATP
hydrolysis. The mixture was allowed to incubate for 30min at 24 °C
before absorbance at 620 nm was measured using a SpectraMax M2e
fluorimeter microplate reader. A sample of ATP alone in buffer was
treated exactly the same and was subtracted from the sample

absorbance to account for intrinsic ATP hydrolysis. To account for
variability in measurements a phosphate standard curve (using
potassium phosphate) was created for each day of measurements. For
ATPase activity in presence of client proteins, the same procedurewas
followed with only exception being the addition of client protein Rnq1
monomer (25 µM) and Rnq1 seeds (10% of which is used in final reac-
tion) formed at three different temperatures (18, 25, and 37 °C) with
the chaperones and ATP for incubation.

Luciferase refolding assay
Heat denatured refolding of luciferase was performed as previously
described67. Briefly, Ssa1 (2 µM) were incubated in refolding buffer
(50mM Tris pH 7.4, 150mM KCl, 5mM MgCl2) supplemented with
1mM ATP and an ATP regenerating system (10mM phosphocreatine,
100mg/ml phosphocreatine kinase) for 15min at room temperature.
Next, luciferase (25 nM) was added and incubated for a further 10min.
Then Sis1-WT/mutants (0.05 µM) was added and the mixture was heat
shocked at 44 °C for 20min. The reactions were then immediately
moved to room temperature. Finally, 25 µL aliquots of the refolding
reactionwere then taken and added to 50 µLof luciferase assay reagent
(Promega Corporation #E1501). At various time points, activity was
then measured with a GloMax Luminometer (Promega Corporation).

Titration assays
All the assays were performed by titrating the concentration of Sis1-
mutants (F106L and F115I) with Sis1-WT (concentration been kept
constant).

Yeast strains, plasmids and Transformation
The yeast strains used in this study are derived from Saccharomyces
cerevisiae 74-D694 (ade1-14 his3-Δ200 leu2-3, 112 trp1-289 ura 3-52).
Yeast cells were grown and manipulated using standard techniques68.
As indicated, cells were grown in rich media YPD (1% yeast extract, 2%
peptone, 2% dextrose) or in synthetic defined (SD) media (0.67% yeast
nitrogen base without amino acids, 2% dextrose) lacking specific
nutrients to select for appropriate plasmids. Wild-type (WT) yeast
harboring the s. d. medium [RNQ+] variant and the [rnq-] control strain
were kindly provided by Dr. Susan Liebman (University of Nevada,
Reno, Nevada, USA)69. Construction of Δsis1 [rnq-] and s. d. medium
[RNQ+] yeast strains were described previously12. Δsse1 was created
using a plasmid-based sse1Δ::LEU2 disruption construct (a kind gift
from Dr. Kevin Morano) that was digested with SacII/PstI and trans-
formed into sis1Δ cells propagating s.d. medium [RNQ+] and expres-
sing Sis1 from a URA3-marked plasmid. All other delta strains in s. d.
medium [RNQ+] background were created using the standard proto-
col. Medium containing 1mg/mL 5-fluoroorotic acid (5-FOA) that
selects against cells maintaining URA3- marked plasmids was used to
replace WT Sis1 with the mutant constructs using the plasmid shuffle
technique. Plasmid transformations were done using polyethylene-
glycol/lithium-acetate (PEG/LioAC) technique, and the cells were
selected using SD-trp/his plates.

Plasmid pRS316-Sis1 was kindly provided by Dr. Elizabeth Craig
(University of Wisconsin, Madison, Madison, Wisconsin, USA)22. Plas-
mid pRS414-Sse1-G233D was a kind gift from Dr. Kevin Morano
(McGovern Medical School, UT Health, Houston, Texas, USA)37. Con-
struction of pRS314-Sis1 and LGMDD1 mutants were described pre-
viously. Using the standard molecular techniques we constructed
p413TEF-Sse1-G233D. Plasmid pRS316-GPD-Luxwas a kind gift fromDr.
Bernd Bukau (Center for Molecular Biology of Heidelberg University,
Heidelberg, Germany)39.

Protein fiber transformation for phenotypic analysis
Transformation of Rnq1 fibers into a [rnq−] 74-D694 (ade1-14, ura3-52,
leu2-3,112, trp1-289, his3-200, sup35::RRP) yeast strain in the presence
and absence of Sis1-WT/ mutants was conducted as described70. The
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resulting colonies formed after infecting fibers formed in vitro in the
presence and absence of chaperones were replica plated onto rich
medium (YPD) plates to assay for colony color. Colonies that appeared
to have acquired the prion state by nonsense suppression were picked
and spotted on YPD, YPD containing 3mM GdnHCl, and SD-Ade for
phenotypic analyses.

Protein analysis
Yeast samples were lysed with glass beads in buffer (100mM Tris-HCl
pH 7.5, 200mM NaCl, 1mM EDTA, 5% glycerol, 0.5mM DTT, 3mM
PMSF, 50 mM N-ethylmaleimide (NEM), complete protease inhibitor
from Roche) and pre-cleared at 6000 rpm for 15 s. Protein con-
centration of cells lysates was then normalized. For well-trap assays,
samples were incubated at room temperature or 100 °C in sample
buffer (200mMTris-HCl pH 6.8, 4% SDS, 0.4% bromophenol blue, 40%
glycerol), then analyzed by SDS-PAGE andwestern blot using anαRnq1
antibody (1:2500) and mouse anti-rabbit HRP conjugated secondary
antibody (1:10000). Boiled gel assays were performed as described
previously15. Briefly, yeast cells were lysed with glass beads in buffer
(25mM Tris-HCl pH 7.5, 100mM NaCl, 1mM EDTA, protease inhibi-
tors) and pre-cleared at 6000 rpm for 1min at 4 °C. Protein con-
centration of cell lysates was normalized using a Bradford assay and
mixedwith SDS-PAGE sample buffer (200mMTris-HCl pH6.8, 4% SDS,
0.4% bromophenol blue, 40% glycerol). Samples remained un-boiled
and were loaded on a 12% polyacrylamide gel and run under constant
current of 110 V until the dye front migrated halfway through the
resolving gel. The current was then stopped, and the gel in glass plates
was sealed in plastic and boiled upright for 15min in a 95–100 °Cwater
bath. After boiling, gels were removed from the plastic cover and were
reinserted in the SDS-PAGE apparatus, where voltage was re-applied
until the dye migrated to the bottom of the gel. SDS-PAGE was fol-
lowed by standard western blotting with αRnq1 antibody.

Negative staining transmission electron microscopy
Rnq1 fibers were generated as described above. Negative staining of
Rnq1 samples was performed by depositing 8 µL of sample and incu-
bating for one minute on carbon coated 200 mesh copper grids
(01840-F, Ted Pella, Redding, CA), held by forceps carbon side up,
which had been freshly glow discharged for 30 s in a Solarus 950
plasma cleaner (Gatan, Pleasanton, CA). Post-incubation, each gridwas
washed five times in separate ultrapure water droplets and subse-
quently stained with 0.75% uranyl formate for 2min. Excess uranyl
formate was blotted off using filter paper (Whatman No.2, Fisher Sci-
entific, Hampton, NH) and subsequently air dried. Sample grids were
imaged using a JEOL JEM-1400 Plus Transmission ElectronMicroscope
operating at an accelerating voltage of 120 kV equipped with an
NanoSprint15 MKII sCMOS camera (AMT Imaging, Woburn, MA).
Images were acquired using a total exposure time of 5 s containing ten
500ms drift frames which were subsequently aligned and averaged
using the AMT ImageCapture Engine acquisition software (version
V701) at nominal magnifications ranging between 20,000–50,000×.

Statistical analysis
All data are analyzed using GraphPad Prism (v8, https://www.
graphpad.com/scientific-software/prism/), and Microsoft Excel 2016
(https://www.https://www.microsoft.com/en-us/microsoft-365/
microsoft-office) software. Error bars represent standard error mean
from at least three experiments. Significance was determined for two-
sample comparisons using the unpaired t-test function with a thresh-
old of two-tailed p values less than 0.05 for *, 0.01 for **, and
0.001 for ***.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. Source data are provided with
this paper.
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