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Quantitative microbial risk assessment of Campylobacter jejuni in 
jerky in Korea
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Objective: The objective of this study was to estimate the risk of Campylobacter jejuni (C. 
jejuni) infection from various jerky products in Korea. 
Methods: For the exposure assessment, the prevalence and predictive models of C. jejuni 
in the jerky and the temperature and time of the distribution and storage were investigated. 
In addition, the consumption amounts and frequencies of the products were also investigated. 
The data for C. jejuni for the prevalence, distribution temperature, distribution time, consump­
tion amount, and consumption frequency were fitted with the @RISK fitting program to 
obtain appropriate probabilistic distributions. Subsequently, the dose-response models for 
Campylobacter were researched in the literature. Eventually, the distributions, predictive model, 
and dose-response model were used to make a simulation model with @RISK to estimate 
the risk of C. jejuni foodborne illness from the intake of jerky. 
Results: Among 275 jerky samples, there were no C. jejuni positive samples, and thus, the 
initial contamination level was statistically predicted with the RiskUniform distribution 
[RiskUniform (–2, 0.48)]. To describe the changes in the C. jejuni cell counts during distribu­
tion and storage, the developed predictive models with the Weibull model (primary model) 
and polynomial model (secondary model) were utilized. The appropriate probabilistic dis­
tribution was the BetaGeneral distribution, and it showed that the average jerky consumption 
was 51.83 g/d with a frequency of 0.61%. The developed simulation model from this data 
series and the dose-response model (Beta Poisson model) showed that the risk of C. jejuni 
foodborne illness per day per person from jerky consumption was 1.56×10–12. 
Conclusion: This result suggests that the risk of C. jejuni in jerky could be considered low 
in Korea.
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INTRODUCTION 

In recent years, the meats used to produce jerky have expanded to beef, pork, and chicken 
[1,2]. Jerky is a nutritious meat product, and it has a long shelf life, because of its low water 
activity [3]. However, foodborne outbreaks of microbial diseases have been reported in many 
countries [4-6]. In recent, Campylobacter foodborne outbreaks have been dramatically in­
creased. This increase may occur by advanced detection methods than the past, rather than 
actual increase of the outbreak. Campylobacter outbreaks were obviously under-estimated 
because of inaccurate detection method. Thus, necessity of risk assessment for Campylobacter 
has been suggested. 
  Campylobacter species are Gram-negative, microaerophilic bacilli that have shaped like 
curved rods or spirals [7,8]. In the United States, most of the reported Campylobacter infec­
tions are caused by Campylobacter jejuni (C. jejuni) [9]. C. jejuni grows well in microaerophilic 
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conditions, such as 5% O2, 10% CO2, and 85% N2 environ­
ments, and it is sensitive to drying, acidic conditions, and 
salinity [10]. Additionally, it is a normal intestinal flora of ani­
mals, such as cattle, sheep, and poultry [11,12]. C. jejuni is a 
common bacterium that causes acute gastroenteritis world­
wide [7]. In general, the symptoms of C. jejuni infection are 
diarrhea, fever, and abdominal cramps. Importantly, following 
an infection with C. jejuni, Guillain-Barre syndrome, which 
is an acute demyelinating disease of the peripheral nervous 
system, is possible [13]. 
  Quantitative microbial risk assessment (QMRA) is widely 
used as a tool to describe the microbial risk levels of foods 
[14]. The QMRA consists of hazard identification, exposure 
assessment, hazard characterization, and risk characterization 
[15]. In hazard identification, the adverse effects on public 
health are defined, and the exposure assessment estimates 
the quantitative hazards in food at the point of consumption 
[16]. Dose-response models are used in hazard characteriza­
tion to calculate the probability of foodborne illness [16], 
and in risk characterization, the risk is calculated from the 
exposure assessment and hazard characterization data [17]. 
The QMRA result is used to suggest quantitative criteria of 
foodborne pathogens, but many countries still do not have 
quantitative criteria for jerky [18,19]. Also, in Korea there are 
no quantitative criteria for C. jejuni in jerky. Therefore, the 
objective of this study was to evaluate the risk of C. jejuni food­
borne illness from various jerkies in Korea. 

MATERIALS AND METHODS 

Prevalence level of Campylobacter jejuni
To evaluate the contamination levels of C. jejuni, seasoned (n 
= 125) and non-seasoned beef and poultry jerky (n = 150) were 
purchased from conventional markets, grocery stores, or online 
shops in Korea. Ten-gram portions of the samples were placed 
into sterile filter bags (3M, St. Paul, MN, USA), and 40 mL of 
Bolton broth (Oxoid Ltd., Basingstoke, UK), supplemented 
with 5% laked horse blood, was added and homogenized for 
90 s. They were then incubated at 37°C for 4 h, followed by 
incubation at 42°C for 44 h. The incubated homogenates were 
then streaked onto modified charcoal-cefoperazone-deoxy­
cholate agar (mCCDA; Oxoid Ltd., UK) and incubated at 
42°C for 48 h under microaerobic conditions (2.5% to 9.5% 
CO2, 6.2% to 13.2% O2) using CampyGen (CampyGen gas 
generating system, Oxoid Ltd., UK). The presumptive C. jejuni 
colony on the mCCDA was streaked onto two Colombia agar 
plates (bioMérieux, Marcy-l’Étoile, France), and one plate was 
incubated under aerobic conditions and the other one was 
incubated under microaerobic conditions at 42°C for 48 h. 
Further analysis, using PCR to identify C. jejuni, was conducted, 
when colonies were formed only on the plate that was placed 
in the microaerobic environment [20]. Additionally, the ho­

mogenates were plated onto mCCDA, and the plates were 
incubated at 42°C for 48 h under microaerobic conditions for 
quantitative analysis. Presumptive colonies were then counted, 
and five randomly selected colonies on each plate were analyzed 
by using of PCR to identify C. jejuni. To amplify the constant 
sequence, primers of C-1F (5′-CAAATAAAGTTAGAGGTA 
GAATGT-3′) and C-3R (5′-CCATAAGCACTAGCTAGCTG 
AT-3′) were used [21]. PCR amplification was performed with 
a 20 μL reaction volume using the Fastmix Frenche PCR Pre­
mix kit (iNtRON Biotechnology, Seongnam, Korea), 2 μL of 
each primer, 2 μL of template DNA, and 14 μL of distilled water. 
The amplification profile was an initial denaturation step at 
95°C for 15 min, and at 95°C for 30 s, 58°C for 90 s, and 72°C 
for 60 s for annealing. The annealing step had 25 cycles. Sub­
sequently there was a final extension step at 72°C for 7 min. 
To confirm the amplification of the target sequence, the PCR 
product was electrophoresed on a 1.5% agarose gel in 1×Tris-
acetate-ethylenediaminetetraacetic acid buffer (Biosesang, 
Seongnam, Korea) at 100 V for 20 min. The positive ratio 
was multiplied by the number of colonies to estimate the C. 
jejuni counts. However, the C. jejuni counts were below the 
detection limit (0.48 log colony-forming unit [CFU]/g), and 
thus, the C. jejuni prevalence data were fit to a uniform distri­
bution [RiskUniform (α: minimum value, β: maximum value)].

Development of a predictive model
To describe the changes in the C. jejuni cell counts during dis­
tribution and storage, predictive models were developed. C. 
jejuni NCTC11168 was stored at –70°C in bead stock (AES 
Chemunex, Combourg, France). One of the beads was streaked 
on Columbia agar and incubated at 42°C for 48 h under micro­
aerobic conditions. The colonies on the plates were collected by 
scraping with a loop, and they were again streaked on Colum­
bia agar; the plates were then incubated for 48 h. The colonies 
were collected in 5 mL of phosphate-buffered saline (PBS; pH 
7.4; 0.2 g of KH2PO4, 1.5 g of Na2HPO4·7H2O, 8.0 g of NaCl, 
and 0.2 g of KCl in 1 L of distilled water). The suspensions were 
centrifuged at 1,912×g for 15 min at 4°C and washed twice 
with PBS. Then, the supernatants were discarded, and the cell 
pellets were resuspended in PBS. The optical density measured 
at 600 nm of the suspension was adjusted to 2.0 (ca. 5.5 log 
CFU/mL) for the inoculum. Seasoned or non-seasoned beef 
jerky was purchased from an online shop in Korea. Ten-gram 
portions of the samples were placed into a sterile filter bag, and 
0.1-mL portions of the inoculum were inoculated on the jerky 
surface in the sample bag. The samples were rubbed 20 times 
and packaged aerobically or anaerobically, followed by storage 
at 10°C, 20°C, 25°C, and 30°C. Jerky samples were analyzed at 
the appropriate time intervals. Then, 30 mL of 0.1% buffered 
peptone water (BPW; Becton, Dickinson and Company, Frank­
lin Lakes, NJ, USA) was added to each sample, and they were 
homogenized with a BagMixer (Interscience, St. Nom, France) 
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for 90 s. The homogenates were serially diluted with BPW. 
One-tenth of 1 mL of the diluents was plated on mCCDA for 
C. jejuni, and the plates were incubated microaerobically. The 
typical colonies on the plates were manually counted. Then, 
the Weibull model was fit to the C. jejuni cell count data [22];

  Log(N) = Log(N0)–(time/δ)ρ

  Where N0 is the initial number of cells, ρ is the shape of 
curve, and δ is required time for the first decimal reduction. 
To evaluate the effect of the storage temperature on δ, a poly­
nomial model was used. Additionally, to evaluate the model 
performance, C. jejuni cell count data were collected at 15°C 
and 23°C through additional experiments. These observed 
data were compared to the predicted data from the predictive 
model. The accuracy between the observed and predicted 
data was expressed as a value from the root mean square error 
(RMSE) [23];
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Where n represents the number of data points. 146 

 147 

  Where n represents the number of data points.

Storage temperature and jerky consumption in Korea
The market storage temperature was collected by personal 
communication in this research. The transportation temper­
ature from the market to home was collected in a study by 
Jung [24]. For the daily consumption amount and frequency 
of jerky consumption, Ministry of Food and Drug Safety [25] 
data were used. These data were fitted to @RISK version 6.0 
(Palisade Corp., Ithaca, NY, USA) to determine the appropriate 
probabilistic distributions. 

Hazard characteristics and risk characterization
To calculate the probability of foodborne illness, the dose-
response model, developed by Teunis and Havelaar [26] was 
utilized. To calculate the probability of foodborne illness from 
C. jejuni through jerky consumption, a simulation model, 
which was a series of prevalence, contamination levels, storage 
temperature and time distribution, consumption amount and 
frequency, and dose-response model, was prepared in the @
RISK program. Eventually, the risk of foodborne illness was 
calculated through 10,000 iterations of random sampling. 

RESULTS AND DISCUSSION 

Prevalence and initial contamination level of 
Campylobacter jejuni
The initial contamination level of C. jejuni on the seasoned and 
non-seasoned jerky was investigated, and C. jejuni was below 
the detection limit in all of the samples (n = 275). It was as­

sumed that the contamination levels were distributed between 
0 CFU/g and below the detection limit, and thus, a uniform 
distribution [RiskUniform (–2, 0.48)] was determined to be 
appropriate to describe the distribution of the C. jejuni con­
tamination levels. The parameters indicate that the C. jejuni 
contamination levels are distributed between –2.0 and 0.48 
log CFU/g. 

Predictive model 
The C. jejuni cell counts decreased dramatically (Figure 1). 
Especially, the C. jejuni cell counts decreased rapidly at higher 
storage temperatures (Figure 1). Kim et al [27] presented that 
C. jejuni in beef tartare survived longer at low temperatures, 
because of sodB, katA, and clpP gene expression by C. jejuni. 
As C. jejuni had a longer survival time in the vacuum-pack­
aged seasoned jerky (δ = 21.855) than in the aerobic-packaged 
seasoned jerky (δ = 1.352) at 10°C (data not shown), a primary 
model was developed for the vacuum-packaged seasoned jerky 
for the worst-case scenario. The R2 values of the primary model 
ranged from 0.870 to 0.961, indicating that the developed pri­
mary model was appropriate to describe the kinetic behavior 
of C. jejuni in jerky (Table 1). The δ values for C. jejuni in the 
vacuum-packaged seasoned jerky decreased from 21.855 to 
0.159, as the temperature increased. To evaluate the effect of 
the temperature on δ, a secondary model was developed, and 
the equation was δ = (–9.3872)+(315.2666/T) with an R2 of 
0.941 (Figure 2, Table 2). Validation of the model performance 
showed that the RMSE value was 0.447, and it indicates that 
the developed models were appropriate to predict the C. jejuni 
cell counts in jerky during storage and distribution. 

Storage time and temperature
The time and temperature for market storage were collected 
by personal communication at the market. On average, the 
jerky was sold within one month and kept at room tempera­
ture. Thus, an appropriate probabilistic distribution for the 
time and temperature in the market was the Pert distribution 
with parameters (0, 720, 2,160) and (0, 20, 25), respectively 
(Table 2). The transportation time from the market was at a 
minimum of 0.325 h and at a maximum of 1.643 h [24]. In ad­
dition, the minimum, mean, and maximum food temperatures 
during transportation were 10°C, 18°C, and 25°C, respectively 
[24]. The jerky was usually consumed within approximately 
120 h at home and stored for up to 720 h at room temperature. 
Thus, the appropriate distribution for the time and tempera­
ture at home was the Pert distribution with parameters (0, 120, 
720) and (15, 20, 25), respectively (Table 2).

Jerky consumption in Korea
As a result of fitting the consumption data with the @RISK 
program, a BetaGeneral distribution was optimal, and the 
daily consumption was 51.83 g on average per person (Figure 
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3). According to a survey by MFDS [25], the daily consump­
tion frequency was 0.61%. This means that most people do not 
consume jerky, and they only consume a small amount com­
pared to the increase in total meat intake. 

Dose-response model and risk characterization
To estimate the probability of foodborne illness from the con­
sumption of C. jejuni cells, the following dose-response model 
[26] was utilized, because it is the most commonly used and 

was recently developed.

  Pinf (n) = 1–(1–p1)
n

  Where p1 is the probability of consuming Campylobacter 
cells, which is the value described by the Beta distribution 
[RiskBeta (0.145, 7.59)], n is the number of consumed Campy-
lobacter cells, and Pinf is the probability of infection. To estimate 
the probability of illness from jerky per person per day, the 

Figure 1. Cell counts of Campylobacter jejuni in seasoned jerky products during vacuum storage at 10°C, 20°C, 25°C, and 30°C. Symbol, observed cell counts; line, line fit 
with the Weibull model [22].

10°C 20°C

30°C25°C

Table 1. δ and ρ calculated by the Weibull model [22] for Campylobacter jejuni in vacuum packaged seasoning jerky during storage at 10°C, 20°C, 25°C, and 30°C

Kinetic parameters
Temperature (°C)

10 20 25 30

δ (h) 21.855 ± 4.773 6.973 ± 1.853 3.407 ± 0.774 0.159 ± 0.036
ρ 0.484 ± 0.078 0.468 ± 0.051 0.557 ± 0.060 0.273 ± 0.002
R2 0.939 0.961 0.920 0.870

δ, required time for the first decimal reduction; ρ, shape of curve.
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Table 2. Simulation model and formulas in Excel spreadsheet used to calculate the risk of Campylobacter jejuni in jerky with @RISK

Definition Variable Formula Reference

Product
Pathogens contamination level

Initial contamination level (log CFU/g) IC =  RiskUniform(-2,0.48)
Market

Market storage
Storage time in market (h) Mark-timest =  RiskPert(0,720,2160) Personal communication
Storage temperature in market (°C) Mark-tempst =  RiskPert(0,20,25) Personal communication

Growth
Treatment time for the first decimal reduction Delta =  (–9.3872)+(315.2666/Mark-tempst) This research
Shape ρ =  Fixed 0.445588 This research
Contamination level before transportation (log CFU/g) C1 =  IC– (Mark-timest/Delta)ρ [31]

Transportation
Transportation time (market to home) (h) Trans-time =  RiskPert(0.325,0.984,1.643) [24]
Food temperature during transportation (°C) Trans-temp =  RiskPert(10,18,25) [24]

Growth
Treatment time for the first decimal reduction Delta =  (–9.3872)+(315.2666/Trans-temp) This research
Shape ρ =  Fixed 0.445588 This research
Contamination level before home (log CFU/g) C2 =  C1–(Trans-time/Delta)ρ [31]

Home
Home storage

Storage time until consumption (h) Home-timest =  RiskPert(0,120,720) This research
Food temperature until consumption (°C) Home-tempst =  RiskPert(15,20,25) This research

Growth

Treatment time for the first decimal reduction Delta =  (–9.3872)+(315.2666/Home-tempst) This research

Shape ρ =  Fixed 0.445588 This research
Contamination level before consumption (log CFU/g) C3 =  C2– (Home-timest/Delta)ρ [31]

Consumption
Daily consumption average amount (g) Consump =  RiskBetaGeneral (1.0586,4.7065,23.985,175.84) [25]
Daily consumption frequency (%) ConFre Fixed 0.60971 [25]
Daily non consumption frequency (rate) CF(0) =  1–0.60971/100 [25]
Daily consumption frequency (rate) CF(1) =  0.60971/100 [25]
Distribution for consumption frequency CF =  RiskDiscrete({0,1},{CF(0), CF(1)}) [25]
Daily consumption average amount considered frequency Amount =  IF(CF = 0,0,Consump) [25]

Dose-response
Campylobacter amount n =  10C3 × Amount
Parameter α Fixed 0.145 [26]
Parameter β Fixed 7.59 [26]
Dose-response distribution P1 =  RiskBeta(α, β) [26]

Risk
Probability of infection due to ingestion of n Pinf(n) =  1–(1–P1)n [28]
Probability of illness given infection Pill│inf Fixed 0.33 [28]
Probability of illness/person/d Risk =  Pinf(n) × Pill│inf [28]

CFU, colony-forming unit.

Figure 2. Observed δ values from the primary model and the fitted lines by a secondary model that describe the effect of temperature on δ for Campylobacter jejuni in 
seasoned jerky products.
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Pinf (n) values were multiplied by Pill|inf (fixed 0.33) as follows. 
Pill|inf is the probability of illness from an infection, which has 
been suggested by Nauta et al [28]. 

  Probability of illness per person per day = Pinf(n)×Pill|inf

  With all the above data, the simulation model was prepared 
with a scenario for consumption at home (Figure 4). As the 

Figure 3. BetaGeneral probabilistic distribution for the jerky intake amount fit with @RISK 6.0.

Figure 4. Scheme for the microbial risk assessment of Campylobacter jejuni in jerky.
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consumption frequency was not high, the risk was assessed 
by either including or excluding the consumption frequency. 
The risk estimated with the frequency indicates the overall 
risk in Korea, and the risk estimated without the frequency 
indicates the risk for a person who eats jerky. The probability 
of C. jejuni foodborne illness from jerky consumption per per­
son per day was 1.56×10–12 with the consumption frequency, 
and 1.76×10–8 without the consumption frequency, showing 
the probability of illness per person per serving (Table 3). These 
results indicate that the risk of C. jejuni foodborne illness from 
jerky intake can be considered low in Korea. This result is simi­
lar to the risk of Campylobacter spp. infection from ham, and 
much lower than the risk from raw beef offal [29,30]. As a result 
of the sensitivity analysis, the most influential risk factor was 
the consumption amount. Additionally, the market tempera­
ture, time, transportation temperature, and risk were negative 
correlations (Figure 5), indicating that the C. jejuni counts de­
crease during distribution. 
  In conclusion, the quantitative risk assessment suggests that 
the risk of C. jejuni infection from the intake of jerky is low in 
Korea. Even if the jerky is contaminated with C. jejuni at a fac­
tory, the pathogen is destroyed during the distribution and 
storage. 
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