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Abstract: The size of real nanoparticles (NPs) is polydisperse which can influence the electrical
property of polymer nanocomposites (PNCs). Here, we explored the percolated network of mixed
NPs with different sizes (small NPs and big NPs) by adopting a molecular dynamics simulation. The
simulated results reveal that the big NPs are adverse to building the percolated network compared
to the small NPs. Thus, the percolation threshold becomes higher along with increasing the mixing
ratio, which denotes the concentration ratio of big NPs to the total NPs. For a better understanding of
it, the dispersion state and the number and the size of clusters are employed to analyze the percolated
network, which can explain the percolation threshold well. Furthermore, by adopting the Sun’s
theory (Macromolecules, 2009, 42, 459–463), small and big NPs exhibit a weak antagonistic effect in
the simulation if their total concentration is fixed. On the one hand, the number of small NPs is larger
than that of big NPs at the same concentration. In addition, one big NP can connect to more others
than one small NP. These two contrast effects are responsible for it. Interestingly, the shear flow
leads to more contact aggregation structure of NPs which is beneficial to build the new percolated
networks. Especially, the big NPs play a more important role in forming the percolated network than
small NPs. Consequently, the percolation threshold is reduced at a higher shear rate. In total, our
research work provides a further understanding of how the mixed NPs with different sizes form the
percolated network in polymer matrix.

Keywords: percolated network; mixed nanoparticles; molecular dynamics simulation

1. Introduction

Conductive polymer nanocomposites (PNCs) are consistent with the polymer matrix
and conductive particles (NPs) (graphene, carbon nanotube (CNT), carbon black (CB)),
which have been applied in many fields (for example the electromagnetic interference
shielding, sensor and conductors) [1,2]. According to the percolation theory, the percolated
network is built if the volume fraction of NPs is beyond a critical percolation threshold [3].
As a result, the conductivity rises rapidly which makes the materials change from an
insulator to a conductor. The concentration, the dispersion state of the conductive NPs as
well as their shape will influence the distribution state of NPs, which indirectly affect the
percolated network. It is proved that the high concentration of NPs is very necessary to
build the percolated network, but it will damage the flexibility, elasticity and processing
properties, which thus is necessary to lower the percolation threshold.

Currently, there are lots of works on improving the electrical conductivity of PNCs
by tuning various experimental parameters. For instance, the NP surface is modified
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to improve their miscibility with chains which can reduce the percolation threshold [4].
Meanwhile, due to the branched morphology of high-structure CBs, they are helpful to
form the percolated network than low-structure ones [5]. When the surface of CNTs is
covered with the small and highly conductive particles, the percolation threshold can be
further lowered [6]. Moreover, a percolation model is developed to predict the percolation
threshold by inserting the aspect ratio of CNTs [7]. Hybrid NPs with different shapes
are usually introduced to achieve a high conductivity in the polycarbonate matrix [8].
Furthermore, the addition of the large spherical silica inside the polymer matrix leads
to a strong percolated network of CBs, which reduces the percolation threshold [2]. In
addition, it is an effective method to modify the NP surface by grafted chains, which can
tune their spatial distribution and optimize the electrical conductivity [9,10]. The external
fields will change the percolated network which impacts the conductivity. It shows that the
tensile field induces the nonuniform distribution of NPs, which forms more new percolated
paths [11]. Moreover, the electrical property of PNCs in the shear flow can be lower or
higher than that in the quiescent state, which is related to the initial network structure [12,13].
Interestingly, the electrical conductivity is improved by several magnitudes over time in
the quiescent conditions, which is attributed to the NPs reaggregation [14]. By utilizing
the change of the percolation networks under the strain/stress or pressure condition,
the environment conditions can be monitored [15]. However, the percolated network is
difficult to characterize accurately in experimental studies. Computer simulation is an
important method which is good at characterizing the percolated network. By adopting the
molecular dynamics simulation, the percolation threshold changes in an opposite direction
with the polymer-NP interaction [16]. This is due to the appearance of the local bridging
NPs via the polymer chains at a high interaction. By adopting a Monte Carlo simulation,
the relationship between the percolation threshold and the aspect ratio of fibers can be
described by an exponential function [17]. The index parameters varies from 2.0 to 2.6
for two-dimensional networks and from 1.7 to 2.0 for three-dimensional networks [18,19].
The percolation threshold exhibits a continuous decline with increasing the NP stiffness in
the stable state while it reaches a minimum value in the shear flow [18,20]. The uniform
distribution state improves the distance between NPs, which is not beneficial to form the
percolated network than a partial contact structure [21]. At similar sizes, the rod or plate
NPs are much easier to build the percolated network with than the spherical NPs [22]. As
for grafted NPs, the distribution state and the phase behavior are two factors impacting
the percolation threshold which is proved by model and theory [23,24]. Moreover, the
shear field will change the initial percolated network and then another network will
be reformed [21]. This process is affected by the shape and size of NPs and the shear
strength [21,25]. Finally, the percolated network will be destroyed if the shear strength is
beyond the certain rate [26].

Carbon black (CB) has excellent sensitivity to small strain and low cost, which is
widely applied as a conductive filler [27,28]. Currently, the spherical NPs are assumed to
be monodisperse in terms of their size. However, the real NPs exhibit various sizes, which
will change the percolated network and the conductive property. Meanwhile, mixed NPs
with different sizes may produce the synergistic or antagonistic effect which still remains
unclear to our knowledge. To answer it, a molecular dynamics simulation is employed to
explore the conductive behavior of the mixed NPs (small NPs and big NPs) filled PNCs.
Especially, the respective roles of small NPs and big NPs in constructing the percolated
network are discussed which is beneficial to uncover the conductive mechanism of PNCs.

2. Models

In this work, by adopting a coarse-grained model, first the initial configuration of
PNCs is constructed where each polymer is consistent of 30 beads [29]. In addition, each
system contains 1600 polymer chains. The m and σ denote the mass and diameter in
each polymer bead, respectively. The size distribution of NPs is set to be the bimodal
distribution, which is consistent with the theoretical or experimental works [30,31]. Thus,
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two types of spherical NPs with different sizes are adopted in the matrix. Considering
the computational power, the diameters of small and big NPs are fixed to 1σ and 4σ,
respectively [11,32].

The modified Lennard–Jones interaction potential is employed to model the interac-
tions between different beads [29], given by

Uij(r) =

 4εij

[(
σ

r−rEV

)12
−
(

σ
r−rEV

)6
]

r− rEV < rcuto f f

0 r− rEV ≥ rcuto f f

(1)

where rcuto f f stands for the position where the interaction is truncated and shifted. The
rEV denotes the excluded volume effect between the different beads. The interaction εij, the
cutoff distance rcuto f f and the rEV are presented in Table S1. These parameters can make the
NPs relatively uniform distribution in the matrix, which can form the percolated network.

The chemical bonds within the polymer chains are simulated by the stiff finite extensi-
ble nonlinear elastic potential, given by

VFENE = −0.5kR2
0ln[1− (

r
R0

)
2
] (2)

where the k is set to be 30 ε
σ2 and R0 is 1.5σ, which are consistent with the previous

works [29].
Since we did not focus on a specific polymer chain, the reduced units are adopted

for all physical quantities, such as the energy units ε, the length units σ, the mass units
m, and the time unit τ(τ = (mσ2/ε)

1/2). At the beginning, the initial configuration of
PNCs is constructed with a lower density in a simulation box. The simulation systems
are then equilibrated with the isothermal-isobaric (NPT) ensemble for 2 × 105 τ with a
timestep of δt = 0.001τ. The P∗ and T∗ are set to be 0.0 and 1.0, respectively, which are
controlled by the Nose–Hoover barostat and thermostat. The periodic boundary condition
is applied during the whole simulation. It is noted that the polymer chains have been
checked to experience fully relaxed for each system. The simulation process for calculating
the percolated network has been described in the previous works [16,33], which is also
shown in the supporting information. The diagram of a typical polymer nanocomposite
is presented in Figure S1, which can help to understand the simulated systems. Then,
the 10,000 configurations are obtained to calculate the conductive probability whose time
interval is chosen to be 10τ. The conductive probability is defined as the ratio of the
number of the conductive configurations to that of all the configurations. Finally, the
SLLOD methods are employed to simulate the shear flow, which is one widely used
method for analyzing the shearing materials [34]. In addition, the special Lees–Edwards
“sliding brick” boundary conditions [35] is adopted for the SLLOD equation. For more
simulation details, refer to our previous works [16,33]. All MD runs are completed in the
large scale atomic/molecular massively parallel simulator (LAMMPS) [36].

3. Results and Discussion
3.1. Ratio of Big Nanoparticles to the Total Nanoparticles

In general, the NPs are available in a wide variety of sizes in the real system, which
will in turn influence the conductive behavior of PNCs. Thus, to understand the conductive
behavior, we first explored the dependence of the conductive probability Λ on the α. Here,
the α denotes the mixing ratio of big NPs, which is calculated by the concentration ratio of
big NPs to the total NPs. Figure 1a presents the change of the conductive probability Λ
with the concentration (ϕ) of NPs for different mixing ratio α. The concentration of NPs is
defined to be volume ratio of all the NPs to the simulation box. As the increase of the ϕ, the
percolated network slowly grows up and becomes completed. Then, the formation of the
percolated network quickly improves the Λ from 0 to 1. Here, the percolation threshold
ϕc is defined as the volume fraction of NPs at Λ = 0.5, which is calculated by fitting the
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curves in Figure 1a with a hyperbolic tangent equation: Λ = 0.5 + 0.5tanh(2(ϕ− ϕc)/dc)
where dc denotes the percolation width [37,38]. As shown in Figure 1b, the ϕc exhibits a
monotonous rise with the increase of the α which reflects that small NPs can build the
percolated network at a relatively low concentration. This is because the number of small
NPs is much larger than that of big NPs at the same concentration, which helps to build
the percolated network.
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To further understand the results, the distribution state of NPs is analyzed by the
radial distribution function (RDF). The peak position at r = 1σ for α 6= 1.0 or r = 4σ
for α = 1.0 means the direct contact aggregation structure of NPs. The peak position at
r = 2σ for α 6= 1.0 or r = 5σ for α = 1.0 denotes the sandwiched structures of NPs. From
Figure S2a, the RDF curves are similar for α < 1.0 due to more small NPs than big ones.
Meanwhile, the low height of peaks in RDFs and the diagrams of NPs in Figure S2b can
visually reflect a relatively uniform dispersion. The distribution behavior of particles can
influence the conductive probability which however is more dependent on the percolated
network. To analyze the percolated network, two important parameters are introduced,
namely, the largest size Cn and the number Nc of clusters. The dependence of the Cn and
the Nc on the ϕ for different α is presented in Figure 2.

It is found that the Cn rises slowly at first, and then, the rising speed becomes larger
when the ϕ is beyond a critical value. Corresponding to it, the Nc exhibits a nonmonotonic
change, which reaches the maximum at the moderate ϕ. This indicates that the initial small
clusters emerge to become large clusters with increasing the ϕ. Meanwhile, Nc is reduced
as α goes up because of the reduced number of NPs. Thus, the Cn is more sensitive and
accurate than the Nc to represent the percolated network. Furthermore, the diagrams of
the largest clusters are shown in Figure 3 for various α and ϕ, which reflects the formation
process of percolated networks. The largest cluster is isolated at low ϕ and then becomes
larger with the ϕ. At last, there appears a percolated network which leads to the high Λ.



Materials 2021, 14, 3301 5 of 14Materials 2021, 14, x FOR PEER REVIEW 5 of 16 
 

 

5 10 15 20 25 30 35
0

2000

4000

6000

8000

ϕ(%)

C
n

 α = 0.00
 α = 0.25
 α = 0.50
 α = 0.75
 α = 1.00

(a)

 
5 10 15 20 25 30

0

200

400

600

800

N
c

ϕ(%)
 

(b)

 α = 0.00
 α = 0.25
 α = 0.50
 α = 0.75
 α = 1.00

 

Figure 2. (a) The largest size nC  and (b) the number cN  of clusters with respect to the concentration ϕ  of nanoparticles 

for various mixing ratios (α ). 

It is found that the nC  rises slowly at first, and then, the rising speed becomes larger 

when the ϕ  is beyond a critical value. Corresponding to it, the cN  exhibits a nonmono-
tonic change, which reaches the maximum at the moderate ϕ . This indicates that the 
initial small clusters emerge to become large clusters with increasing the ϕ . Meanwhile, 

cN  is reduced as α goes up because of the reduced number of NPs. Thus, the nC  is more 

sensitive and accurate than the cN  to represent the percolated network. Furthermore, the 
diagrams of the largest clusters are shown in Figure 3 for various α  and ϕ , which re-
flects the formation process of percolated networks. The largest cluster is isolated at low 
ϕ  and then becomes larger with the ϕ . At last, there appears a percolated network 
which leads to the high Λ .  

Figure 2. (a) The largest size Cn and (b) the number Nc of clusters with respect to the concentration ϕ of nanoparticles for
various mixing ratios (α).

Materials 2021, 14, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. Diagrams of the largest cluster at four concentrations ϕ  of nanoparticles (NPs) for dif-
ferent mixing ratios (α ). 

To describe more in depth their respective roles in constructing the percolated net-
work, the ratio of big NPs in the largest cluster to the total big NPs is calculated in respect 
of the mixing ratio α  in Figure 4.  

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

α

 γ = 0.0
 γ = 0.1
 α

 
Figure 4. Ratio of big nanoparticles (NPs) to the whole NPs in the largest cluster for two shear rates 𝛾 for different mixing ratios (α ). 
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To describe more in depth their respective roles in constructing the percolated network,
the ratio of big NPs in the largest cluster to the total big NPs is calculated in respect of the
mixing ratio α in Figure 4.
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Figure 4 also contains the concentration ratio α of big NPs to the whole NPs in the
matrix (namely α), which presents a better comparison. It is found that this ratio (red line)
rises with the α which however is a weakly higher than the α (black line). This means
that big NPs take part more in constructing the percolated network than small ones. This
is mainly due to the large size of big NPs which can connect more other NPs. However,
this effect is very weak which is due to the uniform dispersion of NPs. Furthermore,
according to the Sun’ theory [20], the percolation threshold can be calculated according to
the excluded volume theory, given by

ϕSN

ϕSN
0

+
ϕBN

ϕBN
0

= 1 (3)

where ϕSN and ϕBN are the respective concentrations of small and big NPs in the ternary
systems when the system reaches the percolation state. Namely, the total concentration
of NPs is the percolation threshold which is shown in Figure 1b. ϕSN

0 and ϕBN
0 are the

percolation thresholds of one kind of NP, respectively. If the simulated result is below Sun’s
line, it reflects the synergy. Conversely, it represents the antagonism.

Figure 5 shows that the simulation values are slightly beyond that in Equation (3),
which indicates a weak antagonistic effect. This is because on the one hand, the number
of small NPs is larger than that of big NPs at the same concentration. On the other hand,
one big NP can connect more other ones than one small NP. This can rationalize the
obtained results. Furthermore, we analyzed the impact of the size polydispersity of NPs
on the conductive probability Λ to describe more in depth their impact on building the
percolated network. First, the corresponding averaged diameter (DNP) of NPs is calculated
for different α in Figure S3. The DNP is calculated as the following equation:

DNP
3(N1 + N2) = D1

3N1 + D2
3N2 (4)

where N1 and D1 are the number and diameter of big NPs while N2 and D2 are the number
and diameter of small NPs. The calculated Λ is presented in Figure 6a for the monodisperse
NPs (namely, polydispersity index = 1.0). Similarly, the percolation threshold ϕc is obtained
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which is shown in Figure 6b. It indicates that the ϕc for monodisperse NPs is lower than
that for polydisperse NPs. This indicates that the NPs with different sizes do not exhibit
the synergistic effect which is consistent with the previous conclusion. However, it has
reported a synergetic percolation for mixed fillers in experiments [39–41]. In these systems,
the synergetic effect is realized by adding the additional second fillers into the first fillers
which means that the total concentration of fillers increases. Figure 7 presents the change
of the Λ with the ϕBN at three fixed concentrations ϕSN of small NPs as examples. The ϕc
is gradually reduced from the 27.3% to 24.5% with increasing the ϕSN , which proves the
experimental results. In total, the percolation threshold gradually rises by increasing the
mixing ratio of big NPs. However, small and big NPs exhibit a weak antagonistic effect if
their total concentration is fixed.
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3.2. Shear Field

In this section, we aimed to investigate the effect of the shear flow on the percolated
network. First, Figure 8a shows the conductive probability Λ with the α for different ϕ
by fixing the shear rate

.
γ = 0.1. The obtained percolation threshold ϕc is put in Table S2

which slowly increases with increasing the α at
.
γ = 0.1. Meanwhile, the ϕc at

.
γ = 0.1 is

lower than that at
.
γ = 0.0. To understand it, Figure 8b,c presents the directional conductive

probabilities Λ‖ and Λ⊥. The difference of ϕc is small for Λ‖ and Λ⊥ in Figure S4. This is
because the spherical NPs is isotropic along the shear direction. Then, we analyzed how
the distribution state of NPs is changed by the shear flow where the α = 1.0 is chosen as
an example in Figure S5. From the RDFs, the position at r = 4σ rises, reflecting that NPs
appear more direct contact structures under the shear field. Meanwhile, one big NP can
connect more other NPs than one small NP due to the size effect. Thus, both the direct
contact aggregation structure and the size effect promote that big NPs participate more in
forming the percolated network than small NPs. Namely, the concentration ratio of big
NPs is higher at

.
γ = 0.1 than that at

.
γ = 0.0 which is presented in Figure 4. Furthermore, as

shown in Figure S6, the largest cluster size Cn gradually decreases with increasing the α
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which is in accord with ϕc. Some diagrams of the largest clusters are presented in Figure 9
at

.
γ = 0.0 and 0.1, which clearly presents the change of the percolated network. It is found

that the Cn is enhanced by the shear flow. In summary, more new percolated paths appear
under the shear flow, which reduces the ϕc. At last, the α = 0.75 is taken as an example
to clarify the relationship between the Λ and the

.
γ. The change of the Λ with the

.
γ is

calculated in Figure 10. The ϕc is reduced from 13.0% to 11.3% with increasing the
.
γ from

0.0 to 0.5. Then, both the Λ‖ and Λ⊥ are calculated in Figure S7 which gradually rise with
increasing the

.
γ. This is attributed to more direct contact structures of NPs induced by

the shear field. Furthermore, the Cn is analyzed to characterize the percolated network in
Figure 11, which is consistent with Λ. In total, the conductive property is improved with
increasing the shear strength.
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3.3. Discussion

When mapping this simulation systems to real polymers, the interaction energy ε is
roughly 2.5–3.4 kJ·mol−1 for the common polymers [29]. The interfacial interaction is chosen
to be 2.0 in this model, which means that the interaction energy is 5.0–6.8 kJ·mol−1. The
average binding energy between polymer chains and silica particles is about 4.2–24 kJ·mol−1,
which depends on the filler surface activity and chemical functionality [42,43]. Our sim-
ulated interfacial interaction is roughly within the experimental range. Meanwhile, the
simulated persistence length is 0.68σ while it is 0.35–0.76 nm for real polymers [44]. Thus,
the σ is roughly 1 nm. Furthermore, the diffusion coefficients (D) of NPs with different sizes
are calculated which are 1.52 × 10−2τ−1 and 1.02 × 10−3τ−1, respectively. The simulated
shear strength

.
γ is 0.02–0.5τ−1 which is larger than the experimental values. Thus, the

range of the Peclet number (Pe = γ
D ) is from 1.3 to 490, which can be comparable to the

experimental value [45]. Moreover, the dispersion states and network of NPs have also
explored by this model [46–49], which are consistent with the theoretical and experimental
results [50,51]. Thus, our models are relatively reasonable.

The conductive property of PNCs has been investigated, which is determined by the
size, shape, volume fraction of NPs, the interfacial interaction and so on. For example, the
dispersion state of rod NPs first changes from the aggregation to dispersion and then forms
the local bridging structure. However, the percolation threshold shows an anti N-type with
increasing the interfacial interaction [16]. However, the percolation threshold is reduced by
increasing the interfacial interaction for spherical NPs [52]. The uniform distribution state
improves the distances between NPs, which is no more beneficial to form the percolated
network than a partial contact structure [21]. In addition, the dependence of the fiber aspect
ratio on the percolation threshold follows the exponential function [17]. Especially, the
index parameters vary from 2.0 to 2.6 for two-dimensional networks and from 1.7 to 2.0 for
three-dimensional networks [18,19]. Moreover, the shape of NPs influences the formation
of the percolated network, which reveals that the rod or plate NPs are more effective to
improve the conductive probability than the spherical NPs [22]. The high stiffness of NPs
can reduce the percolation threshold. However, it is minimum under the shear flow [18,20].
In this work, we mainly investigated the effect of mixed NPs with different sizes on the
conductive probability of PNCs. It is found that there is a weak antagonistic effect for two
kinds of NPs with different sizes at the fixed concentration of NPs. Meanwhile, the shear
field is beneficial to reduce the percolation threshold compared with the quiescent state,
which is attributed to the change of the percolated network. Moreover, in experiments, the
effects of the polymer-NP interaction [4], the structures and aspect ratio of NPs [5,7], the
chemical grafting modification of NPs [9,10] and the hybrid NPs with different shapes [8]
on the conductive property of PNCs have been investigated. Moreover, the experiment
reported that the percolation threshold of PNCs declines with the decrease of the filler
size [53,54], which is consistent with our simulation result. However, the effect of mixed
NPs on the formation of the percolated network has not been investigated in experiments
to our knowledge. This maybe because the monodisperse NPs are difficult to obtain in
experiments where NPs are normally polydisperse. Meanwhile, the size of NPs is difficult
to be accurately determined. It is noted that some details of our model are not different
with those of experimental reports, such as the size of polymer chains and NPs and the
distribution state of NPs. Meanwhile, the conductive probability is used to denote the
conductive property rather than the electrical conductivity. However, we are confident that
some aspects of our model capture the behavior of the experimental systems. In particular,
we simulated the interactions between polymer chains and NPs, which are within the
experimental range. In addition, the size distribution of NPs in the model is consistent
with that in experiments. Meanwhile, the simulated shear field is the same as that of the
experiments. Lastly, how the surface size of NPs affects the formation of the percolated
network is also an interesting topic, which deserves to be investigated in our further work.



Materials 2021, 14, 3301 12 of 14

4. Conclusions

In this work, a molecular dynamics simulation is employed to explore the formation
of percolated networks of mixed nanoparticles (NPs) with different sizes (small NPs and
big NPs) in polymer nanocomposites (PNCs). It is found that the big NPs are adverse for
building the percolated network. As the increase of the concentration ratio of big NPs
to the whole NPs, the percolation threshold rises from 5.04% to 27.3%. Furthermore, the
percolated network is characterized by analyzing the dispersion state, the largest size and
the number of clusters, which rationalizes the percolation threshold. Meanwhile, a weak
antagonistic effect is observed for small and big NPs at the fixed concentration of NPs. On
one hand, the number of small NPs is larger than that of big NPs at the same concentration.
Meanwhile, one big NP can connect more other NPs than one small NP. These two contrast
effects can explain the results. Furthermore, the shear field is beneficial to improve the
conductive probability compared with the quiescent state. This is because the NPs form
more direct contact aggregation structures which can link other particles to build the new
percolated network. Therefore, the big NPs participate more in forming the new percolated
paths than small NPs. Finally, the percolation threshold is lowered with increasing the
shear strength. In total, our work provides further understanding of the effect of the mixed
NPs with different sizes on building the percolation network of PNCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14123301/s1, Figure S1. (a) The radial distribution function for different mixing ratios
(α) where the concentration ϕ of nanoparticles (NPs) is their percolation threshold. (b) Diagrams of
NPs where the polymer chains are neglected for clarity, Figure S2. The averaged diameter (DNP) of
nanoparticles for different mixing ratios α, Figure S3. The percolation threshold ϕc for the parallel
directional conductive probability Λ‖ and perpendicular directional conductive probability Λ⊥ in
respect of the mixing ratio α, Figure S4. The radial distribution function of nanoparticles for the
mixing ratio α = 1.0, Figure S5. The largest size Cn of cluster as a function of the concentration ϕ

of nanoparticles for different mixing ratios (α), Figure S6. (a) The parallelly directional conductive
probability Λ‖ and (b) perpendicularly directional conductive probability Λ⊥ as a function of the
concentration ϕ of nanoparticles for different shear rates (

.
γ), Table S1 All the interaction parameter

εij, the cutoff distance rcuto f f and the rEV .
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