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Abstract: Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough
therapy for hematological malignancies. Despite their success, clinical experience has revealed several
challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell
acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some
cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens,
should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address
both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable
UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two
elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link
the T-cells to their respective targets on tumor cells. The TMs function as keys that control the
switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10
TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting
the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.

Keywords: CD10; immunotherapy; CAR T-cells

1. Introduction

Chimeric antigen receptor (CAR)-expressing T-cells have indeed shown a remarkable
potential for the treatment of various B-cell related malignancies, which has led to the
approval of several CAR T-cell products such as Kymriah™, Yescarta™ and others [1-3].
However, clinical experience has shown that targeting single antigens, such as CD19, on
leukemic cells can result in relapse with antigen-negative leukemic clones following the
treatment [4-6]. Therefore, it became crucial to find additional targets, which are widely
expressed in B-cell malignancies, in order to allow subsequent or combinational targeting of
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leukemic cells, and thereby avoid relapse. Another vital aspect that needs to be addressed
in regards to CAR T-cell therapy, is the risk of developing severe side effects, such as
cytokine release syndrome or neurological toxicities, which could be life threating [7-9].

In our paper, we tackled both issues by investigating the feasibility of targeting the
common acute lymphoblastic leukemia antigen, also known as CD10, with our switch-
able UniCAR technology. CD10 is known to be a transmembrane metalloprotease that
cleaves and inactivates a variety of functional neuro- and hormonal peptides [10,11]. It is
present in common lymphoid progenitors and several stages of B-cell development [12-14].
CD10 is considered an interesting therapeutic target, due to its expression on a variety of
B-cell malignancies, including B-cell acute lymphoblastic leukemia (B-ALL) [14,15]. In fact,
CD10 was first identified as a common ALL antigen, due to the reaction of its anti-serum
with the majority of non T-cell ALL cells [16]. Moreover, it was found to be expressed in
lymphomas, such as Follicular lymphoma, Burkitt lymphoma and others, which makes
it a commonly used marker for the classification and differentiation of these various B-
cell malignancies [17-23]. Interestingly, CD10 expression is not limited to hematological
malignancies, and has also been shown to be overexpressed in several solid tumors, such
as melanoma, colorectal cancer, prostate cancer, thyroid carcinoma and others [24-33].
Furthermore, it has been found to be correlated with prognosis, tumor metastasis and
aggressiveness [30,31,34-37]. Based on the aforementioned facts, CD10 represents a valu-
able tumor target, especially for immune-based therapies, such as CAR T-cells [38,39].

Since CD10 is also expressed in certain healthy tissues, like the kidneys, epithelial
cells of the prostate, liver and others [10,11], targeting it with conventional CAR T-cells
needs an improved safety approach, which could be achieved with our switchable UniCAR
technology. The UniCAR system is a modular system composed of UniCAR T-cells that
cannot recognize surface antigens unless a second soluble adaptor molecule—the target
module (TM)—is present [40,41]. In general, TMs consist of a target-binding domain to
which a peptide sequence is fused as an epitope tag. Commonly, we use, as a tag, the
continuous peptide epitope E5BY, that is part of the primary sequence of the human nuclear
protein La-SS/B [42,43]. As the extracellular antigen-binding domain of the UniCAR is
derived from the anti-La monoclonal antibody (mAb) 5B9, it recognizes the E5B9 epitope
of the respective TM. With its binding site, the TM binds to a tumor antigen. The resulting
cross-linkage finally leads to the activation of UniCAR T-cells and, subsequently, to the
elimination of tumor cells (Figure 1A). Steering of the UniCAR T-cell activity is based on
the concentration and half-life of the TM, which is usually short in order to allow a fast
on/off switch and thereby control unwanted side effects (Figure 1A). Previously, we have
proven the efficiency of the UniCAR system in targeting a wide range of hematological
and solid tumors, both in pre-clinical and clinical studies [44-52]. Here, we have designed
and created a TM, based on a CD10 mAb, and provided proof of concept for the efficient
targeting of a CD10-expressing B-ALL cell line, as well as patient-isolated ALL blasts using
the UniCAR system.
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Figure 1. Design and expression of anti-CD10 target module. (A) Schematic representation of the
UniCAR system; UniCAR T-cells can only be activated in the presence of the target module (TM) and
their target cell (On). In the absence of the TM, the UniCAR T-cells are switched off (Off). (B) The
anti-CD10 TM was obtained by joining the variable light and heavy (Vi, V) chain domains of
CD10 monoclonal antibody (mAb) via peptide linkers followed by fusion of the E5B9 epitope and a
hexa-histidine (6xHis) tag. (C) The purified TM was analyzed by SDS-PAGE along with bovine serum
albumin (BSA) standard, followed by Quick Coomassie® Stain. (D) Alternatively, the separated
proteins were blotted on nitrocellulose membrane and detected with mouse anti-penta-His Ab and
the reaction of the alkaline phosphatase-conjugated to secondary anti-mouse IgG Ab. W1, W2:
washes of Ni-NTA columns after purification; S: sample elution (anti-CD10 TM), MW: Molecular
weight marker, Li: Linker, SP: Igk signal peptide.

2. Results
2.1. Expression and Purification of Anti-CD10 Target Modules

The sequences of the variable light and heavy domains (Vi and Vy) of an anti-CD10
mADb were determined by sequencing of amplified cDNA that was prepared from hy-
bridoma cells MEM-78. The Vg and Vi, domains were linked via flexible glycine-serine
linkers. We fused the E5B9 epitope, followed by a hexa-histidine (6xHis) tag, C-terminally
of the resulting single-chain fragment variable (scFv), to allow purification with Ni-NTA
affinity chromatography. At the N-terminus, the signal peptide sequence of murine Igk
was added, in order to allow the secretion of the TM (Figure 1B).

Following purification of the TMs from the culture medium of transduced 3T3 cells,
the eluted fractions were analyzed on SDS-PAGE and stained with Quick Coomassie® Stain
(Figure 1C). Alternatively, the proteins were immunoblotted on a nitrocellulose membrane,
and detected with a mouse anti-penta-His Ab (Figure 1D). The full-length TM was detected
on the Coomassie-stained gel as well as on the Western blot. The theoretical size of the
TM is around 30 kDa. However, it runs slightly higher on the SDS-PAGE gel, as shown in
Figure 1C,D, which hints to a post-translational modification of the molecule, or aberrant
mobility on the gel. Most importantly, the TM was successfully purified and could be used
for further functional analysis.

2.2. The Novel Anti-CD10 Target Module Binds Effectively to B-ALL Cell Line

The ability of anti-CD10 TM to bind to the CD10-expressing B-ALL cell line (Nalm-6)
was detected with anti-La mAb (clone 5B9) specific for the E5B9 tag in the TM. As shown
in Figure 2, the TM was able to bind to all the Nalm-6 Luc cells, which were confirmed to
express CD10 on their surface by staining with an anti-CD10 mAb (Figure 2, upper panel).
In addition, we used the previously established anti-CD19 TM as a positive control for the
binding [44]. The specificity of the anti-CD10 TM was confirmed on the CD10-negative cell
line Molm-13 Luc, where no binding of the TM was detected (Figure 2, lower panel).
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Figure 2. Binding of the novel anti-CD10 TM to Nalm-6 cells. Nalm-6 Luc or Molm-13 Luc cells
were stained with either VioBlue-conjugated anti-CD10 mAb, anti-CD10 TM, VioBlue-conjugated
anti-CD19 mAb or anti-CD19 TM. The binding of the TMs was then detected using anti-La mAb
(clone 5B9) followed by anti-mouse-IgG-Alexa Fluor 647. Binding is represented by a shift in the
signal (dark gray). As a negative control, cells were stained with either VioBlue-conjugated isotype
control or with anti-La mAb and the detection Ab without the TM (light gray). Binding is indicated
as a percentage (%) of positively stained cells.

2.3. UniCAR T-Cells Armed with Anti-CD10 Target Module Exert Specific In Vitro Cytotoxicity
against Leukemic Cell Line

In order to investigate the specific cytotoxic activity of armed UniCAR T-cells, they
were incubated with the CD10-expressing cell line Nalm-6 Luc or the CD10-negative cell
line Molm-13 Luc (Figure 2). As demonstrated in Figure 3A, the UniCAR T-cells (UniCAR
28/ ¢) redirected with anti-CD10 TM caused specific and significant lysis of Nalm-6 Luc cells,
whereas no significant lysis was observed with Molm-13 Luc cells that lack the targets CD10
and CD19. As a positive control, we included a previously established anti-CD19 TM [44],
which resulted in a lysis of the target cells at a level comparable to the anti-CD10 TM.

In addition, the ability of UniCAR T-cells to target the Nalm-6 Luc cell line was
evaluated at different effector to target cell ratios (E:T) in the presence, or absence, of the
novel TM against CD10. As shown in Figure 3B, redirected UniCAR T-cells effectively, and
significantly killed CD10-expressing Nalm-6 Luc cells in the presence of the anti-CD10 TM,
even at low E:T ratios. The killing effect further increased with increasing E:T ratios. In
contrast, no significant target cell lysis occurred in the absence of the TM. In this experiment,
Vector control T-cells (lacking the UniCARs), or non-signaling UniCAR stop T-cells, were
used as controls. As observed, these controls caused only a slight killing background
when tested for the highest two E:T ratios, regardless of the presence, or absence, of the
anti-CD10 TM (Figure 3B). In conclusion, UniCAR T-cells armed with anti-CD10 TM kill
CD10-expressing leukemic cells in a target-specific manner.
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Figure 3. Targeting Nalm-6 Luc cells with UniCAR T-cells armed with anti-CD10 TM. (A) Either
Nalm-6 Luc or Molm-13 Luc cells were incubated with UniCAR T-cells in the addition of 50 nM
anti-CD10 or anti-CD19 TM at 5:1 effector to target cell (E:T) ratio (** p < 0.0021, comparison to sample
w/o TM; One-way ANOVA with Dunnett’s multiple comparison test). (B) Nalm-6 Luc cells were
incubated with different ratios of UniCAR T-cells for 7 h in the absence, or presence, of 50 nM of the
anti-CD10 TM. The Vector control (expressing EGFP only), or the UniCAR stop (lacking signaling
domains) T-cells were included as controls at the two highest E:T ratios. The cytotoxic effect was
then evaluated using a luminescence-based assay. Results are shown as mean + SD for two to four
independent T-cell donors as indicated in the figure (** p < 0.0021, *** p < 0.0002, **** p < 0.0001,
comparison to samples w/o TM; Two-way ANOVA with Bonferroni’s multiple comparison test).

2.4. Estimation of Effective Working Concentrations of Anti-CD10 Target Module

UniCAR T-cells kill tumor cells dependent on the concentration of the specific TM,
which plays an important role in the efficacy and controllability of the UniCAR system.
Here, we have tested the UniCAR T-cells with a range of TM concentrations in order to
determine the functional window. A shown in Figure 4, the killing activity of UniCAR
T-cells can be titrated according to the TM concentration. A nanomolar range of the TM
is needed to activate UniCAR T-cells to kill Nalm-6 Luc cells. The half-maximal effective
concentration (ECsp) was estimated to be around 7 nM.

2.5. Redirected UniCAR T-Cells Release Cytokines upon Engaging with CD10-Expressing
Leukemia Cells

Secretion of cytokines is another vital function of T-cells, which allows the regulation
of other immune components that are involved in the anti-tumor response. Here, we have
investigated the ability of UniCAR T-cells to release pro-inflammatory cytokines upon
engaging with Nalm-6 Luc cells in the presence of anti-CD10 TM and anti-CD19 TM.
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Figure 4. Estimation of effective working concentrations of anti-CD10 TM. In order to determine the
half-maximal effective concentration (ECsp) of the anti-CD10 TM, Nalm-6 Luc cells were incubated
with UniCAR T-cells at an E:T ratio of 5:1 in the presence of a range of anti-CD10 TM concentrations
(1000 nM to 0.05 nM) for 7 h. The killing was then evaluated using luminescence-based assay. Results
are shown as mean £ SD of four independent T-cell donors (* p < 0.0332, ** p < 0.0021, *** p < 0.0002,
comparison to sample w/o TM; One-way ANOVA with Dunnett’s multiple comparison test).

As shown in Figure 5, UniCAR T-cells are able to significantly increase the production
of IFNy, TNF and IL-2 upon engaging with leukemic cells via the anti-CD10 TM or the
anti-CD19 TM; although a higher cytokine release was induced by the latter. As a proof
of specificity, the same conditions were applied on a CD10-negative cell line (Molm-13
Luc) in which no significant increase of cytokines was observed. In addition, no, or only
marginal, cytokine levels were detected in the control settings in which UniCAR T-cells
were co-cultured together with targets cells without TMs, or in combination with the TM
but in the absence of target cells.
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Figure 5. Cytokine release from UniCAR T-cells upon engaging with Nalm-6 Luc cells via anti-CD10
TM. UniCAR T-cells were incubated for 7 h, either alone or in the presence of one of the cell lines
(Nalm-6 Luc or Molm-13 Luc), at 5:1 E:T ratio. There was also the addition of 50 nM of anti-CD10 TM
or anti-CD19 TM. The cell-free supernatants were then collected and the cytokines were analyzed by
Enzyme-Linked Immunosorbent Assay (ELISA). Data is shown as mean + SD of three independent
T-cell donors (** p < 0.0021, ** p < 0.0002, **** p < 0.0001; comparison to sample w/o TM; One-way
ANOVA with Dunnett’s multiple comparison test).

In addition, we have analyzed a panel of cytokines, including GM-CSF, IFN-«, IFNv,
IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, IL-17A and TNF-«, using bead-based technology
(MACSPIlex assay). We could detect GM-CSEF, IFNy, TNF-« and IL-2 in a comparable
level to conventional Enzyme-Linked Immunosorbent Assay (ELISA). However, all other
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cytokines were undetectable or secreted at very low levels. A selection of cytokines is
shown in Supplementary Figure S1.

2.6. Killing of Patient-Derived ALL Blasts with Armed UniCAR T-Cells

Envisioning clinical translation, we aimed to create more resemblance to natural
disease conditions. Therefore, we tested our armed UniCAR T-cells with patient-derived B-
ALL blasts, which are characterized by expression of CD10 and CD19 antigens (Figure 6A).
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Figure 6. Targeting patient-derived B-ALL blasts with armed UniCAR T-cells. (A) Expression of CD10
and CD19 on B-cell acute lymphoblastic leukemia (B-ALL) blasts was detected by flow cytometry
after staining with VioBlue-conjugated anti-CD10 or anti-CD19 mAb (dark gray). As a negative
control, cells were stained with isotype control (light gray). (B) B-ALL blasts were incubated with
UniCAR T-cells in the presence of 50 nM anti-CD10 TM, anti-CD19 TM or combination of both TMs
at an E:T ratio of 1:1. The viability of ALL blasts was measured using flow cytometry after 24 and
48 h. Results are shown as mean £ SD of two independent T-cell donors for each B-ALL donor (Dn.).

The cytotoxic effect was measured after 24 and 48 h of co-incubation of UniCAR
T-cells and the blasts, in the absence or presence of anti-CD10/CD19 TMs, using a flow
cytometry-based assay. Due to the modular feature of the UniCAR system, a dual targeting
strategy can be applied, where both antigens (CD10 and CD19) can be targeted at the same
time by simply applying a combination of both anti-CD10 and anti-CD19 TMs.

As shown in Figure 6B, UniCAR T-cells armed with anti-CD10 TM led to an increase
in the specific lysis of the blasts at 24 h with a further increase at 48 h. Some back-
ground lysis could be observed in the absence of TM, which could be attributed to the
allogenicity between UniCAR T-cells and B-ALL blasts. Both anti-CD10 and anti-CD19
TMs showed comparable potencies. Moreover, combining both TMs did not show a further
increase of blasts lysis. In summary, both antigens CD10 and CD19 could be targeted using
the same UniCAR T-cells, leading to an increase in the specific lysis of patient-derived
leukemic blasts.
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3. Discussion

The emergence of immune-based therapeutic strategies has started revolutionizing
the treatment of cancer. While targeting of solid tumors still faces several hurdles [53-55],
CAR T-cell targeting CD19 in leukemia and lymphoma has found its way into clinical
application, due to high success rates achieved with the therapy [56,57]. However, the
clinical use of CAR T-cells has also revealed several drawbacks that need to be addressed
in order to optimize their therapeutic use. CD19-specific CAR T-cells can lead to depletion
of healthy B-cells and consequently, acquired hypogammaglobulinemia as a result of the
on-target/off-tumor effect and the persistent activity of CAR T-cells [58]. In addition,
life-threatening toxicities could occur and jeopardize the health of patients [58]. Therefore,
there has been a need for improved safety approaches that can provide controllability of
the engineered T-cells. Indeed, this has been shown with our switchable UniCAR system,
not only in pre-clinical settings but also in a recent phase-1 clinical study [45,49].

Some of the ALL patients treated with anti-CD19 CAR T-cells had partial responses,
resistance or even relapse [59]. Targeting single antigens (e.g., CD19) can be associated
with the emergence of either altered forms of the target antigen or completely antigen-
negative leukemic clones, leading to ineffectiveness of the treatment [4,60]. Therefore,
other targets, such as CD20 or CD22, are being investigated to allow subsequent or co-
targeting of leukemic cells [61-64]. In this study, we investigated the targeting of CD10,
a common ALL antigen, which is expressed in several types of leukemia and lymphoma.
Despite the wide use of CD10 as a diagnostic and prognostic marker in B-cells and other
malignancies [14,19,29,37,65], its potential as a target for immunotherapy is understudied.

We have previously described in detail the successful targeting of CD19 on B-ALL cell
lines using switchable UniCAR technology [44]. In this study, we describe the design and
characterization of a novel anti-CD10 TM, which is based on an anti-CD10 mAb. Although
the novel TM is monovalent, it was shown to keep its binding ability to CD10-expressing
cells. We have also demonstrated that the TM-armed UniCAR T-cells can induce specific
and significant lysis of B-ALL cell lines. In fact, a nanomolar concentration of the TM
was sufficient to activate the UniCAR T-cells to exert a cytotoxic effect and to secrete
pro-inflammatory cytokines.

We also compared the anti-CD10 TM with our previously-established anti-CD19 TM.
As observed, the maximum cytotoxic effect of UniCAR T-cells, armed with anti-CD10 TM,
was comparable to that of anti-CD19 TM, but with a higher secretion of pro-inflammatory
cytokines induced by the latter. Combining both TMs simultaneously did not appear to
further enhance the maximum lysis of primary ALL blasts under the applied conditions.
This was actually expected, since the majority of blasts expressed CD10 and CD19 and
could already be effectively eliminated upon monospecific targeting. However, we have
shown that the same UniCAR T-cells can be efficiently redirected with either anti-CD10
and/or anti-CD19 TMs, which might be helpful to overcome tumor escape variants and
tumor heterogeneity, enabling an overall enhanced anti-tumor effect in patients.

In summary, efficient elimination of B-ALL cells can be achieved by targeting CD10
using UniCAR technology. Importantly, the modular nature of the UniCAR system provides
the ability to switch the UniCAR T-cells on and off, and thereby it allows the sparing of
healthy B-cells after termination of the treatment, and also aids in reducing the risk of
toxicities, while granting the flexibility to target several antigens on B-ALL cells.

4. Materials and Methods
4.1. Cell Culture

Nalm-6 cells and Molm-13 were purchased from DSMZ (Braunschweig, Germany),
and cultured in RMPI medium containing 10% FCS in addition to 100 pg/mL peni-
cillin/streptomycin, 1 mM sodium pyruvate, 1% non-essential amino acids and 2 mM
N-acetyl-L-alanyl-L-glutamine (Sigma Aldrich, Darmstadt, Germany). The cells were used
without further authentication. Nalm-6 cells and Molm-13 cells were transduced to express
the firefly luciferase (Photinus pyralis) using a lentiviral vector, resulting in Nalm-6 Luc and
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Molm-13 Luc, as described previously [50]. TM-producing 3T3 cell lines were cultured in
DMEM medium, containing 10% FCS, 100 pg/mL penicillin/streptomycin and 1% non-
essential amino acids (Sigma Aldrich). Cells were kept at 37 °C with 5% CO, and passaged
twice per week.

Patient-derived frozen bone marrow mononuclear cells (BMNCs) were quickly thawed
and then incubated for 1 h at 37 °C in RPMI 1640 medium, containing 5% FCS, 2500 U/mL
Heparin (Biochrom GmbH) and 2000 U/mL DNAse (Sigma Aldrich). Afterwards, the
cells were cultured in StemSpanTM medium (STEMCELL Technologies GmbH, Cologne,
Germany), containing 2% FCS, 100 ug/mL penicillin/streptomycin, 2 mM N-acetyl-L-
alanyl-L-glutamine, and supplemented with 10 ng/mL of fms-related tyrosine kinase 3
ligand (FLT3-L), 10 ng/mL stem cell factor (5CF), 10 ng/mL thrombopoietin (TPO) and
10 ng/mL interleukin-3 (IL-3).

4.2. Expression and Purification of Recombinant Anti-CD10 Target Modules

For the construction of CD10 TMs, the Vi and Vi, domains sequences of anti-CD10 mAb
clone MEM-78 were used. To determine the sequences of the variable domains, cDNA of MEM-78
hybridoma cells was amplified with Advantage HF2 PCR Kit (Clontech Laboratories, Inc., Mountain
View, CA, USA), with the forward primer (5-TTTTTGGATCCSARGTNMAGCTGSAGSAGTCWGG-
3’) and the reverse primer (5'-GGAAGATCTATAGACAGATGGGGGTGTCGT-3') for the
detection of the Vi domain, and the primers set: (Forward: 5'-TGGAYTYCAGCCTCCAGA-
3) and (Reverse: 5-CGACTAGTCGACTGGTGGGAAGATGGATACAG-3') for the Vi,
domain. The amplified sequences were then cloned into the plasmid pGEM®-T Easy, as
described by the manufacturer (Promega GmbH, Mannheim, Germany). Afterwards, the
inserts were sequenced (Microsynth Seqlab GmbH, Goettingen, Germany).

The anti-CD10 TM was designed by joining the Vi and V|, domains via glycine-serine
peptide linkers. In addition, we fused the E5B9 and the 6xHis tag at the C-terminus.
This in-silico designed nucleotide sequence was then synthesized by Eurofins Genomics
GmbH (Ebersberg, Germany). The synthesized sequence was inserted into the lentiviral
vector p6NST50 via the restriction enzymes Nhel/Mssl (insert digestion) and Xbal/Hpal
(vector digestion) (ThermoFisher Scientific, Hennigsdorf, Germany). The anti-CD10 TM
was expressed in 3T3 cells, which were generated by transduction with lentiviral particles
encoding the TM sequence. Afterwards, the supernatants of transduced 3T3 cells were
collected, and the TMs were purified with Ni-NTA affinity columns (Qiagen, Hilden,
Germany) through the C-terminal 6xHis tag, followed by analysis with SDS-PAGE, staining
with Quick Coomassie® Stain (SERVA Electrophoresis GmbH, Heidelberg, Germany) or
immunoblotting, as described previously [49,50].

4.3. Isolation and Genetic Modification of T-Cells

T-cells were isolated from buffy coats that were obtained from the German Red Cross
(Dresden, Germany) with the informed consent of voluntary healthy donors. The periph-
eral blood mononuclear cells (PBMCs) were isolated via density gradient centrifugation.
Subsequently, the T-cells were magnetically labeled and separated using the Pan T Cell
Isolation Kit and autoMACS® Pro Separator (Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany). The detailed design and generation of the genetically modified UniCAR T-cells
and the control T-cells (Vector and UniCAR stop control) were described in detail previ-
ously [49,51,52]. During transduction and expansion, T-cells were cultured with IL-15, IL-7
(ImmunoTools, Friesoythe, Germany) and Proleukin® (Novartis Pharmaceuticals, Basel,
Switzerland). However, around 24 h before the assays, genetically modified T-cells were
cultured in RPMI complete medium without the cytokines.

4.4. Cytokine-Release Assay

The detection of cytokines IFNy, TNF, IL-2 was performed on cell-free supernatants
from a co-culture of 1 x 10* Nalm-6 cells with 5 x 10* UniCAR T-cells in the presence,
or absence, of 50 nM of either anti-CD10 or anti-CD19 TM in a total volume of 200 pL
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medium. The cytokine detection was performed using ELISA (BD Biosciences, Heidelberg,
Germany), according to the manufacturer’s instructions. A standard curve, ranging from
7.8 to 500 pg/mL, was used in order to quantify each cytokine. Samples were diluted to
make sure they fall below the maximum of the standard curve.

Alternatively, a panel of cytokines were measured in the supernatants using MACSPlex
cytokine 12 kit (Miltenyi Biotec GmbH), according to the manufacturer’s instructions, and
were analyzed using a MACSQuant® Analyzer and MACSQuantify® software (Miltenyi
Biotec GmbH). A standard curve, ranging from 3.2 to 10,000 pg/mL, was used in order to
quantify the cytokines.

4.5. Flow Cytometry Analysis

In order to detect binding of the anti-CD10 TM to CD10 extracellular domain, 1 x 10°
Nalm-6 Luc or Molm-13 Luc cells were first incubated with 5 uL of FcR blocking Reagent
(Miltenyi Biotec GmbH), and then stained with anti-CD10 TM (2 pg/50 uL PBS/2% ECS)
for 1 h. Thereafter, the cells were washed with PBS and incubated with the anti-La mAb
(clone 5B9), directed against the ESB9 epitope (50 uL of 5 ng/mL, 1 h). This was followed by
washing with PBS and 30 min incubation with Alexa Fluor 647-labeled goat anti-mouse IgG
Ab (Life Technologies, ThermoFisher Scientific). Binding of anti-CD19 TM was performed
as described above. For detection of CD10 and CD19 on the cell lines or on the patient-
derived B-ALL blasts, 1 x 10° cells were stained with VioBlue-conjugated anti-human CD10
or CD19 REAfinity™ mAbs or isotype control (REA Control Antibody (S), human IgG1,
VioBlue®, REAfinity™, 1 uL. Ab/30 uL PBS/2% FCS, 30 min) (Miltenyi Biotec GmbH).
Finally, samples were analyzed using a MACSQuant® Analyzer, MACSQuantify® software
(Miltenyi Biotec GmbH) and FlowJo™ Software (Flow]Jo, Ashland, OR, USA). All stainings
were confirmed at least twice.

4.6. Cytotoxicity Assays

For luminescence-based cytotoxicity assay, cancer cells expressing the firefly luciferase
were used. UniCAR T-cells were co-cultured for 7 h with Molm-13 Luc or Nalm-6 Luc, at
different E:T ratios in the absence, or presence, of 50 nM, or a range of concentrations of the
TM as indicated for each experiment. The protocol for determination and calculation of
specific lysis of tumor cells was described previously in detail [47].

A flow cytometry-based cytotoxicity assay was used for the detection of the viability
of patient-derived B-ALL blasts. Therefore, the blasts were labeled with eBioscience™ cell
proliferation dye eFluor™ 670 (Thermofisher Scientific). After 24 and 48 h of co-culture
with UniCAR T-cells and 50 nM of the TMs, the viable eFluor-labeled blasts were identified
by adding 1 pg/mL of propidium iodide/PBS solution (ThermoFisher Scientific), and
analyzed with MACSQuant® Analyzer and MACSQuantify® software (Miltenyi Biotec
GmbH). The percentage of living cells was calculated using the following equation: (cell
count/mL (sample)/cell count/mL (maximum)) x100%, where the maximum is the cell
count in the wells containing only leukemic cells without the addition of UniCAR T-cells or
TM. Then, the percentage of lysis was calculated as follow: 100%-living cells%.

4.7. Statistical Analysis

Statistical analysis was done using Microsoft World Excel 2017 and GraphPad Prism
9.0 (La Jolla, CA, USA). Statistical significance was determined by one-way ANOVA
with Dunnett’s multiple comparison test, or two-way ANOVA with Bonferroni’s multiple
comparison. P-values below 0.033 were considered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/1jms23094920/s1.
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