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Abstract

Obesity is reaching an epidemic state and has a major impact on health and economy. 
In most cases, obesity is caused by lifestyle factors. However, the risk of becoming 
obese differs highly between people. Individual's differences in lifestyle, genetic, and 
neuroendocrine factors play a role in satiety, hunger and regulation of body weight. In a 
small percentage of children and adults with obesity, an underlying hormonal or genetic 
cause can be found. The aim of this review is to present and compare data on the extreme 
ends of the obesity and undernutrition spectrum in patients with Prader–Willi syndrome 
(PWS), Bardet–Biedl syndrome (BBS), acquired hypothalamic obesity in craniopharyngioma 
patients, and anorexia nervosa. This may give more insight into the role of neuroendocrine 
factors and might give direction for future research in conditions of severe obesity  
and underweight.

Introduction

Worldwide, obesity is reaching an epidemic state. In a vast 
majority of patients with obesity, lifestyle factors, such as 
too much food consumption and no or infrequent exercise, 
play a major role; in a small percentage of children and 
adults with obesity, an underlying hormonal or genetic 
cause can be found. In the last decades, the unraveling of 
genetic and molecular mechanisms of obesity progresses 
steadily, especially due to whole-exome sequencing by 
which single-gene mutations that cause obesity can 
be detected. Hence, more and more genetic causes of 
monogenic and syndromic obesity are discovered.

Hunger, satiety and energy expenditure are 
tightly controlled homeostatic processes, in which 
neuroendocrine factors play an important role. 

Neuroendocrine factors can be produced in various 
tissues, such as the liver, gut, adipose tissue, pancreas, and 
brain (Fig. 1). These factors send signal through different 
pathways to the brain, mainly to the hypothalamus. 
In the hypothalamus, activation of different signaling 
cascades leads to either food intake or satiety. Since this 
is a complex multivariate system, the role and interplay 
of these neuroendocrine factors in specific circumstances 
still have many unraveled aspects.

For this review, neuroendocrine factors are grouped 
according to their main function: stimulation of food 
intake and/or increase in body weight vs inhibition 
of food intake and/or decrease in body weight. The 
order of presentation is based on the number of studies 
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available for the respective neuroendocrine factor. In 
Table 1, information about the main site of production, 
function and the site of action of the neuroendocrine 
factors is summarized. Background information about 
the functions and interactions of the neuroendocrine 
factors can be found in the Supplementary material (see 
section on supplementary materials given at the end of 
this article).

The aim of this review is to present data on the extreme 
ends of the obesity spectrum in patients with Prader–Willi 
syndrome (PWS), Bardet–Biedl syndrome (BBS), acquired 
hypothalamic obesity in craniopharyngioma patients, 
and compare this with anorexia nervosa. Although the 

pathophysiology of the psychiatric condition anorexia 
nervosa is not known yet, these patients have a restrictive 
eating pattern and a (very) low BMI. Genome-wide 
association studies suggest a link between genetic variants 
and undernutrition and obesity, suggesting that the same 
biological pathways and neuroendocrine factors could 
be affected, albeit in different directions. For example, 
16p11.2 hemizygosity causes a penetrant form of obesity 
that is often associated with hyperphagia and intellectual 
disabilities, while 16p11.2 duplication is associated with 
being underweight with an unusually high frequency of 
selective and restrictive eating behaviors (1, 2, 3). Although 
the pathophysiology of the psychiatric condition anorexia 
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Figure 1
Neuroendocrine factors and interactions in the hypothalamus. In the gastrointestinal tract, multiple neuroendocrine hormones are produced. Ghrelin is 
the only gut hormone that stimulates feeding. Other hormones, including cholecystokinin (CCK), peptide YY (PYY), and pancreatic polypeptide (PP) 
provide information about the chemical properties of the ingested food and fullness of the stomach. Adipose tissue-related hormones are proportional 
to the amount of body fat. These hormones interact with postprandial gut hormones to the arcuate nucleus. In the hypothalamic region, multiple 
peripheral and neural signals are integrated to maintain energy homeostasis and balance between energy expenditure and food intake. The arcuate 
nucleus contains two types of neurons: the first type expresses the orexigenic neuropeptide Y (NPY) and agouti-related peptide (AgRP); the second type 
expresses the anorexigenic proopiomelanocortin (POMC) and cocaine-amphetamine-related transcript (CART). Both these neuron types innervate the 
paraventricular nucleus (PVN), which sends the signals to other parts of the brain, including the ventromedial nucleus, dorsomedial nucleus, and the 
lateral hypothalamic area. 
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Table 1 Overview of neuroendocrine factors and their main actions in relation to regulation of food intake and body weight.

Neuroendocrine factor Main site of production Main site of action Receptors Action Reference

Stimulation of food intake and increase in body weight
 Acylated ghrelin (AG),
 Unacylated ghrelin (UAG)

Stomach AgRP neurons, 
adipose tissue

AG: GHS-R1a
UAG: 

unknown

AG: regulates  
short-term food intake 
(↑ in hunger, ↓ after 
food intake) by 
increasing NPY/AgRP, 

regulates lipid 
metabolism by 
antagonizing leptin 
effects, 

increased  
growth-hormone 
secretion

UAG: anti-diabetogenic, 
functional inhibitor  
of AG

(26)

 Adiponectin Adipose tissue Pancreatic β-cells AdipoR1
AdipoR2

Increases insulin 
sensitivity, 

chronic overexpression 
increases s.c. but not 
visceral fat

(29)

 Neuropeptide Y (NPY) Medial arcuate nucleus Y1R, Y5R Stimulates food intake 
and antagonizes 
POMC action

(98)

 N-arachidonoyl 
ethanolamide (AEA), 
2-arachidonoylglycerol 
(2-AG)

Throughout the brain Metabolically active 
peripheral tissues

CB1
CB2

Stimulates food intake, 
stimulates energy 

storage, 
negative effect on 

insulin sensitivity

(99)

 Beta-endorphin Anterior pituitary gland Anterior  
pituitary gland

µ-opioid Stimulates food intake (100)

 Brain-derived neurotrophic 
factor (BDNF)

TrkB Possibly related to 
hyperphagia and 
metabolism

(101)

 Agouti-related  
peptide (AgRP)

Medial arcuate nucleus MC3R and 
MC4R 
antagonist

Stimulates food intake (98)

Inhibition of food intake and decrease in body weight
 Leptin Adipose tissue PMC and NPY 

neurons in arcuate 
nucleus

Ob-R, Ob-Rb Inhibits NPY and AgRP, 
stimulates CART and 
POMC, hence, 
stimulating satiety via 
stimulation of MC4R

(59)

 Peptide YY Ileum, colon, rectum Presynaptic 
receptor for NPY

Y2R Induces satiety by 
inhibition of NPY and 
stimulation of POMC, 
thereby resulting in 
de-inhibition of α- and 
β-MSH, 

reduces gastric 
emptying and gut 
transit time

(12)

 Pancreatic  
polypeptide (PP)

Endocrine pancreas Y4R, Y5R Inhibits food intake (87)

 Cholecystokinin (CCK) 
 
 
 
 

Duodenum, jejunum 
 
 
 
 

Locally; lateral 
hypothalamus, 
medial pons, 
lateral medulla 
 

CCK1
CCK2 

 
 
 

Induces satiety, 
reduces gastric 

emptying, 
 increases secretion of 

bile acid and 
pancreatic enzymes

(67) 
 
 
 
 

(Continued)
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nervosa is yet unknown, these patients have a very 
restrictive eating pattern and a (very) low BMI. From a 
food intake and fat storage perspective, anorexia nervosa 
can be viewed as an extreme opposite condition compared 
to the extreme conditions of obesity. This may provide 
more insight into the role of neuroendocrine factors and 
might give direction for future research in conditions of 
severe obesity and underweight.

Conditions of obesity and undernutrition 
described in this review

Prader–Willi syndrome (PWS)

Prader–Willi syndrome (PWS) is one of the most 
studied syndromes of obesity and hyperphagia. It is a 
neurodevelopmental disorder caused due to the loss of 
function of the paternally derived alleles in the region of 
15q11-q13 occurring in one in 10,000 to one in 25,000 live 
births. The loss of function can be caused by a deletion 
in chromosome 15 (~60%), uniparental disomy (UPD) 
(~36%), an imprinting defect (~2-5%), or unbalanced 
translocation (~1%) (4). Characteristics of PWS are 
hypotonia and feeding problems during the neonatal stage 
and early childhood and neurodevelopmental delay. In a 
later stage during childhood, the main characteristics are 
impaired satiety, hyperphagia, low energy metabolism, and 
neurodevelopmental disorders such as autistic behavior and 
obsessive-compulsive disorder. Without strict regulation of 
food intake, morbid obesity develops (5).

In PWS, changes in appetite and weight gain over time 
are described as five different nutritional phases. Phase 
0 is the prenatal/birth phase characterized by decreased 
fetal movements and lower birth weight. In phase 1a, 
infants demonstrate feeding problems and decreased 
appetite. In phase 1b, feeding and appetite improve. In 
phase 2a, weight increases without increase in appetite or 
excess intake of calories. In phase 2b, appetite and interest 
in food increase. Phase 3 is characterized by hyperphagia. 
Some adults reach phase 4 in which appetite is no longer 
insatiable (6).

Bardet–Biedl syndrome (BBS)

Bardet–Biedl syndrome (BBS) is another example of 
syndromic obesity. It is an autosomal recessive and 
genetically heterogeneous ciliopathy characterized 
by retinitis pigmentosa, obesity, kidney dysfunction, 
polydactyly, behavioral dysfunction, and hypogonadism. 
It has a prevalence of 1 to 9 in 1,000,000. The wide 
clinical spectrum observed in BBS is associated with 
significant genetic heterogeneity. To date, mutations in 
12 different genes (BBS1 to BBS12) have been identified 
as being responsible for this phenotype (7). Data on 
neuroendocrine factors in other syndromic obesity 
conditions, such as the Prader–Willi (PW)-like conditions 
like Temple syndrome and 6q deletion, were too limited to 
contribute to this review. In addition, monogenic obesity 
syndromes, due to mutations in melanocortin 4 receptor 
(MC4R), the leptin gene (LEP), leptin receptor gene 
(LEPR), and proopiomelanocortin (POMC) for example, 

Neuroendocrine factor Main site of production Main site of action Receptors Action Reference

 Obestatin Stomach (by  
post-translational 
modification of 
preproghrelin)

AgRP in arcuate 
nucleus

suppresses appetite, 
inhibits gastric 

emptying, 
decreases body weight

(102)

 Neurotensin Throughout the CNS Hypothalamus, 
amygdala and 
nucleus 
accumbens, small 
intestine

NTSR1
NTSR2
NTSR3

inhibits gastric 
emptying

(96)

 Proopiomelanocortin 
(POMC)

 α-melanotropin (α-MSH)

Arcuate nucleus MC3R and 
MC4R

Inhibits food intake, 
stimulates basal 
metabolic rate, alters 
nutrient partitioning

(97)

 CART Arcuate nucleus Inhibits food intake (103)

Some data from (104). AdipoR1, adiponectin receptor 1; AdipoR2, adiponectin receptor 2; CART, cocaine-amphetamine-related transcript; CB 1, 
cannabinoid type 1; CB 2, cannabinoid type 2; CCK1, cholecystokinin receptor 1; CCK2, cholecystokinin receptor 2; GSH-R1a, growth hormone 
secretagogue type 1A receptor; MC3R, melanocortin 3 receptor; MC4R, melanocortin 4 receptor; NTSR1, neurotensin receptor 1; NTSR2, neurotensin 
receptor 2; NTSR3, neurotensin receptor 3; Ob-R, leptin receptor; Ob-Rb, long isoform of leptin receptor; TrkB, tropomyosin-related kinase B; Y1R, Y 
receptor type 1; Y2R, Y receptor type 2; Y4R, Y receptor type 4; Y5R, Y receptor type 5; α-MSH, α-melanotropin; β-MSH, β-melanotropin.

Table 1 Continued.
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are not described in this review due to paucity of data on 
neuroendocrine factors in these conditions.

Craniopharyngioma

Craniopharyngioma is a rare benign brain tumor in the 
sellar and suprasellar region, an area that is close to the 
optic chiasm, pituitary and hypothalamus. Despite its 
benign histological characteristics, craniopharyngioma 
can cause severe morbidity, including obesity. The 
obesity is due to hypothalamic dysfunction, leading to 
hyperphagia, lower resting energy expenditure, insulin 
resistance and a disturbed day–night rhythm with 
increased somnolence and decreased activity during the 
day. Another contributing factor can be multiple pituitary 
hormone deficiency, which is often present in these 
patients, requiring hormone supplementation (8).

Anorexia nervosa

Anorexia nervosa, a psychiatric disorder, is a condition 
that results in persistent low body weight with very 
limited food intake due to disturbed eating behavior and 
often increased physical activity. Due to the low body 
weight, many of these patients develop neuroendocrine 
dysfunction such as amenorrhea. The pathophysiology of 
anorexia nervosa is not known yet, but factors involved 
in eating behavior and appetite control might play a role 
and, therefore, might be used as a opposite model for the 
presented obesity conditions.

Neuroendocrine factors stimulating food 
intake and body weight

Data on neuroendocrine factors that stimulate food intake 
and induce increase in body weight are summarized in 
Table 2 and are briefly described below. The order of 
presentation is based on the number of human studies 
available for the respective neuroendocrine factor in the 
selected obesity/undernutrition conditions.

Total ghrelin, acylated ghrelin, and 
unacylated ghrelin

Ghrelin is mainly secreted in the stomach and increases 
food intake. A pitfall in most studies is that only total 
ghrelin is measured and not the more specific isoforms,  

acylated ghrelin (AG) and unacylated ghrelin (UAG). With 
regard to the metabolic and appetite regulating effects, 
AG and UAG both have distinct functional effects and 
can affect each other, illustrating the additional value 
of the AG/UAG ratio. Based on current knowledge, the 
measurement of total ghrelin is of hardly any relevance 
which is demonstrated in the contradictory results in 
several obesity conditions (9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24). Therefore, in this review, 
we will only present data on AG and UAG; total ghrelin is  
not described.

At early age, PWS is characterized by feeding problems 
and hypotonia. In these young children, AG levels were 
not different and UAG levels were higher compared to 
controls, resulting in a lower AG/UAG ratio (25, 26). 
After the age of 3 years, PWS children generally become 
hyperphagic and obese. These older PWS children had 
similar high AG/UAG ratios compared to obese controls 
but due to different reasons; in PWS, AG was high, while 
in obese controls UAG was low. The AG/UAG ratio in PWS 
was higher compared to non-obese controls due to higher 
AG and similar UAG levels (26). These data suggest that 
the AG/UAG ratio is correlated to the nutritional phase 
and might have a relation with the switch from feeding 
problems to hyperphagia and excessive weight gain  
in PWS (26).

In BBS, AG was comparable to controls in a small 
study (20), no data were available for UAG.

For craniopharyngioma, no data were available in 
relation to AG and UAG.

In anorexia nervosa, AG and UAG levels were up to 
two-fold higher than compared to controls and returned 
to normal levels after normalization of body weight (27, 
28), which may display a mechanism to stimulate food 
intake in these underweight patients.

To summarize, the AG/UAG ratio seems to be related 
to appetite and weight gain and might function as a switch 
from undernutrition or normal weight to obesity. Whether 
UAG could be a treatment option needs further study.

Adiponectin

Adiponectin is the most abundant peptide secreted by 
adipocytes and mainly plays a role in energy metabolism. 
Serum concentrations of adiponectin decrease with 
increasing body weight and are positively associated with 
insulin sensitivity (29).

Higher adiponectin concentrations were reported in 
children (14, 30, 31) and adults with PWS (16, 32, 33, 34, 
35, 36) compared to obese controls and non-obese controls 

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-21-0111

https://ec.bioscientifica.com © 2021 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-21-0111
https://ec.bioscientifica.com


H Vlaardingerbroek et al. Neuroendocrine factors in 
genetic obesity

R180

PB–XX

10:5

Ta
bl

e 
2 

N
eu

ro
en

do
cr

in
e 

fa
ct

or
s 

in
 v

ar
io

us
 c

on
di

tio
ns

 o
f o

be
si

ty
 a

nd
 u

nd
er

no
ur

is
hm

en
t c

om
pa

re
d 

to
 h

ea
lth

y 
co

nt
ro

ls
.

N
eu

ro
en

do
cr

in
e 

fa
ct

or
O

be
si

ty
 c

on
di

ti
on

s
A

no
re

xi
a 

ne
rv

os
a

St
im

ul
at

io
n 

of
 fo

od
 in

ta
ke

 a
nd

/o
r 

in
cr

ea
se

 in
 b

od
y 

w
ei

gh
t

 
Ac

yl
at

ed
 g

hr
el

in
 (A

G
)

 
U

na
cy

la
te

d 
gh

re
lin

 (U
AG

)
PW

S
<4

 y
ea

rs
: 

4–
15

 y
ea

rs
: 

AG
 =

AG
 ↑

U
AG

 ↑
U

AG
 =

AG
/U

AG
 ↑

 v
s 

no
n-

ob
es

e 
co

nt
ro

ls

AG
/U

AG
 ↓

AG
/U

AG
 =

 v
s 

ob
es

e 
co

nt
ro

ls

AG
 ↑

U
AG

 ↑

Ph
as

e 
1a

, b
: 

Ph
as

e 
2b

–3
: 

↓ 
vs

 p
ha

se
 2

–3
; =

 v
s 

co
nt

ro
ls

↑ 
vs

 c
on

tr
ol

s
Ba

rd
et

–B
ie

dl
=

 
Ad

ip
on

ec
tin

PW
S

Ch
ild

re
n:

 
D

ur
in

g 
G

H
: 

Ad
ul

ts
: 

↑ 
=

↑ ↑

↑ 
(↓

 =
)

Ba
rd

et
–B

ie
dl

=
 

N
eu

ro
pe

pt
id

e 
Y 

(N
PY

)
PW

S
=

↓ 
↑ 

=
 

N
-a

ra
ch

id
on

oy
l e

th
an

ol
am

id
e 

(A
EA

)
PW

S
Fa

st
ed

: 
Po

st
pr

an
di

al
: 

= ↓
Fa

st
ed

: ↑

 
2-

ar
ac

hi
do

no
yl

gl
yc

er
ol

 (2
-A

G
)

PW
S

Fa
st

ed
: 

Po
st

pr
an

di
al

: 
↑ =

Fa
st

ed
: =

 
Be

ta
-e

nd
or

ph
in

PW
S

↑
↓ 

↑ 
=

 
Br

ai
n-

de
ri

ve
d 

ne
ur

ot
ro

ph
ic

  
fa

ct
or

 (B
D

N
F)

PW
S

↓
↓ 

=

 
Ag

ou
ti-

re
la

te
d 

pe
pt

id
e 

(A
gR

P)
↑

In
hi

bi
ti

on
 o

f f
oo

d 
in

ta
ke

 a
nd

/o
r 

de
cr

ea
se

 in
 b

od
y 

w
ei

gh
t

 
Le

pt
in

PW
S

<6
 y

ea
rs

: 
≥

6 
ye

ar
s:

 
↑ = 

(↑
)

↓

Ba
rd

et
-B

ie
dl

↑
Cr

an
io

ph
ar

yn
gi

om
a

↑
 

Pe
pt

id
e 

YY
 (P

YY
)

PW
S

Fa
st

ed
: 

Po
st

pr
an

di
al

: 
↓ 

↑ 
=

↑ 
=

Fa
st

ed
: ↑

 =
Po

st
pr

an
di

al
: ↑

 =
Cr

an
io

ph
ar

yn
gi

om
a

=
 

Pa
nc

re
at

ic
 p

ol
yp

ep
tid

e 
(P

P)
PW

S
Fa

st
ed

: 
Po

st
pr

an
di

al
: 

↓ 
=

 in
 n

on
-o

be
se

 
< 

5 
ye

ar
s

↓

Fa
st

ed
: =

 (↑
)

Po
st

pr
an

di
al

: =

 
Ch

ol
ec

ys
to

ki
ni

n 
(C

CK
)

PW
S

= 
(↑

)
= 

↓ 
↑

Cr
an

io
ph

ar
yn

gi
om

a
=

 
O

be
st

at
in

PW
S

<6
 y

ea
rs

: 
≥

6 
ye

ar
s:

 
↑ =

↑

Ba
rd

et
–B

ie
dl

=
 

N
eu

ro
te

ns
in

PW
S

↑
 

α-
m

el
an

ot
ro

pi
n 

(α
-M

SH
)

Cr
an

io
ph

ar
yn

gi
om

a
↓ 

w
ith

 la
ck

 o
f p

os
tp

ra
nd

ia
l i

nc
re

as
e

↓ 
=

If 
no

t s
ta

te
d 

ot
he

rw
is

e,
 c

on
ce

nt
ra

tio
ns

 o
f n

eu
ro

en
do

cr
in

e 
fa

ct
or

s 
ar

e 
m

ea
su

re
d 

in
 fa

st
ed

 s
ta

te
.. 

↓,
↑,

 =
: l

ow
er

, h
ig

he
r, 

no
t d

iff
er

en
t c

om
pa

re
d 

to
 c

on
tr

ol
s,

 r
es

pe
ct

iv
el

y.
 

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-21-0111

https://ec.bioscientifica.com © 2021 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-21-0111
https://ec.bioscientifica.com


H Vlaardingerbroek et al. Neuroendocrine factors in 
genetic obesity

R18110:5

(13), while others showed no differences with obese 
controls (37). The higher adiponectin concentrations in 
PWS were associated with the relatively lower amount 
of visceral adipose tissue compared to obese controls 
(16) and may be related to the relative lower incidence 
of insulin resistance and metabolic syndrome in PWS 
patients (31, 38).

In children with BBS, adiponectin levels were not 
different compared to controls (20). No data were available 
for craniopharyngioma patients.

In anorexia nervosa, data on adiponectin levels were 
inconsistent (27, 39, 40). Studies in severely underweight 
anorexia patients showed reduced adiponectin levels, 
which increased after weight gain (39). The lower levels 
in these severely underweight patients are probably 
a consequence of the low fat mass, rather than a  
causative factor.

To summarize, adiponectin levels seems to reflect 
the amount of body fat and higher levels might have 
a protective effect on metabolic syndrome. For future 
studies, it would be interesting to focus on the relationship 
between adiponectin levels and visceral vs peripheral fat 
and whether adiponectin might play a causative role in 
weight gain.

Appetite and weight stimulating brain-derived 
neuroendocrine factors

Several regions and neuroendocrine factors in the brain 
are important in processing information about food 
and body weight (Fig. 1). Neuropeptide Y (NPY) is one 
of the most abundant peptides in the hypothalamus 
and one of the most potent orexigenic factors. Beta-
endorphin, N-arachidonoyl-ethanolamine (AEA), and 
2-arachidonoylglycerol (2-AG) play a role in stimulating 
food intake via the hedonic system and via appetite 
initiation.

In PWS children, the fasting levels of NPY (30) and 
AEA (41) were not different compared to BMI)-matched 
controls. After a meal, AEA decreased (42). Fasting levels 
of beta-endorphin (43) and 2-AG (41) were higher in 
children with PWS compared to controls and 2-AG 
levels remained unchanged after a meal (42). Levels of 
brain-derived neurotrophic factor (BDNF) (44, 45) were 
lower in children with PWS compared to controls. It 
was suggested that the low fasting BDNF concentrations 
and lack of a postprandial peak may contribute to the 
persistent hunger after meals in PWS patients. Indeed, 
the loss of one copy of the BDNF gene, and, therefore, 
lower BDNF concentrations, due to a deletion (e.g. 11p 

deletion or as part of the Wilms tumor-aniridia syndrome) 
or by a chromosomal 11p inversion, was associated with 
syndromic phenotypes linked to hyperphagia, childhood-
onset obesity, intellectual disability and impaired pain 
sensing (nociception) (46, 47, 48). Agouti-related peptide 
(AgRP) levels were not described in PWS.

For BBS and craniopharyngioma patients, data were 
lacking on appetite and weight-stimulating brain-derived 
neuroendocrine factors.

In anorexia nervosa, results on the brain-derived 
neuroendocrine factors NPY (27, 49), beta-endorphin 
(50, 51, 52), and BDNF (27, 53, 54) were inconclusive. 
In contrast to PWS, the cannabidoid AEA was reported 
higher and 2-AG was not different in anorexia patients 
(55). The levels of BDNF seemed to vary with the stages of 
illness: concentrations were higher in recovered normal 
weight anorexia patients compared to acute anorexia 
patients with underweight, and the concentrations 
increased with short-term weight gain (54). In addition, 
a BDNFp.Val66Met SNP was associated with eating 
disorders such as anorexia nervosa or bulimia nervosa 
(56). Agouti-related peptide (AgRP) was reported 
higher in underweight anorexia patients compared to  
controls. This difference disappeared after weight 
restoration (57, 58).

The higher beta-endorphin and 2-AG levels observed 
in PWS may drive eating for obtaining pleasure despite a 
lack of hunger or energy deficit and might be a target for 
future treatment. The low fasting BDNF levels and lack of a 
postprandial peak in PWS may contribute to the persistent 
hunger in these patients. However, in anorexia patients, 
low levels of BDNF were also described, suggesting that 
other factors might counterbalance or overrule BDNF.

Neuroendocrine factors inhibiting food 
intake and body weight

Data on neuroendocrine factors that inhibit food intake 
and body weight are summarized in Table 2 and are 
briefly described below. The order of presentation is 
based on the number of human studies available for the 
respective neuroendocrine factor in the selected obesity/
undernutrition conditions.

Leptin

Leptin is mainly secreted by white adipose tissue, and 
leptin concentrations are positively correlated with 
the amount of body fat. Circulating plasma leptin 
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concentrations reflect primarily the amount of energy 
stored in fat and secondarily the acute changes in caloric 
intake (59).

When corrected for BMI and/or fat mass, leptin levels 
were higher in young children with PWS (<6 years of age) 
compared to healthy controls (13, 15, 18, 19). In older 
children (13, 19, 60) and adults (34, 35, 44, 60), leptin 
was not different compared to obese controls, although 
some studies show higher leptin levels in PWS (33, 61). 
The higher leptin levels in young children with PWS are a 
result of lower muscle mass and increased fat mass, which 
improved during growth hormone therapy (62).

In BBS (20) and in craniopharyngioma patients (21, 
23, 24, 63, 64, 65, 66), fasting leptin was also higher, 
even after correction for BMI. In craniopharyngioma 
patients, higher levels are reported in patients with 
hypothalamic involvement compared to those without 
hypothalamic involvement, which may be the result of 
central dysregulation due to the hypothalamic damage 
(21, 23, 63, 66). In patients with anorexia nervosa, leptin 
concentrations were consistently lower, as expected with 
the low body fat mass in these patients (27, 40, 49, 53).

To summarize, leptin levels reflect the amount of fat, 
independent of the underlying condition. The higher 
leptin levels in BBS and craniopharyngioma patients after 
correction for BMI suggest that leptin might have a less 
important role in food and weight regulation than other 
neuroendocrine factors or might suggest leptin resistance 
(20) and needs further study.

Peptide YY

Peptide YY (PYY) is produced in the ilial and colonic 
cells and levels increase in response to a meal thereby  
inducing satiety.

Fasting and postprandial PYY levels in PWS were found 
to be higher, lower, or not different compared to obese 
and lean healthy children (9, 14, 30, 67, 68) and adults 
(11, 69). It was suggested that PYY concentrations in PWS 
decrease with age, not in association with BMI (18).

Data on PYY in BBS were lacking. In obesity due 
to craniopharyngioma, fasting and postprandial PYY 
concentrations were not different compared to controls 
in children and adults (12, 21, 22, 65).

In anorexia nervosa, PYY results were inconsistent, 
both during fasting and post-meal (70, 71, 72, 73, 74, 75, 
76, 77, 78).

These inconclusive results might be partially due to 
differences in food intake, with higher responses after 

fat-rich meals or due to the fact that PYY concentrations 
changes only slowly and to a lesser extent to a meal than 
other gut-related neuroendocrine factors.

The lack of consistency in PYY data suggest that PYY 
is probably not a key factor in the explanation of obesity 
or undernutrition in these conditions.

Pancreatic polypeptide

The pancreatic polypeptide (PP) is secreted by specific 
pancreatic islet cells. PP concentrations increase 
postprandially and also fluctuate with the myoelectric 
activity of the gastrointestinal tract.

Fasting PP concentrations were reported lower in non-
obese young children with PWS (<5 years of age) compared 
to healthy non-obese controls (18, 30). However, this 
difference disappears when children were BMI-matched. 
The postprandial rise in children and adults with PWS was 
blunted compared to obese and lean children and adults 
(79, 80, 81), which might be related to increased intake 
and hyperphagia in PWS. Indeed, short-term infusion of 
PP reduced food intake in adults (82) but not in children 
with PWS (83).

For BBS and craniopharyngioma, no data were available.
PP levels in anorexia nervosa were not different vs 

controls (40, 74, 84, 85), neither during fasting state 
nor after weight restoration. In two studies with a small 
sample size in stable anorexia patients without critical 
underweight, PP levels were higher (86, 87).

These inconclusive findings suggest that PP is not 
involved in the disturbed appetite regulation in PWS 
and in anorexia nervosa patients, or that its role is not of 
major importance.

Cholecystokinin

Cholecystokinin (CCK) is produced in the small intestine 
and is rapidly released locally and into the blood in 
response to the nutrients in the gut. It stimulates the 
gallbladder contraction, increases pancreatic enzyme 
secretion, delays gastric emptying, potentiates insulin 
secretion, and regulates food intake by inducing  
satiety (88).

Studies in children and adults with PWS showed no 
difference in fasting or postprandial CCK levels compared 
to obese controls (42, 67, 79, 89), although in one study 
a greater increase in CCK during a meal compared to 
control adults was observed (90). This greater increase was 
not related to a reduced food intake in PWS patients (90).
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No data were available for patients with BBS. Fasting 
and postprandial CCK levels were similar between 
craniopharyngioma patients and controls (65).

In anorexia nervosa, CCK levels were higher (91, 92), 
lower (93) on not different (40, 86) vs controls. Short-term 
refeeding did not affect CCK levels (74).

The lack of differences in CCK between obesity, 
undernutrition and healthy controls suggest that 
CCK might not be a key factor in the impaired satiety 
and the development of obesity or underweight in  
these conditions.

Obestatin

Obestatin is formed by post‐translation modification of 
preproghrelin in the stomach. In contrast to ghrelin, it 
suppresses food intake.

Obestatin concentrations were higher in young 
children (<6 years of age) (17, 19), but not different in 
older children with PWS (≥6 years of age) (17, 19, 94) 
compared to BMI-matched controls. The ratio of ghrelin 
to obestatin declined from early to late childhood in PWS 
but remained higher compared to controls (19).

In children with BBS, fasting obestatin concentrations 
were not different compared to controls (20). Data on 
craniopharyngioma patients were lacking.

In patients with anorexia nervosa, obestatin 
concentrations were higher compared to controls, and an 
increase in calorie intake decreased obestatin (27, 95).

Changes in the ratio of ghrelin to obestatin may suggest 
changes in the processing of preproghrelin to ghrelin 
and obestatin during development and to a differential 
processing of preproghrelin in PWS (19). Whether this 
plays a role in the switch from the early nutritional 
phases to the next phases or whether it merely reflects 
the current status is unknown. However, the common 
finding of higher obestatin levels in young PWS children 
(generally with feeding problems and normal weight) and 
in anorexia nervosa suggests a role of obestatin in the 
underlying mechanism of appetite regulation.

Food intake and weight-inhibiting brain-derived 
neuroendocrine factors

Studies on brain-derived neuroendocrine factors with 
a suppressive effect on food intake and body weight 
are limited. Neurotensin induces various effects, 
including inhibition of gastric motility. The secretion of 
neurotensin is stimulated by food intake. α-Melanotropin 
(α-MSH) binds to the melanocortin 4 receptor (MC4R),  

a crucial receptor involved in appetite control and energy 
homeostasis in the paraventricular nucleus and in many 
other sites in the brain.

Neurotensin levels were reported higher in children 
with PWS (age 5–11 years) (96). Neurotensin was  
not described in BBS, craniopharyngioma and in  
anorexia nervosa.

In PWS and BBS, α-MSH was not described. Fasting 
α-MSH concentrations were lower in craniopharyngioma 
patients compared to obese and lean controls and also 
compared to patients with a MC4R mutation (monogenic 
obesity) (97). Postprandially, α-MSH did not increase in 
craniopharyngioma patients, while it increased in obese 
controls (97). We hypothesize that the persistently low 
α-MSH levels in craniopharyngioma patients are due to 
disturbances in the α-MSH pathway by hypothalamic 
and/or pituitary damage.

In anorexia nervosa, α-MSH levels were lower or not 
different compared to controls (27, 49). The levels of the 
anorexigenic peptides proopiomelanocortin (POMC) and 
cocaine-amphetamine-related transcript (CART) expressed 
in the arcuate nucleus are not described in patients with 
obesity and anorexia conditions.

To summarize, data on brain-derived neuroendocrine 
factors that have a suppressive effect on food intake and 
body weight are too limited to draw any conclusions on 
their role in obesity and anorexia yet.

Discussion and conclusions

With the exception of PWS and anorexia nervosa, data on 
neuroendocrine factors in syndromic and hypothalamic 
obesity are very limited.

Based on the functions of ghrelin, one would expect 
higher concentrations in conditions of undernourishment 
and low concentrations in obesity. However, AG was 
higher in obese PWS patients and underweight anorexia 
patients. The AG/UAG ratio might provide additional 
value compared to measuring AG or UAG alone. In 
patients with PWS, the switch to excessive weight seems 
to coincide with an increase in the AG/UAG ratio, even 
before the onset of hyperphagia. The AG/UAG ratio might, 
therefore, have a contributing role in the homeostatic 
disbalance, leading to obesity. It would be informative to 
study this ratio in other patient categories before and after 
the development of obesity or underweight, to prove a 
causative role.

Data on neuroendocrine factors related to inhibition 
of food intake and body weight are generally not different 
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between patients with obesity and anorexia, with the 
exception of leptin and obestatin. Leptin is related 
to the amount of body fat with lower concentrations 
described in underweight anorexia patients and higher 
concentrations in obese children with PWS. The high 
leptin concentrations in obese patients with PWS and BBS 
suggest that either leptin is merely a reflection of the total 
body fat or that the negative feedback of leptin on appetite 
is lost or decreased, suggesting leptin resistance. Higher 
obestatin levels in young PWS children (generally with 
feeding problems and normal weight) and in anorexia 
nervosa suggest a role of obestatin in the underlying 
mechanism of appetite regulation.

Overall, since data are too limited or inconsistent, 
a comparison between the various causes of obesity 
or undernutrition cannot be made. To improve 
interpretation and to aid in the search of the causative 
agents in progression of obesity or undernutrition, future 
studies should match patients based on BMI or preferably 
on fat mass. In addition, longitudinal studies would be 
helpful to study the role of neuroendocrine factors in the 
switch from normal weight to obesity or underweight. 
The various nutritional phases in PWS and anorexia 
nervosa patients (underweight to weight restoration) 
form an interesting model for this longitudinal follow-up.

The aim of future studies could also be identification 
of the receptors for the various neuroendocrine factors, to 
investigate the effects of these factors on metabolic tissues 
and appetite centers in the brain. Prospective clinical 
studies could investigate the role of the neuroendocrine 
factors in the development of obesity and if these can be 
used as a predictive marker for the development of obesity 
and/or metabolic syndrome and potentially serve as a 
treatment option for these conditions.

Methods

Search strategy for identification of studies

A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) 
search up to Sept 12th 2019 was conducted with the use 
of the following key terms (words in the title or abstract 
of the manuscript): 'appetite', 'appetite depressants', 
'appetite stimulants', 'appetite regulating hormones', 'food 
intake', 'satiety', 'body weight', 'weight', 'obesity', 'obese', 
'body mass index', 'BMI'. In addition, the individual 
appetite regulating hormones (ghrelin, acylated ghrelin, 
unacylated ghrelin, pancreatic polypeptide, peptide 
YY, obestatin, cholecystokinin, leptin, adiponectin, 

neuropeptide Y, Agouti-related peptide, α-melanotropin, 
beta-endorphin, CART, BDNF, N-arachidonoyl 
ethanolamide, 2-arachidonoylglycerol, neurotensin) were 
also added to the search. The key terms were combined 
with the following disorders: Prader–Willi syndrome, 
Bardet–Biedl syndrome, craniopharyngioma, anorexia 
nervosa.

No language restriction was applied in the search.
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