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ABSTRACT Folates are tripartite molecules comprising pterin, para-aminobenzoate (PABA), and glutamate moieties, which are
essential cofactors involved in DNA and amino acid synthesis. The obligately intracellular Chlamydia species have lost several
biosynthetic pathways for essential nutrients which they can obtain from their host but have retained the capacity to synthesize
folate. In most bacteria, synthesis of the pterin moiety of folate requires the FolEQBK enzymes, while synthesis of the PABA moi-
ety is carried out by the PabABC enzymes. Bioinformatic analyses reveal that while members of Chlamydia are missing the genes
for FolE (GTP cyclohydrolase) and FolQ, which catalyze the initial steps in de novo synthesis of the pterin moiety, they have
genes for the rest of the pterin pathway. We screened a chlamydial genomic library in deletion mutants of Escherichia coli to
identify the “missing genes” and identified a novel enzyme, TrpFCtL2, which has broad substrate specificity. TrpFCtL2, in combi-
nation with GTP cyclohydrolase II (RibA), the first enzyme of riboflavin synthesis, provides a bypass of the first two canonical
steps in folate synthesis catalyzed by FolE and FolQ. Notably, TrpFCtL2 retains the phosphoribosyl anthranilate isomerase activ-
ity of the original annotation. Additionally, we independently confirmed the recent discovery of a novel enzyme, CT610, which
uses an unknown precursor to synthesize PABA and complements E. coli mutants with deletions of pabA, pabB, or pabC. Thus,
Chlamydia species have evolved a variant folate synthesis pathway that employs a patchwork of promiscuous and adaptable en-
zymes recruited from other biosynthetic pathways.

IMPORTANCE Collectively, the involvement of TrpFCtL2 and CT610 in the tetrahydrofolate pathway completes our understanding
of folate biosynthesis in Chlamydia. Moreover, the novel roles for TrpFCtL2 and CT610 in the tetrahydrofolate pathway are so-
phisticated examples of how enzyme evolution plays a vital role in the adaptation of obligately intracellular organisms to host-
specific niches. Enzymes like TrpFCtL2 which possess an enzyme fold common to many other enzymes are highly versatile and
possess the capacity to evolve to catalyze related reactions in two different metabolic pathways. The continued identification of
unique enzymes such as these in bacterial pathogens is important for development of antimicrobial compounds, as drugs that
inhibit such enzymes would likely not have any targets in the host or the host’s normal microbial flora.
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Chlamydiae are obligately intracellular bacteria that cause a
wide variety of infectious diseases in humans and animals.

The bacteria infect epithelial cells and cause diseases ranging from
pneumonia to pelvic inflammatory disease to blinding trachoma
(1). Chlamydia trachomatis infection is the most commonly re-
ported bacterial sexually transmitted disease in the United States,
with a total of 1,422,976 cases of genital chlamydial infection re-
ported during 2012 (2). In addition to being an important sexually
transmitted pathogen, C. trachomatis is the causative agent of tra-
choma, a chronic follicular keratoconjunctivitis, characterized by
scarring of the eyelid and corneal opacities. The most recent esti-
mates (from 2008) suggest that there are about 40 million people

with active trachoma and that 1.3 million people are blinded as a
result of this disease (3). The obligately intracellular organism
Chlamydia is notable for its unusual dimorphic life cycle. The
infectious form of the organism, the elementary body (EB), is
small and displays limited metabolic activity (4). Once inside the
host cell, the EB begins a developmental cycle and undergoes con-
version into the metabolically active noninfectious reticulate body
(RB) within 2 to 4 h. RBs replicate by binary fission and then
convert back into the EB form after about 24 to 36 h. Lysis of the
infected host cell occurs after 48 to 72 h, depending on the Chla-
mydia species, and released EBs go on to infect neighboring cells.

Bacterial evolution that leads to obligately intracellular para-
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sitism in a eukaryotic host is thought to be associated with loss of
genetic information, especially for genes that become redundant
within the host niche (5). These genetic losses are not deleterious
for the organism provided that the missing biosynthetic functions
can be compensated for by increased transport functions that al-
low the organism access to essential nutrients found in the intra-
cellular environment. Conversely, metabolic pathways which are
either uniquely found in these bacteria or are critical to their in-
tracellular growth are expected to persist despite reductive evolu-
tion. Obligately intracellular parasites, like Chlamydia, are depen-
dent on their host cell for nutrients, as they have eliminated many
redundant biosynthesis genes.

Folates are tripartite molecules comprising pterin, para-
aminobenzoate (PABA), and glutamate moieties to which one-
carbon units at various oxidation levels can be attached at the N5
and N10 positions (Fig. 1A). Tetrahydrofolates (THFs) are essen-
tial cofactors required by all organisms for DNA and amino acid
synthesis and are obtained through either de novo synthesis or
transport. Most bacteria, plants, and fungi and some protozoa
possess a pathway for de novo synthesis of THF (6, 7), whereas
vertebrates do not have a pathway for synthesis of folates and must

obtain them through their diet. The pathway for THF synthesis
involves 10 enzymes: folEQBK encode enzymes required for for-
mation of the pterin moiety; pabA, pabB, and pabC encode en-
zymes required for formation of the PABA moiety; and folPCA
encode enzymes required for the ligation of the pterin and PABA
precursors and the glutamylation and reduction steps (see Fig. 1
for enzyme names and abbreviations and reactions catalyzed) (6).

Unlike other intracellular bacteria, which salvage THF or pre-
cursors from their hosts, many Chlamydia species are not folate
auxotrophs. C. trachomatis L2, Chlamydia psittaci 6BC, and
C. psittaci Cal10 synthesize folates de novo and possess FolA and
FolP activity (8). Furthermore, C. trachomatis is sensitive to anti-
biotics that target enzymes in the folate biosynthetic pathway (8).
We previously conducted a comparative genomic analysis of tet-
rahydrofolate biosynthesis genes in 500 microbial genomes (with
only 10 Chlamydiaceae genomes) and reported that the Chlamydia
species contained homologs of the folBKPA genes in a physical
cluster (9). Proteomic analyses detected FolP in C. trachomatis
(10, 11) and Chlamydia pneumoniae (12). However, genes encod-
ing orthologs of FolE and FolQ, the first two enzymes of the pterin
branch, as well as PabABC, the three PABA pathway enzymes, and

FIG 1 The canonical tetrahydrofolate biosynthetic pathway. Abbreviated enzyme names are in bold, with the homologs in C. trachomatis serovar D listed in red.
A question mark is present if the Chlamydia homolog is not known. (A) GTP to tetrahydrofolate. FolE, GTP cyclohydrolase I; FolQ, dihydroneopterin
triphosphate pyrophosphohydrolase; Ptase, nonspecific phosphohydrolase; FolB, dihydroneopterin aldolase; FolK, 6-hydroxymethyl-7,8-dihydropterin pyro-
phosphokinase; FolP, dihydropteroate synthase; FolC, dihydrofolate synthetase; FolA, dihydrofolate reductase. Full metabolite names: 7,8-dihydroneopterin
triphosphate (H2NTP), 7,8-dihydroneopterin monophosphate (H2NMP), 7,8-dihydroneopterin (H2N), 6-hydroxymethyl-7,8-dihydroneopterin (HMH2N),
6-hydroxymethyl-7,8-dihydroneopterin diphosphate (HMH2NDP), 7,8-dihydropteroate (H2Pt), 7,8-dihydrofolate (DHF), tetrahydrofolate (THF). (B) PABA
biosynthesis. PabA, aminodeoxychorismate synthase component II; PabB, aminodeoxychorismate component I; PabC, aminodeoxychorismate lyase.
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FolC, the glutamylation enzyme, could not be identified in any of
the 10 genomes analyzed at the time.

The mystery of the missing folC gene was solved by the identi-
fication of a gene now called folC2 (ct611 in C. trachomatis D/UW-
3/CX) located in the chlamydial folate biosynthesis cluster. FolC2
is not a member of the FolC/COG0285 family but part of the
COG1478 family, which contains enzymes involved in the glu-
tamylation of the archaeal cofactor F420. The activity of this alter-
nate folylglutamate synthase was demonstrated by complementa-
tion of an Escherichia coli �folC mutant by a plasmid harboring
ct611 (9). This was the first case of nonorthologous displacement
in the folate pathway discovered in Chlamydia species.

In E. coli, the folE gene encodes GTP cyclohydrolase I
(GCYH-I; EC 3.5.4.16), which catalyzes the conversion of GTP to
7,8-dihydroneopterin triphosphate (H2NTP). In some Bacteria
and Archaea, the same reaction is catalyzed by another family of
GTP cyclohydrolase I enzymes, the IB family (13), but no mem-
bers of this second family are found in chlamydiae (9). This sug-
gests that chlamydiae either recruit another enzyme family to per-
form this reaction or that these organisms scavenge H2NTP from
the human host; H2NTP is the only intermediate of the folate
pathway found in humans, where it serves as the first intermediate
in biopterin biosynthesis (14). Similarly, the source of PABA in
chlamydiae remained unidentified until recently, as the absence of
the PABA synthesis genes suggests either a de novo PABA synthesis
pathway in these organisms or import of PABA from the host. It
was found that two members of the COG5424 family, NE1434
from Nitrosomonas europaea and CT610 from C. trachomatis
D/UW-3/CX, are involved in a novel PABA synthesis pathway
(15). While the precursor used to make PABA remains unknown,
NE1434 and CT610 can complement an E. coli �pabABC mutant.

In this work, we show an example of Chlamydia’s metabolic
plasticity with the discovery of a novel route to initiate folate syn-
thesis that combines the first enzyme of riboflavin biosynthesis
with an enzyme of tryptophan synthesis to make the folate path-
way intermediate 7,8-dihydroneopterin monophosphate
(H2NMP) rather than using the first two canonical enzymes, FolE

and FolQ. Additionally, we independently show that CT610 is
involved in PABA synthesis, confirming another example of the
folate pathway variation found in Chlamydia. Collectively, these
findings complete our understanding of folate biosynthesis in
these human pathogens, confirm their ability to synthesize folates,
and provide an elegant example of enzyme evolution to create new
vitamin pathways (16).

RESULTS
Comparative genomic analysis of THF biosynthesis genes in
chlamydiae. The distribution and physical location of folate bio-
synthesis genes were analyzed with the 43 Chlamydia genomes in
the SEED database (17) and is available in the “Folate Tryp Chla-
mydia” subsystem. Strict conservation of the folate gene cluster
folBPKA, folC2, and ct610 was observed in all genomes analyzed
and includes no unrelated gene, with the exception of Chla-
mydia pecorum, which is missing the whole cluster and corre-
sponding genes (Fig. 2). The clusters can be separated into two
subgroups: one downstream of rpoN in the C. trachomatis clade
and one downstream of recA in the Chlamydophila clade. folK and
folP are fused into a single gene in all chlamydiae analyzed. The
intergenic region between ct610 and the gene immediately up-
stream differed slightly between C. trachomatis serovar L2 (3 bp)
and C. trachomatis serovar D and Chlamydia muridarum (21 bp),
suggesting that ct610 (and its orthologs) might be part of a single
transcript of the folate gene cluster. Primers (see Table S1 in the
supplemental material) designed to amplify the intergenic region
between open reading frames (ORFs) in the folate cluster (folB-
PKA, folC2, and ctl0874—a homolog of ct610 in C. trachomatis D)
of C. trachomatis L2 434/Bu were used to determine transcrip-
tional organization. Reverse transcription-PCR (RT-PCR) analy-
sis revealed that the genes in the folate cluster are transcribed as a
single multigenic message which includes ctl0874 (see Fig. S1 in
the supplemental material). Here, we refer to ctl0874 with the
C. trachomatis D locus name, ct610, for consistency with the liter-
ature.

FIG 2 Clustering of folate pathway genes in Chlamydiae and other intracellular bacteria. The gene organization of Chlamydia spp. and the phylogenetically
distant Wolbachia is shown. Numbers in parentheses are numbers of genomes analyzed. ct609 to ct615 are locus tags for C. trachomatis serovar D. They are
included for clarity, as several of these loci are cited in previous publications.
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Experimental validation of activity of the C. trachomatis
FolB, FolK, and FolP orthologs. Aside from the initial steps of
pterin synthesis, the remainder of the folate pathway appears to be
intact in most Chlamydia species (Fig. 2) and encoded on an
operon (see above). However, the functions of these enzymes have
yet to be verified. CT614 of C. trachomatis is currently annotated
as a FolX, which suggests that it is a 7,8-dihydroneopterin triphos-
phate epimerase involved in the biosynthesis of tetrahydromon-
apterin (18). Since Chlamydia species do not have a pathway for
tetrahydromonapterin, CT614 is more likely FolB, the dihydro-
neopterin aldolase involved in tetrahydrofolate biosynthesis,
which would be in agreement with the clustering of ct614 with the
other folate synthesis genes (Fig. 2). In order to test this hypothe-
sis, ct614 was cloned into pUC18 (pNEA127), expressed in E. coli
�folB, and demonstrated to complement the E. coli �folB mutant
on LB in the absence of added thymidine (Fig. 3A). These results
are consistent with CT614 functioning as a dihydroneopterin al-
dolase.

ct613, the next gene in the C. trachomatis folate gene cluster, is
annotated as a folK-folP fusion. To verify that the C. trachomatis
FolKP has both 7,8-dihydro-6-hydroxymethylpterin-pyrophos-
phokinase (FolK) and dihydropteroate synthase (FolP) activities,
pNEA57, a plasmid expressing the whole folate operon from
C. trachomatis L2 (i.e., folB-folKP-folA-folC2-ct610), was used to
transform E. coli �folK::kan and E. coli �folP::kan, neither of
which grows on LB without supplemental thymidine. Interest-
ingly, only the E. coli �folP mutant was complemented by the
C. trachomatis folate operon, while E. coli �folK was not (Fig. 3B).
Based on these complementation experiments, the FolKPCtL2 fu-

sion protein as expressed in E. coli can carry out FolP activity but
not FolK activity, suggesting that CT613 cannot capture the
6-hydroxymethyl-7,8-dihydroneopterin (HMH2N) precursor
from E. coli FolB.

Library screen for the Chlamydia homolog of the folE gene of
E. coli. E. coli �folE mutants require thymidine, pantothenic acid,
adenine, and Casamino Acids for growth on minimal medium.
We screened a library of C. trachomatis L2 DNA in the E. coli
�folE::kan mutant P1-7B and selected on minimal medium con-
taining all the required supplements but thymidine. Over 150
transformants that grew on minimal medium without thymidine
were recovered in three independent transformations.

Fifteen complementing clones chosen for characterization
contained inserts that ranged in size from 3.2 to 9.2 kb. The min-
imum sequence present in all of the inserts contained a full-length
open reading frame annotated as trpF (ctl0581), encoding N=-5=-
phosphoribosyl anthranilate (PRA) isomerase (EC 5.3.1.24) with
its native promoter as well as the tRNAMet gene just downstream
of trpF (Fig. 4A). Two transformants, A4 and C1, were chosen for
further characterization. We infer that the trpF in both clones is
driven by its native promoter, as trpF in A4 is in the opposite
orientation to the plasmid vector promoter, Plac, and trpF in C1 is
more than 1 kb from the vector promoter. Each clone was retrans-
formed into the �folE::kan mutant, and plating efficiency experi-
ments were carried out to determine phenotypic complementa-
tion. The results shown in Fig. 4A and in Table S2 in the
supplemental material demonstrate that both inserts comple-
mented the folE mutation and that complementation was inde-
pendent of the vector promoter. The trpF genes from C. tracho-

FIG 3 Activity of the C. trachomatis FolB, FolK, and FolP orthologs. (A) FolB complementation by either folBEc (pNEA122) or folXCt (ct614; pNEA127). (B)
Complementation of E. coli �folK and �folP. (Top) E. coli �folK is not complemented by any genes in the entire folate cluster of C. trachomatis, as shown by lack
of growth on M9 minimal medium without thymidine (dT). (Bottom) E. coli �folP is complemented by the folate cluster of C. trachomatis, presumably by ct613,
which encodes FolKP.
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matis L2, C. muridarum, and Chlamydia caviae were cloned into
pUC18 and tested for complementation of the folE mutation in
P1-7B. As shown in Fig. 4B, all trpF alleles tested complemented
the folE mutation, albeit with different efficiencies. In E. coli the
trpF gene is fused to the trpC gene, encoding indole-3-glycerol
phosphate synthase (EC 4.1.1.48). In contrast to the Chlamydia
trpF clones, neither the E. coli trpCF gene nor the E. coli trpC or
trpF domains expressed alone showed any complementation ac-
tivity in the �folE mutant (Fig. 4B).

Sequence and functional analysis of TrpFCtL2 as a PRA
isomerase. Alignments of TrpF reveal that C. trachomatis L2 TrpF
is 98 to 100% identical at the amino acid level to TrpF of the other
C. trachomatis ocular and genital serovars and 78% identical to
TrpF of C. muridarum, a mouse pathogen, while identity drops to
~48% for the other animal pathogens, C. caviae, C. pecorum, and
Chlamydia felis. Moreover, the Chlamydia trpF orthologs differ in
genomic contexts, including both gene content and neighbor-
hood. C. pneumoniae, C. psittaci, and C. abortus lack all the trp
genes, including trpF, whereas C. trachomatis species have lost the
trpC and trpD genes. Thus, the evolutionary history of trpF in
Chlamydia seems to have followed a complex path involving ge-
nome decay and rearrangements (Fig. 5) coupled with the acqui-
sition of a novel function to serving as a FolE in the folate biosyn-
thesis pathway. Given the ability of Chlamydia trpF orthologs to

complement E. coli �folE, we next addressed if evolution of this
new enzymatic function was accompanied by a loss of PRA
isomerase activity.

To test PRA isomerase (TrpF) activity, a trpCF deletion mutant
of E. coli (ATM932) was transformed with a plasmid containing
the trpF gene from Chlamydiaceae alone or cotransformed with a
plasmid containing the trpC domain of the E. coli trpCF gene
(pAM238::trpCEc, pNEA67), as a trpCF deletion can be comple-
mented when the E. coli trpC and trpF domains are expressed from
separate plasmids (pNEA67 and pNEA61, respectively). While the
E. coli trp (trpFEc) domain and the trpF genes of Chlamydiaceae
alone fail to complement an E. coli �trpCF mutant, the trpF genes
of Chlamydiaceae fully complement the �trpCF mutant when ex-
pressed with pNEA67, which contains the E. coli trpC domain
(Fig. 4B; also, see Table S3 in the supplemental material). Thus,
the Chlamydiaceae trpF encodes a functional PRA isomerase
which can act together with the E. coli indole-3-glycerol phosphate
synthase (TrpC) to restore tryptophan prototrophy to a �trpCF
mutant of E. coli. As expected, the E. coli folE gene (pNEA50) failed
to complement the �trpCF mutant even when expressed from
pUC19, a high-copy-number plasmid (see Table S3 in the supple-
mental material).

The PRA isomerase activity was further confirmed using an
E. coli �trpF mutant (strain FBG-Wf) which retains the TrpC do-

FIG 4 Phylogenomic context and analysis of trpF genes in Chlamydia. (A) Alignment of library inserts that complemented �folE. Library clones A4 and C1
(highlighted in blue) were used to test efficiency of complementation on M9 minimal medium containing pantothenic acid (1 �g/ml), adenine (40 �g/ml) and
Casamino Acids (0.5%). (B) Complementation of E. coli �folE and �trpF mutants with trpF genes from members of the Chlamydiaceae.
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main (19, 20). As expected, pASK::trpFCtL2 complemented the
�trpF mutation and rescued the tryptophan auxotrophy in vivo
(data not shown). In vitro assays were hindered by difficulty in
obtaining sufficient amounts of pure TrpFCtL2 protein and a poor
signal-to-noise ratio of the enzyme assay, which prevented us
from obtaining enzyme kinetics for the conversion of PRA to 1-(o-
carboxyphenylamino)-1=-deoxyribulose 5=-phosphate (CdRP).
Alternatively, use of cell-free extracts revealed that TrpFCtL2 did
indeed catalyze the conversion of PRA to CdRP, but at a level
lower than that of the PRA isomerase activity of PriA from Strep-
tomyces coelicolor, which was used as a positive control (see Fig. S2
in the supplemental material).

Biochemical assays for GTP cyclohydrolase I (GCYH-I) ac-
tivity. After it was observed that TrpFCtL2 complemented an E. coli
�folE mutant, in vitro GCYH-I activity was assessed using a stan-
dard fluorescence assay in which the H2NPT produced from GTP
is first oxidized to neopterin (13). We observed a small but con-
sistent enhancement of the fluorescent signal (data not shown) in
cell-free extracts of E. coli Rosetta BL21(DE3) that expressed Trp-
FCtL2 as a fusion with the E. coli maltose-binding protein (pMAL-
c4x::trpFCtL2, pNEA83). However, attempts to measure activity
with either the semipurified (affinity) or purified (HiTrap Q; GE
Healthcare) fusion protein were unsuccessful, suggesting that the
enzyme lost activity or that an essential cofactor during purifica-
tion or that the enzyme was not functioning as a GCYH-I and may
instead catalyze a different but related reaction.

The GCYH-I reaction is especially complex and requires mul-
tiple steps (Fig. 6A) (21). The first half of the reaction comprises
two sequential hydrolysis reactions that result in purine ring
opening and release of formic acid to give 2,5-diamino-6-

ribosylamino-4(3H)-pyrimidinone 5=-triphosphate (compound
II) (Fig. 6A), which subsequently undergoes ribosyl ring opening,
an Amadori rearrangement, and ring closure in the second half of
the reaction to give H2NTP. Similar ribosyl ring opening and
Amadori rearrangements are also catalyzed by PRA isomerase
(TrpF), as well as by the N=-[(5=-phosphoribosyl)formimino]-
5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR)
isomerase (HisA; EC 5.3.1.16) (22) (Fig. 6B).

Notably, while compound II is an intermediate in the GCYH-I
reaction, the monophosphate derivative of compound II, 2,5-di-
amino-6-ribosylamino-4(3 H)-pyrimidinone 5=-phosphate
(compound V) (Fig. 7A), is the product of the GCYH-II enzyme,
which in E. coli is designated RibA and is involved in flavin bio-
synthesis. Since all sequenced chlamydial species possess a RibA
ortholog (CT731), we reasoned that the failure to observe
GCYH-I activity with TrpFCtL2 might be because it instead func-
tions in the chlamydial folate pathway by converting compound V
to H2NMP. The absence of an identifiable folQ gene that clusters
with other folate biosynthetic genes in chlamydial genomes is also
consistent with this hypothesis, as a pathway that utilized com-
pound V as the precursor to the pterin system would bypass
H2NTP by producing H2NMP directly, obviating FolQ.

To test if TrpFCtL2 catalyzes the conversion of compound V to
H2NMP, we carried out coupled assays with purified recombinant
E. coli RibA (22, 23) and recombinant TrpFCtL2. In contrast to the
assays containing only GTP, a distinct fluorescent signal was ob-
served in the RibA-coupled assays that was both time and TrpFCtL2

dependent (data not shown). To confirm that the signal was in fact
due to the conversion of compound V to H2NMP, compound V
was produced and purified in large-scale RibA reactions and used

FIG 5 Phylogenetic tree of TrpF homologs and comparative genomics of trpABCDEFGRL and folE genes. The phylogenetic tree was constructed using the WAG
model (42). The Verrucomicrobia and Lentisphaera group conserved folE (red clade), while the Chlamydiae group lost folE (green clade and red star). In
Chlamydiae, a subclade consisting of C. trachomatis and C. muridarum possess the trpF in a different genomic context (blue star). Genes and their positions are
shown in arrows, genes of unknown function are marked in white, multiple genes occurring in both directions are marked with diamonds, and the number inside
the diamond indicates how many genes are predicted in this category. Two diagonal black lines indicate that the distance between trp genes and folE spans �15
genes.
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in TrpFCtL2 reactions as a putative substrate. Again, only the Trp-
FCtL2 assays revealed a distinct fluorescent signal, whereas controls
that contained no protein or BSA in place of TrpFCtL2 did not
(Fig. 7B).

Further analysis of the formation of H2NMP from compound
V by TrpFCtL2 was investigated by liquid chromatography-mass
spectrometry (LC-MS) (Fig. 7C). In the total ion chromatogram
of the TrpFCtL2 assay, a peak with the same retention time as au-
thentic dihydroneopterin was observed, which was absent from
the negative control (Fig. 7C), and both peaks possessed a molec-
ular ion (m/z 254.08892 versus m/z 254.08903 for the authentic
standard) consistent with dihydroneopterin. Furthermore, tan-
dem MS (MS/MS) analysis of the m/z 254 ion produced an iden-
tical fragment ion at m/z 194 in both samples (Fig. 7D).

CT610 functionally replaces PabA, PabB, and PabC in E. coli.
Because of the strict linkage of ct610 and its orthologs with the
folate biosynthesis genes in both Chlamydia and the phylogeneti-

cally distant Wolbachia (Fig. 2), it was highly probable that this
enzyme family was involved in folate biosynthesis; however, its
role was a mystery when we began this study.

We looked for a gene which encoded the missing PABA syn-
thesis enzyme by screening a library of C. trachomatis L2 DNA in
ATM825, an E. coli �pabA::kan mutant, which requires PABA
supplementation for growth on minimal medium. Transformants
were selected for growth on minimal medium without PABA sup-
plementation. The complementing clone that was isolated con-
tained nucleotides 28 to 696 of the ctl0874 gene, which is a ho-
molog of ct610 in C. trachomatis serovar D. Here, we refer to
ctl0874 with the C. trachomatis D locus tag ct610 for consistency
with the literature. There is some discrepancy concerning the ac-
tual start site of ct610. Mass spectrometry (MS) analysis deter-
mined the N-terminal amino acid sequence to be MNFLDQLDLI,
indicating a translation start 15 nucleotides downstream of the
start site predicted by genomics data at STDgen (http://stdgen

FIG 6 Biochemical reactions catalyzed by FolE and GTP cyclohydrolase I (A) and by TrpF and HisA (B).
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.northwestern.edu/) and NCBI (http://www.ncbi.nlm.nih.gov). We
cloned the ct610 gene containing the MS-predicted start site into
pUC19 (yielding pAJM96) and with the genomics-predicted transla-
tion start site into pUC19 (yielding pAJM95). Plasmids containing
either of the predicted starts for CT610 complemented the PABA
auxotrophy of the E. coli �pabA mutant (VDC9500) (Fig. 8A). More
importantly, CT610 was also able to complement the PABA auxot-
rophy of E. coli �pabB and �pabC mutants (VDC9502 and
VDC9504) as well (Fig. 8B), indicating that CT610 is able to make
PABA by an alternative route that does not involve the PabA, PabB, or
PabC enzymes. Thus, chlamydiae possess a novel pathway for the
synthesis of PABA.

Search for the potential CT610 substrate. Chorismate is the
precursor for the PABA moiety of folate in the canonical pathway
(Fig. 1B). To test if chorismate is also the precursor for PABA via
the CT610-mediated reaction, an E. coli �aroA mutant was con-
structed (ATM816). AroA carries out the penultimate step of
chorismate biosynthesis (24); thus, aroA mutants are unable to
produce chorismate, and growth in minimal medium re-
quires supplementation with the aromatic amino acids,

4-hydroxybenzoate, and PABA. CT610 was still able to comple-
ment an E. coli �aroA mutant with 72.6% efficiency, allowing
growth on M9 medium supplemented with tryptophan, tyrosine,
phenylalanine, and 4-hydroxybenzoate but lacking PABA (see
Fig. S3 in the supplemental material).

Shikimate and 3-dehydroquinate were investigated next as
possible substrates. Both are intermediates in the biosynthesis of
chorismate and could serve as precursors for PABA in an alterna-
tive pathway that branches earlier than chorismate. In the canon-
ical pathway, 3-dehydroquinate synthase (AroB) catalyzes the
cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate
to 3-dehydroquinate, which is then converted to
3-dehydroshikimate by 3-dehydroquinate dehydratase (AroD).
Reduction of 3-dehydroshikimate to shikimate is catalyzed by shi-
kimate dehydrogenase (AroE). CT610 was able to complement
both E. coli �aroD �pabA (VDC9510) and E. coli �aroB �pabA
(VDC9598) mutants (see Fig. S3 in the supplemental material),
allowing growth on M9 supplemented with either shikimic acid
or just the aromatic amino acids but lacking PABA. CT610 there-
fore appears to utilize a molecule other than shikimate,

FIG 7 Formation of H2NMP from GTP by RibA and TrpFCtL2. (A) Reactions mediated by RibA and TrpFCtL2. (B) Fluorescence assay for H2NMP formation
from compound V by TrpFCtL2. Assays were carried out as described in Materials and Methods. �, TrpFCtL2; Œ, BSA; e, no added protein. (C) LC-MS analysis
of TrpFCtL2 activity. Total ion chromatograms with mass spectra of peaks at 6.5 min (insets) of authentic 7,8-dihydroneopterin (a), a control assay with no
TrpFCtL2 (b), and an assay with TrpFCtL2 (c) are shown. (D) MS/MS analysis of the m/z 254 ion produced in the LC-MS experiments whose results are shown in
panel C. (a) Authentic 7,8-dihydroneopterin assay; (b) assay with TrpFCtL2.
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3-dehydroquinate, chorismate, or any intermediate in this path-
way as a precursor for PABA.

Since intermediates in the chorismate biosynthetic pathway
are not the substrates for CT610, we tested the aromatic com-
pound ubiquinone and its precursor, 4-hydroxybenzoate. Choris-
mate pyruvate lyase (UbiC) catalyzes the first step of ubiquinone
biosynthesis, the conversion of chorismate to 4-hydroxybenzoate
(25). An E. coli �ubiC mutant can grow on glucose as a sole
carbon source without 4-hydroxybenzoate or ubiquinone supple-
mentation. To test if CT610 can utilize ubiquinone or
4-hydroxybenzoate as a precursor for PABA, an E. coli �ubiC
�pabA mutant was constructed which does not make ubiquinone
or PABA (ATM851). Similar to the observations with the choris-
mate pathway mutants, expression of CT610 in E. coli �ubiC
�pabA allowed the strain to grow on M9 with glucose in the ab-
sence of PABA, indicating that CT610 does not use ubiquinone or
any of the intermediates from chorismate to ubiquinone as a pre-
cursor for PABA (see Fig. S3 in the supplemental material).

DISCUSSION

Folate synthesis has long been a target for antimicrobial drug de-
velopment because the pathway is found in bacteria but not in

mammalian cells. C. trachomatis and C. psittaci synthesize folates
de novo and are sensitive to sulfonamides, which target enzymes in
the folate synthesis pathway (8). However, metabolic reconstruc-
tion of the folate pathway in sequenced Chlamydia strains revealed
many pathway holes (9). In this study, we performed a compre-
hensive examination of pathways for synthesis of pterin and
PABA, two critical moieties that form folate, and solved the re-
maining mysteries in this area of metabolism in these pathogenic
bacteria.

RT-PCR analysis of the C. trachomatis L2 folate gene cluster
showed that the five contiguous genes are expressed as an operon
(see Fig. S1 in the supplemental material). folA (8) and folC2 (9)
had previously been shown to encode functional enzymes in the
THF pathway. Genetic complementation experiments with E. coli
mutants allowed us to demonstrate functionality of the chlamyd-
ial folB gene, encoding dihydroneopterin aldolase, and the dihy-
dropteroate synthase (FolP) activity of the folKP gene. Our inabil-
ity to show FolK activity in the folate operon despite an active FolP
suggests that the chlamydial enzyme cannot accept the HMH2N
precursor from E. coli FolB. More sophisticated biochemical anal-
yses are required to formally validate the inferred chlamydial FolP

FIG 8 CT610 complements PABA auxotrophy of E. coli PABA mutants. (A) Complementation of VDC9500 (�pabA::kan) with either pabAEc or ct610. (B)
Complementation of VDC9502 (�pabB::kan) and VDC9504 (�pabC::kan) with CT610. All cultures were washed twice in M9 medium without PABA and
normalized to an OD600 of 1 in M9 medium without PABA, and 10 �l of 10-fold serial dilutions was spotted onto LB agar, M9 glucose agar, and M9 glucose agar
with PABA. Arabinose (0.1% [wt/vol]) was added to plates for complementation of VDC9504 for induction of pBAD24::pabCEc. All plates contained 100 �g/ml
ampicillin.
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activity. Thus, four of the five genes in the folate operon have now
been assigned a role in THF synthesis. The results obtained by
Satoh et al. (15) and our own data demonstrate that the last gene in
the folate operon, ct610, is involved not in the pterin biosynthesis
pathway but in the synthesis of PABA, the other component of
THF.

One outstanding question was how Chlamydia initiates the
pathway for THF biosynthesis in the absence of any ortholog of
GCYH-I (FolE), the first enzyme in the canonical pathway. We
used a combined genetic and biochemical strategy to reveal that
TrpFCtL2 initiates a novel route to the formation of a precursor for
THF synthesis. While TrpFCtL2 complemented an E. coli �folE
mutant, biochemical analysis revealed that purified recombinant
TrpFCtL2 catalyzed the conversion of compound V to H2NMP.
This observation, plus our inability to demonstrate conversion of
GTP to H2NTP, leads us to conclude that TrpFCtL2 functions in
Chlamydia not as a classic GCYH-I but instead as an isomerase
that converts compound V, the product of GCYH-II, into H2NMP
(Fig. 7A). Thus, in Chlamydia, the GCYH-II enzyme catalyzes the
first step in both the flavin and folate pathways.

Given the mechanistic complexity of the GCYH-I-catalyzed
reaction and the similar chemistry of the latter portion of this
reaction to that of the reaction catalyzed by TrpF (Fig. 6), the
observation that TrpFCtL2, catalyzes the latter half of the GCYH-I
transformation is an elegant solution to the loss of a discrete
GCYH-I activity in Chlamydia. Indeed, evolving the ability to con-
vert available compound V to H2NMP in the context of TrpF
catalysis is a far more likely process than evolving this ability to-
gether with purine ring hydrolysis and deformylation.

PRA isomerase (TrpF) is well known as a promiscuous and
evolvable enzyme (26) and is the paradigm of an adaptable en-
zyme (27). (��)8-barrel fold enzymes like PRA isomerase are cat-
alytically versatile and excellent candidates for evolutionary selec-
tion of diverse activities. For example, a HisA homolog in
Actinobacteria possesses dual-substrate specificity of both HisA
and TrpF (28, 29). This new isomerization reaction is another
example of the plasticity of the TrpF fold that has already been
recruited to perform different types of isomerization reactions
(Fig. 6) (29). In the case of Chlamydia TrpF, PRA isomerase activ-
ity is retained, allowing C. caviae, C. felis, and C. pecorum to carry
out the full tryptophan synthesis pathway starting with the anthra-
nilate precursor. Thus, promiscuous enzymes with broad sub-
strate specificity may play a significant role in reductive evolution
with far-reaching metabolic implications.

The tryptophan repressor, TrpR, represses trp operon expres-
sion when tryptophan is plentiful. In C. trachomatis L2, trpF is not
regulated by TrpR (30), but trpF in C. caviae, C. pecorum, and
C. felis is in the trp operon and under TrpR control. It is possible
that under tryptophan-replete conditions, trpF expression is re-
pressed in these strains. However, it is likely that the level of trpF
expression needed for folate synthesis is lower than what is needed
for tryptophan synthesis and basal (uninduced) levels of trpF ex-
pression are probably sufficient for folate production.

An unresolved question is that of the mechanism of action of
CT610. It has been implicated as a type III secreted factor capable
of triggering apoptosis in host cells (31). In addition, CT610 is
similar to PqqC (32), which catalyzes a ring cyclization and eight-
electron oxidation in the final step of pyrroloquinoline quinone
(PQQ) biosynthesis. However, the active site residues of PqqC are
not conserved in CT610, and we demonstrate here that CT610 can

functionally replace PabA, PabB, and PabC, indicating that it acts
as a novel PABA synthase. Similarly, Satoh et al. recently reported
that both CT610 and its homolog in Nitrosomonas europaea func-
tion as PABA synthesis enzymes capable of replacing PabA, PabB,
and PabC in E. coli (15). Like the chlamydiae, N. europaea does not
contain homologs of pabA, pabB, or pabC, yet it possesses the
remainder of the tetrahydrofolate biosynthesis enzyme genes.

Based on the structure of CT610 (32), we predicted that its
substrate was likely an aromatic or similar cyclic compound such
as chorismate, an intermediate of PABA synthesis, or a down-
stream product derived from chorismate (i.e., ubiquinone, aro-
matic amino acids). We tested chorismate, shikimate,
3-dehydroquinate, and ubiquinone as potential precursors to
PABA synthesis by genetic complementation of a series of muta-
tions (�aroA, �aroD, �aroB, and �ubiC) in either wild-type E. coli
or an E. coli �pabA mutant (a PABA auxotroph), and we found
that, in each case, CT610 restored growth in the absence of PABA.
Our results are similar to the results with the N. europaea CT610
homolog, confirming that CT610 and its homologs are indeed
novel PABA synthases. However, the identity of the substrate used
by CT610 to form PABA remains unknown.

CT610 is classified in the superfamily of heme oxygenases (32).
Other enzymes in this superfamily catalyze a diverse array of re-
actions, and include those involved in thiamine salvage (TenA),
thiazole biosynthesis (Thi4), and PQQ biosynthesis (PqqC). In-
terestingly, Thi4p of Saccharomyces cerevisiae has been shown to
be a suicide thiamine thiazole synthase which, in contrast to the
five enzymes required by bacteria to produce thiamine thiazole
(33), forms the thiazole moiety in a single step. Thi4p acts as a
cosubstrate for the formation of thiazole through a complex reac-
tion in which a cysteine residue of Thi4p serves as the sulfur source
(33). It is intriguing to speculate that CT610 may similarly be a
single-turnover enzyme, serving as a cosubstrate to produce
PABA. In such a scenario, the conserved lysine residue at position
152 within the predicted binding pocket of CT610 might serve as
the amino source for the production of PABA. However, testing of
this hypothesis must await the identification of the PABA precur-
sor.

In summary, folate biosynthesis is fully functional in most
Chlamydia species, but the pathway is a patchwork of recruited
enzymes. FolC2, an enzyme of archaeal origin associated with glu-
tamylation of the F420 cofactor, has been recruited to perform the
folate glutamylation reactions (9). The biosynthesis of H2NMP,
an early intermediate in the pathway, is performed by the first
enzyme of riboflavin biosynthesis (RibA) together with a PRA
isomerase (TrpFCtL2) showing broad substrate specificity. Finally,
the PABA moiety appears to be synthesized via a unique route
using CT610, an enzyme homologous to PqqC, an enzyme in-
volved in the biosynthesis of pyrroloquinoline quinone (PQQ).
However, CT610 has no validated role in PQQ synthesis in Chla-
mydia. Clearly, folate biosynthesis in Chlamydia provides another
example of the remarkable metabolic versatility and ingenuity of
the species. The unique nature of the Chlamydia folate synthesis
enzymes makes them ideal targets for development of highly spe-
cific antibacterial agents.

MATERIALS AND METHODS
Comparative genomics. The BLAST tools (34) and resources at NCBI
(http://www.ncbi.nlm.nih.gov/) were routinely used. Sequence align-
ments were built using ClustalW (35) or Multialin (36). Protein domain
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analysis was performed using the Pfam database tools (http://
pfam.xfam.org/) (37). Analysis of the phylogenetic distribution was per-
formed on the public SEED server (http://pubseed.theseed.org/
SubsysEditor.cgi) (38). Physical clustering was analyzed with the SEED
subsystem coloring tool or the Seedviewer Compare region tool (38) as
well as on the MicrobesOnline tree-based genome browser (http://
www.microbesonline.org/) (39).

Phylogenetic reconstructions. Sequence alignments were done using
MUSCLE from within the software SEAVIEW (40). ProtTest (41) was
used to define the fittest model for the TrpF phylogenetic reconstruction,
and reconstruction was done using a WAG model (42) followed by a
Bayesian analysis using MrBayes 3.2.1 (43). Branch supports were esti-
mated using 1,000,000 bootstrap replications.

Bacterial strains and growth conditions. Strains of E. coli K-12 used
in this study are listed in Table 1, and plasmids are listed in Table 2.
Construction of strains and plasmids is described in the supplemental
material. Strains were grown in Luria-Bertani (LB) medium or M9 min-
imal medium with aeration or on agar. Medium was supplemented with
ampicillin (100 �g/ml), kanamycin (50 �g/ml), chloramphenicol (25 �g/
ml), spectinomycin (100 �g/ml), thymidine (75 �g/ml), pantothenate
(1 �g/ml), adenine (40 �g/ml), PABA (0.1 �g/ml), 4-hydroxybenzoate

(2 �M), phenylalanine (10 or 40 �g/ml), tryptophan (40 �g/ml), tyrosine
(40 �g/ml), or Bacto Casamino Acids (0.5%) as necessary, and cultures
were incubated at 37°C. Chemicals were purchased from Sigma-Aldrich
Company. Phosphate-buffered saline (PBS; Lonza) and buffered saline
gelatin (BSG; 150 mM NaCl, 2 mM KH2PO4, 4 mM Na2HPO4, 0.01%
gelatin) (44) were used as washes and diluents for bacterial cultures, re-
spectively.

Library screen. Freshly prepared P1-7B (E. coli �folE::kan) and
ATM825 (E. coli �pabA::kan) electrocompetent cells were transformed
with ~300 ng of C. trachomatis L2 genomic library (45) and recovered in
SOC supplemented with thymidine or PABA overnight at 25°C. After
recovery, the culture was washed twice in PBS before plating on M9 me-
dium containing ampicillin, pantothenic acid, adenine, and Casamino
Acids for P1-7B and on M9 plates with ampicillin for ATM825. Transfor-
mation titers were determined by plating dilutions on M9 medium con-
taining ampicillin, thymidine, pantothenic acid, adenine, and Casamino
Acids for P1-7B and on M9 ampicillin PABA for ATM825. Transformants
were single-colony purified twice before characterization of phenotype
(efficiency of plating) and genotype (DNA sequence of library clone).

Efficiency of plating. Cultures of P1-7B carrying plasmids of interest
were grown overnight in LB containing ampicillin, thymidine, panto-

TABLE 1 Escherichia coli K-12 strains used in this study

Strain Genotype Relevant auxotrophic requirements Reference or source

MC4100 F� araD139 �(lacZYA-argF)U169
rpsL150 relA1 deoC1 pt F25
rbsR flbB5301

47

MG1655 F� rph-1 �� Su° 48
BW25113 F� �(araD-araB)567

�lacZ4787(::rrnB3) lacIp-
4000(lacIq) �� rph-1 �(rhaD-
rhaB)568 rrnB3 hsdR514

pKD46: araBp-gam-bet-exo
oriR101 repA101(Ts) bla

49

Rosetta BL21(DE3) F� ompT hsdSB (rB
� mB

�) gal
dcm (DE3) pRARE (cat)

EMD Millipore

C600 �folK C600 �folK::tet Thymidine, pantothenic acid, adenine,
glycine, methionine

50

P1-7B MG1655 �folE::kan Thymidine, pantothenic acid, adenine,
glycine, methionine

51

ATM816 MG1655 �aroA::kan Phenylalanine, tyrosine, tryptophan, 2,3-
dihydroxybenzoate, PABA

This work

ATM825 MG1655 �pabA::kan PABA This work
ATM842 MG1655 �ubiC::kan No auxotrophic requirements on minimal This work
ATM843 MG1655 �ubiC No auxotrophic requirements on minimal This work
ATM851 MG1655 �ubiC �pabA::kan PABA, ubiquinone This work
ATM932 MG1655 �trpCF::cat Tryptophan This work
FBG-Wf �trpF Tryptophan 19

VDC2250 MG1655 �folP::kan Thymidine, pantothenic acid, adenine,
glycine, methionine

This work

VDC3276 MG1655 �folB::kan Thymidine, pantothenic acid, adenine,
glycine, methionine

52

VDC9500 BW25113 �pabA::kan PABA This work
VDC9502 BW25113 �pabB::kan PABA This work
VDC9504 BW25113 �pabC::kan PABA This work
VDC9508 BW25113 �aroD::cat Phenylalanine, tyrosine, tryptophan,

ubiquinone, PABA
This work

VDC9510 BW25113 �aroD::cat �pabA::kan Phenylalanine, tyrosine, tryptophan,
ubiquinone, PABA

This work

VDC9579 MG1655 �aroB Phenylalanine, tyrosine, tryptophan,
ubiquinone, PABA

This work

VDC9598 MG1655 �aroB �pabA::kan Phenylalanine, tyrosine, tryptophan,
ubiquinone, PABA

This work
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thenic acid, adenine, and Casamino Acids. All �pab strains were grown in
M9 medium containing ampicillin and PABA. ATM932 (E. coli �trpCF::
kan) was grown overnight in LB containing tryptophan, ampicillin, or
spectinomycin as needed. All strains were diluted into fresh medium and
grown to mid-log phase (optical density at 600 nm [OD600] � 0.5 to 0.7),
washed in PBS, serially diluted in BSG, and then plated at 37°C on appro-
priate growth media.

Complementation drops. Strains were grown overnight in LB con-
taining ampicillin or spectinomycin, as needed, and supplemented with
thymidine for the E. coli �folB mutants. Strains were diluted into fresh
medium, grown to an OD600 of ~1.0, washed in PBS, normalized to an
OD600 of 1.0, and serially diluted in PBS. A 10-�l portion of each serial
10-fold dilution was spotted onto appropriate growth media.

RT-PCR. L2 mouse fibroblasts were infected to a multiplicity of infec-
tion of 1 with C. trachomatis L2 434/Bu, and total RNA and DNA were
harvested using TRIzol (Invitrogen) at 46 h postinfection. RNA was
DNase I treated (Invitrogen) and reverse transcribed with random hex-
amers using the Thermoscript RT-PCR kit (Invitrogen). Total RNA, total
DNA, and cDNA samples were analyzed with Taq polymerase (Fermen-
tas).

Determination of phosphoribosylanthranilate (PRA) isomerase ac-
tivity. PRA isomerase activity of TrpFCtL2 was confirmed in an E. coli
�trpF mutant, FBG-Wf, as previously described (19, 20) using cell-free
extracts of E. coli FBG-Wf carrying pASK::trpFCtL2, empty pASK as a neg-
ative control, and pASK::priA_Scoe, encoding a phosphoribosyl isomerase
A from Streptomyces coelicolor which exhibits both TrpF and HisA activity,
as a positive control (28). The cells were grown at 37°C for 72 h in 500 ml
of M9 minimal medium without tryptophan, except for the negative con-
trol, where tryptophan was added, before induction of the Ptet promoter
of pASK with anhydrotetracycline (20 ng/ml). For the PRA isomerase

enzyme assay, 62.5 �M of anthranilic acid and 2.6 �g/ml of total protein
were used as previously reported (20).

HPLC assay for type I GTP cyclohydrolase activity. Assays to identify
GCYH-I activity of the TrpFCtL2 fusion protein were carried out as de-
scribed previously (46), except that the reaction volume was 200 �l and
solutions were degassed with N2 to minimize postreaction oxidation. Re-
action mixtures containing Neisseria gonorrhoeae GCYH-1B (0.5 �M) as a
positive control or TrpFCtL2 fusion protein (~5.0 �M) were incubated in
the dark at 37°C for 60 min and then for an additional 60 min after the
addition of five units of alkaline phosphatase. Protein was removed from
the mixture using an Amicon centrifugal device, and the samples were
analyzed by reversed-phase HPLC on a Gemini C18 (Phenomenex) col-
umn equilibrated in 200 mM ammonium acetate (pH 6.0), at a flow rate of
0.7 ml/min. The following acetonitrile solvent gradient was used to de-
velop the column: 0 min, 0%; 10 min to 30 min, 0 to 30% gradient; 30 min
to 40 min, 30 to 0% gradient; and 50 min, 0%.

Fluorescence assay for 7,8-dihydroneopterin formation. Enzyme as-
says were run at 37°C in 100-�l reaction mixtures containing 1 mM GTP
or 500 �M purified compound V (purification details of compound V are
in the supplemental material), 100 mM HEPES (pH 8.0), 100 mM KCl,
1 mM dithiothreitol (DTT), 20 mM MgCl2, and either TrpFCtL2 fusion
protein (400 �g/ml), BSA (400 �g/ml), or no protein. The reactions were
run for 0, 15, 30, 45, or 60 min, before 12 �l of 1% I2 (wt/vol) and 2% KI
(wt/vol) in 1 M HCl were added and incubated at room temperature in the
dark for 15 min. Excess iodine was reduced by the addition of 6 �l of 2%
ascorbic acid (wt/vol), and the samples were analyzed by fluorescence
spectroscopy with a Gemini XPS fluorimeter (excitation at 365 nm, emis-
sion at 446 nm). A standard curve using authentic neopterin was gener-
ated in tandem with the analysis.

TABLE 2 Plasmids used in this studya

Name Genotype Description Source or reference

pGEM-T Cloning vector for PCR products Promega
pUC18 Cloning vector with Plac, ColE1 ori, Apr 53
pUC19 Cloning vector with Plac, ColE1 ori, Apr 53
pAM238 Cloning vector with Plac, pSC101 ori, Spcr 54
pMAL-c4x N-terminal maltose binding protein tag fusion expression vector; Ptac Apr New England Biolabs
pASK::IBA3plus Expression vector for C-terminal strep tag-fusion; Ptet Apr IBA GmbH
pAJM94 pUC18::aroAEc aroAEc from E. coli MG1655 with Plac; Apr This work
pAJM95 pUC19::ct610 ct610 (ctl0874) from CtL2 with genomics-predicted start This work
pAJM96 pUC19::ct610 ct610 (ctl0874) from CtL2 with proteomics-predicted start This work
pASK NdeI site of pASK::IBA3plus deleted, His tag from pET15b inserted into

the EcoRI and HindIII sites
This work

pASK::ctl0581 pASK::ctl0581 trpFCtL2 (ctl0581) with Ptet, Apr This work
pASK::priA_Scoe pASK::priA_Scoe priA from Scoe with Ptet, Apr (28)
pJJT22 pUC19::pabAEc pabA from E. coli MG1655 with Plac; Apr This work
pJJT23 pUC19::pabBEc pabB from E. coli MG1655 with Plac, Apr This work
pJJT70 pBAD24::pabCEc pabC from E. coli MG1655 with PBAD, Apr This work
pNEA50 pUC19::folEEc folEEc with native promoter, Apr This work
pNEA57 pAM238::folCtL2

genes
Folate gene cluster (folX-folKP-folA-folC2-ct610) from CtL2 with native

promoter, Spcr

This work

pNEA59 pUC18::trpCFEc trpCFEc with Plac, Apr This work
pNEA61 pUC18::trpFEc trpFEc domain with Plac, Apr This work
pNEA64 pAM238::trpFCc trpFCc with Plac, Spcr This work
pNEA65 pUC18::trpCCc trpCCc with Plac, Apr This work
pNEA67 pAM238::trpCEc trpCEc domain with Plac, Apr This work
pNEA69 pUC18::trpFCm trpFCm with Plac, Apr This work
pNEA71 pUC18::trpFCtL2 trpFCtL2 (ctl0581) with Plac, Apr This work
pNEA72 pUC18::trpFCc trpFCc with Plac, Apr This work
pNEA79 pAM238::trpCEc trpFEc from MC4100 with Plac, Spcr This work
pNEA83 pMAL-c4x::trpFCtL2 N-terminal maltose binding protein-CTL0581 fusion with Ptac, Apr This work
pNEA122 pUC18::folBEc folBEc from MC4100 with Plac, Apr This work
pNEA127 pUC18::folXCtL2 ct614 (ctl0878) from CtL2 with Plac, Apr This work
aAp, ampicillin; Cc, C. caviae GPIC strain SP6; Cm, C. muridarum Nigg; CtL2, C. trachomatis L2; Ec, E. coli MC4100 or MG1655; Scoe, Streptomyces coelicolor; Spc, spectinomycin.
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LC-MS analysis of type I GTP cyclohydrolase activity of TrpFCtL2.
GCYH assays were carried out as described above for HPLC analysis of
TrpFCtL2 assays along with control assays containing BSA in place of the
TrpFCtL2 fusion protein. After protein removal by an Amicon centrifugal
device, the filtrate was concentrated by evaporation in a speed-vac. The
samples were analyzed by an LCQ Orbi-trap mass spectrometer (Thermo)
interfaced with an Accela HPLC system. The interface was operated in the
negative mode scanning the range m/z 0 to 800, with the following instru-
ment conditions: capillary voltage, �16 V; capillary temperature, 299°C;
tube lens, �90 V; spray voltage, 9 V. The separation was carried out using
a reversed-phase column (Phenomenex Gemini [5 �m particle] C18; 250
by 2.00 mm column) using a mobile phase of 20 mM ammonium acetate
(pH 6.0) with an acetonitrile gradient at a flow rate of 0.3 ml/min. The
injection volume was 10 �l. Authentic dihydroneopterin was analyzed
under the same conditions.
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