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Purpose: This study aimed to develop a deep learning model based on chest radiography (CXR) images and clinical data to 
accurately classify gram-positive and gram-negative bacterial pneumonia in children to guide the use of antibiotics.
Methods: We retrospectively collected CXR images along with clinical information for gram-positive (n=447) and gram-negative 
(n=395) bacterial pneumonia in children from January 1, 2016, to June 30, 2021. Four types of machine learning models based on 
clinical data and six types of deep learning algorithm models based on image data were constructed, and multi-modal decision fusion 
was performed.
Results: In the machine learning models, CatBoost, which only used clinical data, had the best performance; its area under the 
receiver operating characteristic curve (AUC) was significantly higher than that of the other models (P<0.05). The incorporation of 
clinical information improved the performance of deep learning models that relied solely on image-based classification. Consequently, 
AUC and F1 increased by 5.6% and 10.2% on average, respectively. The best quality was achieved with ResNet101 (model accuracy: 
0.75, recall rate: 0.84, AUC: 0.803, F1: 0.782).
Conclusion: Our study established a pediatric bacterial pneumonia model that utilizes CXR and clinical data to accurately classify 
cases of gram-negative and gram-positive bacterial pneumonia. The results confirmed that the addition of image data to the 
convolutional neural network model significantly improved its performance. While the CatBoost-based classifier had greater advan
tages owing to a smaller dataset, the quality of the Resnet101 model trained using multi-modal data was comparable to that of the 
CatBoost model, even with a limited number of samples.
Keywords: pediatrics, antibiotics, clinical data, X-ray, multi-modal data

Introduction
Pneumonia is the most significant cause of death in children in developing countries.1,2 The most common causes of 
pneumonia are viral and bacterial pathogens. Based on the Global Burden of Disease data, in 2016, approximately 64% of 
children under the age of five with pneumonia died of bacterial pneumonia.3 Several types of bacteria can cause pneumonia, 
including Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae, and Pseudomonas aeruginosa.4,5 
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Rapid and accurate identification of pneumonia pathogens, such as gram-positive and gram-negative bacteria, is essential for 
antibiotic selection. Appropriate drug treatment and limiting the unreasonable use of antibiotics play an important role in 
improving the survival or cure rates of bacterial pneumonia.6 This may improve outcomes and slow the development of 
antibiotic resistance. Early and accurate identification of bacterial pneumonia pathogens presents a significant challenge for 
successful treatment.7 Symptoms of pneumonia caused by gram-positive and gram-negative bacteria usually overlap, and the 
etiological diagnosis is mainly based on clinical and diagnostic imaging findings. Accurate classification of pneumonia based 
on imaging tests alone can be challenging, especially when different types of pneumonia have similar imaging features. 
Chest radiography (CXR) is a standard diagnostic tool for pneumonia; however, the sensitivity and specificity are not high,8 

and the interpretation of chest X-ray characteristics varies among clinicians with different levels of experience and ultimately 
depends on the expertise of the radiologist or clinical physician.9 The identification of pneumonia pathogens relies heavily on 
isolation and culture techniques, which include sputum smears, alveolar lavage, bronchial brushings, and antigen and virus 
testing. As a standard diagnostic tool for the detection of pathogens, the isolation and culturing process is complex and time- 
consuming, has many detection restrictions, and has low sensitivity and specificity.9 Blood or pleural cultures are highly 
specific for the diagnosis of bacterial infections, but are less sensitive and take a long time, usually several days.10 Emerging 
microbial detection techniques, such as matrix-assisted laser desorption ionization time-of-flight mass spectrometry, can be 
used to rapidly identify pathogenic microorganisms, such as bacteria, fungi, mycobacteria, and viruses, as well as their drug 
resistance. However, the technical cost is high and it can only be carried out in qualified units.11 Therefore, early 
identification of the pathogenic bacteria responsible for pneumonia is particularly important.

Artificial intelligence (AI) can effectively improve the accuracy and speed of pneumonia diagnosis.12–14 Existing research 
on the application of AI technology in the field of pneumonia is still mainly focused on the detection and segmentation of 
pneumonia lesions and differential diagnosis of pneumonia. A deep learning algorithm-based chest X-ray diagnosis method, 
CheXNeXt, has an accuracy of diagnosis for 11 common chest diseases, which is comparable to or even better than that of 
practicing radiologists.15 Another study presented a deep-learning model for lung-thoracic segmentation based on clinical 
pediatric CXR of 1135 patients, which achieved an area under the receiver operating characteristic curve (AUC) of 0.95 and 
a sensitivity of 88.7%. Compared with this algorithm, radiology residents showed lower sensitivity but higher specificity.16 

However, most of the current studies are based on the differential diagnosis between viral pneumonia, especially COVID-19, 
and other types of pneumonia, such as interstitial pneumonia and community-acquired pneumonia.17,18 There are only a few 
studies on the differential diagnosis of bacterial pneumonia. One study used a computerized tomography image dataset in 
children (AUC: 0.75, accuracy: 0.58).19 However, this study was only based on imaging data and did not combine imaging 
examination and other indicators. We hypothesize that deep learning could be a valuable tool for the differential diagnosis of 
gram-positive and gram-negative pneumonia, based on previous research demonstrating the effectiveness of machine 
learning algorithms in medical diagnosis, which is of great importance to guide the choice of empirical anti-infective therapy 
and reduce antibiotic resistance, thus reducing pneumonia-associated mortality and sequelae in children. AI technology has 
been proven to improve diagnostic rates by fusing multi-modal information, which can overcome the problem of sensitivity 
and specificity that could not be balanced by previous technology.20,21 Compared with the single mode (X-ray only), the 
AUC of the existing multi-modal X-ray diagnosis in COVID-19 and non-COVID-19 pneumonia increased from 0.89 to 
0.93.22 Therefore, whether multi-modal information including X-ray data can improve the differential diagnosis of gram- 
positive or gram-negative bacteria requires further investigation.

Therefore, this study aimed to develop a learning model to identify gram-positive and gram-negative bacterial pneumonia 
in children based on X-ray data with clinical data to effectively improve the accuracy of diagnosis of pneumonia in children 
as well as to shorten the time to diagnosis, which may be useful for guiding empirical antibiotic treatment.

Materials and Methods
Study Sample
This study included 842 patients with community-acquired pneumonia aged <14 years who were admitted to our 
institution between January 2016 and June 2021. Precise clinical diagnosis, radiological diagnosis, and clear etiological 
examination results were available for all patients. Sputum and pleural effusion cultures were used to test the etiological 
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results of bacterial pneumonia. A chemiluminescence immunoassay quantitative diagnostic kit (Chongqing Bypass 
Medical Instrument Co. Ltd.; Chongqing, China) was used. The inclusion and exclusion criteria for pneumonia cases 
were first screened on the data platform of our institution. We selected patients diagnosed with pneumonia by chest X-ray 
examination and who had undergone etiological examination (n=1055). Patients with mixed (n=116), viral (n=55), and 
fungal (n=42) infections were excluded, leaving 447 cases of gram-positive bacterial pneumonia and 395 cases of gram- 
negativebacterial pneumonia (Figure 1). Patient consent was waived by the ethical review committee of Southwest 
Hospital, Army Medical University, as the study was a retrospective analysis of de-identified data. This study was 
conducted in accordance with the Declaration of Helsinki, and all patient data were kept confidential. The waiver of 
consent was reviewed and approved by the institutional review board of Southwest Hospital, Army Medical University 
(approval number: KY2020277).

Processing of Data
We conducted a series of preprocessing of the clinical and imaging data used in the experiment to meet the requirements 
of model training and evaluation. For image data, the size of each image was adjusted to a unified 256×256-pixel 
resolution, and its intensity value was linearly normalized into the interval [0,1]. In the case system, we collated 8 
indicators of clinical signs, including cough and sputum, 5 patient baseline characteristics, 4 previous history, and 27 
indicators of laboratory tests. A total of 44 clinical indicators were identified. The clinical data were categorized into 
categorical and numerical data. The categorical data were converted into numerical data using dummy variable coding. 

Figure 1 Patient selection flowchart.
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These steps produced 842 matched cases for the final experimental dataset. To test the algorithm, we randomly selected 
690 (80%) cases as the training set and 152 (20%) as the verification set.

Model Selection and Parameter Setting
To evaluate whether the fusion of imaging and non-imaging features can improve the classification results of childhood 
pneumonia, we established models based on imaging and clinical features, respectively. The CNN model consists of three 
convolution layers and three fully connected layers, each of which uses ReLU as the activation function, and the final 
output uses sigmoid as the activation function. The model for clinical features had four fully connected layers. Each of 
the first three layers is followed by BatchNorm1D and ReLU activation function construction, and the output of the last 
layer uses sigmoid as the activation function. In addition, we compared the most commonly used models for image and 
clinical feature classifications. We selected logistic regression (LR), support vector machines (SVM), and CatBoost as 
machine learning models for clinical data and ResNet, ResNeXt and MobileNetV3 as deep learning models for image 
data for the following reasons: LR and SVM are popular traditional machine learning algorithms that have been 
extensively used in medical research because of their interpretability and ability to handle high-dimensional data. 
CatBoost, on the other hand, is a gradient-boosting algorithm that has shown promising results in various applications, 
including medical clinical data analysis. ResNet, ResNeXt, and MobileNetV3 are deep learning models that have 
demonstrated exceptional performance in various image classification tasks. These models are known for their ability 
to handle high-dimensional data and learn complex representations of images. The feature fusion method proposed in this 
study concatenates image features extracted by a convolutional network using fully connected layers and clinical 
features. After the fusion of the image and clinical features, the feature space was learned and projected into the 
classification space to complete the classification task. The evaluation indicators of our classification algorithm were 
Precision, Recall, AUC, and F1.

Experimental Environment
The experiment was based on python3.7 language, in which the hardware environment used was RAM32G CPU: 
Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz, NVIDIA V100 32G high-performance graphics card. Deep learning was 
prepared based on the libraries paddle 2.3.2, and machine learning was prepared based on the libraries CatBoost 1.0.6 
and scikit-learn 0.22.

Statistics Analysis
Before building the model, we evaluated the differences in the clinical factors between gram-positive and gram-negative 
bacterial pneumonia. Student’s t-test or Kruskal–Wallis H-test was used for continuous variables, and the χ2 test or 
Fisher’s exact test was used for categorical variables. Statistical analyses were performed using Statistical Package for 
the Social Sciences version 26.0 (IBM SPSS Statistics; Armonk, New York, USA). The level of statistical significance 
was set at P<0.05.

Results
A total of 842 children were included in this study, including 447 cases of gram-positive and 395 cases of gram-negative 
bacterial pneumonia. Table 1 lists the characteristics of the patients in the training and test sets. There were significant 
differences in age, height, and body mass index between the gram-positive and gram-negative bacteria groups (P<0.05). 
Among the clinical symptoms, cough, phlegm in the throat, foaming at the mouth, fever, groaning, nasal congestion, 
cyanosis, and poor mental state showed significant differences (P<0.05). In the laboratory data, the levels of C-reactive 
protein, direct bilirubin, γ-glutamyltransferase, and alanine aminotransferase in the gram-positive group were signifi
cantly higher than those in the gram-negative group (P<0.05).

The training and verification sets were divided based on a ratio of 8:2, wherein the final training set contained 690 
cases. Among them, 366 were gram-positive and 324 were gram-negative. In total, 152 cases were verified. There were 
81 gram-positive and 71 gram-negative patients. We achieved the most basic image binary classification in convolution 
and full connection. CNN-based refers to a simple CNN network structure. First, the binary task of gram-positive and 
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Table 1 Clinical Characteristics of Children (n=842)

Characteristics Gram-Negative 
Bacteria (n=395)

Gram-Positive 
Bacteria (n=447)

χ2/t P

Age (years, mean ± SD) 7.18±2.53 6.93±3.43 7.945 P<0.001
Sex, n (%)
Female 138 (34.9) 192 (43) 5.654 P<0.05
Male 257 (65.1) 255 (57)

Height, weight, BMI (mean ± SD)
Height 69.26±14.43 70.31±15.59 −8.395 P<0.001
Weight 6.8±5.01 6.97±5.64 0.166 P>0.05

BMI 5.25±8.11 7.25±11.57 6.431 P<0.001
Symptoms, n(%)
Cough 81 (20.5) 252 (56.4) 112.851 P<0.01
Throat sputum 50 (12.7) 150 (33.6) 50.57 P<0.01
Foaming at the mouth 272 (68.9) 374 (83.7) 25.747 P<0.01
Fever 43 (10.9) 127 (28.4) 39.971 P<0.01
Moaning 74 (18.7) 38 (8.5) 19.041 P<0.01
Nasal congestion 37 (9.4) 68 (15.2) 6.564 P<0.01
Cyanosis 60 (15.2) 38 (8.5) 9.122 P<0.01
Poor mental health 25 (06.3) 74 (16.6) 21.134 P<0.01
Past history of patients (%)
Disease history 4 (1) 6 (1.3) 0.194 P>0.05

Surgical history 1 (0.3) 4 (0.9) 1.463 P>0.05
History of blood transfusion 6 (1.5) 8 (1.8) 0.094 P>0.05

History of infectious diseases 9 (2.3) 12 (2.7) 0.142 P>0.05

Laboratory examination (mean ± SD)
C-reactive protein (CRP):(mg/L) 6.86±22.89 7.11±19.24 −2.227 P<0.05
Alpha hydroxybutyrate dehydrogenase (α-HBDH):(U/L) 291.51±203.57 274.58±139.73 3.669 P<0.001
α-hydroxybutyrate dehydrogenase (α1-MG):(mg/L) 15.31±3.41 15.78±3.98 0.36 P>0.05
β 2-microglobulin (β2-MG):(μg/L) 3±1.31 3.16±1.42 0.981 P>0.05

γ-glutamyltransferase (GGT):(U/L) 95.5±103.83 111.79±124.14 7.619 P<0.001
Alanine aminotransferase (ALT):(U/L) 24.04±31.45 31.59±59.1 −5.228 P<0.001
Lactate dehydrogenase (LDH):(U/L) 516.47±352.05 601.5±409.92 1.04 P>0.05

Total protein (TP):(g/L) 58.68±8.55 57.89±9.41 −8.942 P<0.001
Total calcium (Ca):(mmol/L) 2.38±0.26 2.35±0.28 −3.613 P<0.001
Albumin/globulin ratio (ALB/GLO) 2.09±0.54 1.91±0.52 2.997 P<0.01
Albumen (ALB):(g/L) 39±5.69 37.32±6.12 −6.502 P<0.001
Direct bilirubin (DBIL):(μmol/L) 6.15±14.02 8.76±31.47 3.87 P<0.001
Alkaline phosphatase (ALP):(U/L) 225.62±103.83 220.36±121.77 −1.382 P>0.05

Creatine kinase (CK):(U/L) 314.5±511.4 284.37±441.36 3.253 P<0.01
Creatine kinase isoenzyme MB (CK-MB):(U/L) 61.44±94.64 51.4±51.19 5.48 P<0.001
Hypersensitive C reactive protein (hs-CRP):(mg/L) 1.5±0.8 1.55±0.65 −2.847 P<0.01
Adenosine deaminase (ADA):(U/L) 9.39±7.37 9.06±6.59 −8.659 P<0.001
Procalcitonin (PCT):(ng/mL) 1.23±4.74 0.71±2.32 1.917 P>0.05
Neutrophil count (Neut):(10^9/L) 5.63±4.27 4.84±3.01 3.455 P<0.01
Monocyte count (Mono):(10^9/L) 1.07±0.58 1.02±0.46 0.723 P>0.05

Basophil count (Baso):(10^9/L) 0.03±0.07 0.03±0.06 1.862 P>0.05
Eosinophil count (Eos):(10^9/L) 0.25±0.23 0.23±0.29 −0.008 P>0.05

Mean red blood cell volume (MCV):(fL) 94.66±12.04 95.86±12.35 10.874 P<0.001
Mean erythrocyte hemoglobin content (MCH):(pg) 32.21±4.6 32.68±4.54 10.617 P<0.001
Mean erythrocyte hemoglobin concentration (MCHC):(g/L) 339.33±12.9 340.11±11.01 3.208 P<0.01
Platelet count (PLT):(10^9/L) 303.69±109.33 289.09±103.69 −3.9 P<0.001
Hemoglobin (Hb):(g/L) 142.24±26.44 140.4±23.53 7.148 P<0.001

Notes: The bold value indicated a statistical significance with p < 0.05.
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gram-negative bacterial pneumonia based on image data was established. Then, the binary task of clinical data based on 
LR, SVM, CatBoost, and full-connection network was established. Finally, the clinical and image features were fused 
and a multi-modal binary classification task based on deep learning was established. The model fusion strategy is shown 
in Figure 2. We used four evaluation indicators (accuracy (ACC), AUC, Recall, and F1) to evaluate the diagnosis of 
bacterial pneumonia in the training and verification sets of the model. Table 2 lists the comprehensive prediction 
performance of each classifier in the test set. Among the four evaluation indexes, CatBoost had the best performance, 
and its AUC was significantly higher than that of the LR, SVM, and fully connected network models. In the classification 
task based on clinical data, we used LR, SVM, CatBoost, and four fully connected networks. SVM had the best accuracy 

Figure 2 Fusion strategies using deep learning.

https://doi.org/10.2147/IDR.S404786                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2023:16 4088

Wen et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


(0.756), CatBoost had the best recall rate and AUC (0.738 and 0.852, respectively), and SVM had the best AUC. After 
a comprehensive evaluation based on the F1 value, the best was CatBoost (0.778).

In Table 3, we comprehensively compare the enhancement effects of the clinical feature fusion image models. The 
input image size resize of its unified model was 256×256, the learning rate was 1e-3, the epoch was 30, the batch size 
was 8, the stochastic gradient descent (SGD) optimizer was used, and the mean squared error (MSE) loss function was 
used. Because the CNN-based network does not converge after adding clinical features, it is not considered in statistics. 
Comparing the results of the seven models, ResNet18, ResNet34, ResNet50, ResNet101, ResNeXt50, ResNeXt101, and 
MobileNetV3, the comprehensive index AUC and F1 increased by an average of 5.6% and 10.2%, respectively. This 
shows that introducing clinical data can significantly improve the model performance. Finally, the best performance of 
the Resnet101 model accuracy was 0.75, the recall rate was 0.84, the AUC was 0.803, and F1 was 0.782. In Table 4, we 
employed several common methods to optimize the model performance, including data augmentation techniques such as 

Table 2 Performance Comparison of Machine Learning 
Algorithm Models Based on Clinical Data

Model Clinical Data

Accuracy Recall AUC F1

LR 0.661 0.804 0.760 0.722
SVM 0.756 0.804 0.813 0.723

CatBoost 0.738 0.837 0.852 0.778

Fully connected network 0.692 0.733 0.728 0.717

Table 3 Deep Learning Model Based on Imaging Data Alone and Its Performance Based 
on the Fusion of Imaging and Clinical Data

Model Image Data Imaging Data + Clinical Data

Accuracy Recall AUC F1 Accuracy Recall AUC F1

Resnet18 0.680 0.772 0.748 0.683 0.632 0.914 0.796 0.726

Resnet34 0.714 0.587 0.744 0.647 0.638 0.864 0.790 0.720

Resnet50 0.699 0.630 0.759 0.652 0.684 0.877 0.771 0.747
Resnet101 0.694 0.533 0.742 0.609 0.750 0.839 0.803 0.782

ResNeXt50 0.714 0.543 0.742 0.629 0.671 0.827 0.795 0.728

ResNeXt101 0.689 0.478 0.719 0.579 0.665 0.840 0.803 0.727
MobileNetV3 0.714 0.533 0.709 0.624 0.632 0.827 0.795 0.705

Table 4 Optimization of the Resnet101 Model

Resnet101 Imaging Data

Accuracy Recall AUC F1

Base 0.6941 0.5326 0.7421 0.6086

+aug 0.7087 0.6413 0.7672 0.6629
+pretrain 0.7184 0.424 0.7139 0.5735

+resize (512) 0.7184 0.4457 0.7685 0.5857

Abbreviations: Base, base models; +aug, add data augment; + pretrain, 
add pre-training model; + resize (512), resize input image as 512×512.
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horizontal flipping, vertical flipping, 90° rotation, and image resizing. Furthermore, we utilized a pre-trained model based 
on ImageNet to initialize our model, which helped to accelerate the model’s convergence. The results show that not all 
optimizations are effective; data enhancement is a relatively general optimization scheme.

Discussion
Using gram-positive and gram-negative bacterial pneumonia data, we proved that the multi-modal fusion model based on 
X-ray images and non-image features is significantly better than image-only and clinical data-only models in predicting 
the types of bacterial pneumonia. When classifying based on image features, adding clinical information can further 
improve the performance of the model analysis. On average, the F1 and AUC improved by 5.6% and 10.2%, respectively. 
Therefore, our results show that the fusion of image data and clinical data can significantly improve the prediction 
performance of deep learning methods for automatic diagnosis. Conversely, owing to the limited amount of data in this 
study, the deep learning model offered a manageable advantage. However, the best Resnet101 model still performed as 
well as the best machine-learning model.23–27 The optimization scheme of deep learning during image training cannot be 
directly used in the multi-modal decision fusion of clinical and image data. Data enhancement is a more suitable model 
optimization scheme. In this study, we focused on a binary classification problem, in which each image was classified as 
gram-positive or gram-negative. It should be noted that our current results are not particularly ideal, compared with 
traditional imaging, where it is difficult for radiologists to distinguish the types of bacterial pneumonia using only CXR, 
which may be related to the pathological manifestations of bacterial pneumonia.28 This deep learning model can provide 
a reference for continuous optimization in the future.29

Although computerized tomography has a better advantage in diagnosing pneumonia, CXR is the best choice for 
diagnosing pneumonia in children, given the child’s level of cooperation and radiation exposure.30 The diagnosis of 
pneumonia is multi-modal. Doctors need to combine imaging findings with data on various clinical risk factors to make 
a diagnosis and use antibiotics empirically.31 Deep learning methods for the automatic classification of pneumonia 
usually use only image or non-image clinical data, and do not use both. Previous studies have classified childhood 
bacteria, viral pneumonia, and malaria based solely on clinical data, achieving an overall sensitivity and specificity for 
bacterial diagnosis of 96% and 86%, respectively.32 Some studies have also realized the classification of gram-positive, 
gram-negative, and atypical bacterial pneumonia based only on image data, with a sensitivity of 0.57 and specificity of 
0.78.19 In this study, by integrating a deep learning algorithm based on imaging and clinical data, the classification 
accuracy of gram-negative pneumonia was 0.75, and the recall rate was 0.84. We also investigated the effect of reducing 
the partitioning of training sets on the classification performance of multi-modal models including clinical and imaging 
data. Specifically, we reduced the training set from an 8:2 partition to a 6:4 partition, resulting in a decrease in the number 
of training set samples. In the experiments, the data augmentation techniques were used to complement the training data. 
The imaging data consisted of images with a size of 256×256, and the base size was set to lr1e-4. We performed ablation 
experiments to assess the effect of reducing the training set size. Additionally, we assessed the accuracy of a CNN model 
containing images. The clinical data was used to build the model and compared the performance of the multi-modal 
model with that of a model constructed solely from clinical data using the catBoost algorithm. We found that reducing the 
partition of the training set from 8:2 to 6:4 led to a decrease in the AUC of the model’s classification performance. The 
catboost algorithm was more stable with a smaller amount of data (Supplementary Table 1). The accuracy of the CNN 
model containing images also decreased significantly (Supplementary Table 2). We observed that the model constructed 
from clinical data was more stable when the data changed compared with the deep learning model constructed from 
multi-modal data. This suggests that the classification performance of the multi-modal model mainly relies on image 
features. Consequently, subsequent research should focus on improving the importance of clinical information features in 
the model. Reducing the partition of the training set can have a significant impact on the classification performance of 
multi-modal models. The study also suggests that clinical information features should be given more importance in the 
development of multi-modal models. Future research should aim to improve the stability and accuracy of such models by 
incorporating clinical data in a more effective manner.

The current study has several limitations. First, only a single-center database was used. Second, the study population 
was from China, and patients from other countries were not considered. Third, we excluded patients with low immunity 
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or immunodeficiency to avoid including patients with mixed infections. All patients were isolated and samples cultured 
to determine the pathogen species; however, the inclusion of potentially co-infected patients could not be entirely 
excluded. Randomized clinical trials are still needed to test the multi-modal classification algorithm model on a larger 
scale. Although our research has demonstrated the advantages of multi-modal information in convolutional neural 
networks, the limited availability of data remains a challenge for achieving optimal results with multi-modal models. 
In order to further enhance the performance of the model, we hope the following areas for future research: (1) training 
predictive models on a larger and more diverse dataset that includes both images and clinical data and (2) focusing on 
optimizing the model structure for clinical data and developing more effective methods for integrating information from 
multiple modalities.

Conclusion
The multi-modal decision of integrating deep learning-based image data into clinical data has good performance in the 
classification of pediatric bacterial pneumonia, which may preliminarily guide clinical empirical antibiotic therapy. This 
algorithm is expected to be useful as a clinical diagnostic assistant in the real world.

Abbreviations
CXR, Chest radiography; AUC, Area under the receiver operating characteristic curve; CNN, Convolutional neural 
network; MSE, Mean squared error; SGD, Stochastic gradient descent.
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