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Abstract

Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent

the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently

being recognized in various organisms, living in extremely low temperatures. AFPs

have several important applications in increasing freeze tolerance of plants,

maintaining the tissue in frozen conditions and producing cold-hardy plants by

applying transgenic technology. Substantial differences in the sequence and

structure of the AFPs, pose a challenge for researchers to identify these proteins.

In this paper, we proposed a novel method to identify AFPs, using supportive

vector machine (SVM) by incorporating 4 types of features. Results of the two

used benchmark datasets, revealed the strength of the proposed method in AFP

prediction. According to the results of an independent test setup, our method

outperformed the current state-of-the-art methods. In addition, the comparison

results of the discrimination power of different feature types revealed that
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physicochemical descriptors are the most contributing features in AFP detection.

This method has been implemented as a stand-alone tool, named afpCOOL, for

various operating systems to predict AFPs with a user friendly graphical interface.

Keywords: Computer science, Bioinformatics, Computational biology,

Mathematical biosciences, Biochemistry

1. Introduction

Organisms, which are exposed to the freezing conditions, produce special pro-

teins, called antifreeze proteins (AFPs) [1, 2]. AFPs bind to small ice crystals

to forestall additional crystallization and depress the freezing point of the solution

below the melting point [3, 4, 5, 6]. Additional terms have also been proposed in

the literature to name the AFPs: ice structuring proteins and thermal hysteresis

proteins [4, 7].

For the first time, AFPs were found in the species of fish and insect that had adapted

to extremely low temperatures [3, 8], and the structures of 5 structurally distinct

AFPs were identified by Davies and Hew in 1990 [9]. AFPs have also been found

in fungi, bacterial species and overwintering plants [10, 11, 12]. AFPs have potential

applications in preservation, gene transformation, cryosurgery of tumors, and also in

agriculture to produce economically efficient fishes and plants, resisting against

extremely low temperatures [13, 14].

Recently, two computational approaches have been proposed to discriminate AFPs

from non-AFPs [15, 16], but these methods do not have a satisfactory performance.

By considering the substantial differences in the sequence and structure of AFPs [17,

18], it is needed to use suitable machine learning methods to predict AFPs. An

appropriate machine learning algorithm offers a cost-effective approach to construct

predictive models to identify AFPs by exploiting experimentally validated training

data. In this article, we proposed a computational method to identify AFPs, which

achieved an accuracy of 95% and 91% on two benchmark datasets and the accuracy

of 96% on an independent test dataset.
2. Methods

2.1. Dataset

In this study, we had used two independent datasets (Fig. 1) to evaluate the strength

of the predictor and also compare the prediction performance of the proposed

method with the current state-of-the-art methods.
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Fig. 1. Schematic representation of AFP517 dataset construction. a) Positive dataset contains 843 AFPs.

b) Negative dataset contains 843 non-AFPs.
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2.1.1. AFP481 dataset

The first benchmark dataset (AFP481) was extracted from Kandaswamy et al. [15].

This dataset contains 481 AFPs and 9493 non-AFPs, which were used for the
on.2018.e00705
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positive and the negative datasets, respectively. In this dataset, the proteins with

�40% sequence similarity were omitted using CD-HIT [19]. Train dataset consists

of 300 out of all the 481 AFPs and 300 out of all the 9493 non-AFPs, which had been

selected randomly for each positive and negative datasets, respectively. Also, the re-

maining 181 AFPs and 9193 non-AFPs were used as an independent test dataset.
2.1.2. AFP517 dataset

For a better assessment of the strength of the proposed method, a more comprehen-

sive benchmark dataset, named AFP517, was assembled as following (Fig. 1b).

Antifreeze protein sequences were extracted from UniProtKB [20]. For this goal,

UniProtKB was scanned with a list of keywords, implying antifreeze proteins.

The “antifreeze”, “thermal hysteresis”, “ice-structuring”, and “AFP” were used as

keywords. We retrieved 943 proteins in total, where the number of proteins corre-

sponding to “antifreeze”, “thermal hysteresis”, ”ice-structuring” and “AFP” key-

words were 734, 22, 52, and 135, respectively. Finally, the proteins with �90%

sequence similarity were removed using CD-HIT, which resulted in 517 AFP pro-

teins, used as positive instances.

To select negative examples (non-AFP proteins), we took advantage of PISCES [21]

as a public server to cull sets of protein sequences from the Protein Data Bank (PDB)

[22] by determining sequence identity and structural quality criteria (Fig. 1). We

used the same number of AFP and non-AFP proteins to construct a balanced dataset.
2.2. Features

We trained our model to detect AFPs by exploiting four types of descriptors

including hydropathy (3 descriptors), physicochemical properties (218 descriptors),

amino acid composition (20 descriptors), and evolutionary profile (400 descriptors).
2.2.1. Hydropathy descriptors

According to the hydropathy, 20 amino acids were categorized into 3 feature groups

as following: strongly hydrophilic (RDENQKH), strongly hydrophobic (LIVAMF),

and weakly hydrophilic or weakly hydrophobic (STYW). For each feature of these

three groups in a protein sequence, the number of occurrences of each group was

computed and divided by the length of the sequence.
2.2.2. Physicochemical descriptors

To compute physicochemical descriptors, 544 different physicochemical indices

were extracted from AAINDEX database [23], which is a database of numerical

indices representing various physicochemical and biochemical properties of
on.2018.e00705
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amino acids. For reducing the biases, which can be a result of having many corre-

lated indices, we considered each pair of indices with a correlation coefficient

greater than 0.8 and less than �0.8 as redundant indices. Finally, a subset of

218 non-redundant indices were selected to encode proteins. More precisely,

the 20-dimensional amino acid composition vector was multiplied by the AAIN-

DEX matrix (dimension: 218 � 20), resulted into a 218-dimensional feature

vector.
2.2.3. Amino acid composition

Each protein was encoded by a 20-dimensional feature vector, indicating the amino

acid composition of the protein. Each element of this vector indicates the frequency

of an amino acid of the protein sequence.
2.2.4. Evolutionary information

It has been shown that evolutionary information is effective in detecting diverse

properties of proteins [16, 24, 25]. We used evolutionary information of the protein

in the form of Position-Specific Scoring Matrix (PSSM). Position Specific Iterated

BLAST (PSI-BLAST) was used against the NCBI non-redundant dataset with three

iterations and the e-value of 0.0001, to generate PSSMs for all the proteins.

Regarding substitution scores in the PSSMs, each protein was encoded as a 400-

dimensional feature vector. Each element of this vector is the sum of all positive sub-

stitution scores of an amino acid to one of the twenty standard amino acids.
2.2.5. Normalization

In all of the four above-mentioned descriptor types, every element was normalized

according to the length of the sequence to avoid the bias, which can be the result of

different sequence lengths.
2.3. Support vector machines

In recent years, support vector machine (SVM) has been widely used in various pre-

diction problems in bioinformatics [26]. SVM classifies the input samples, repre-

sented in the form of n-dimensional feature vectors, into two classes using an

optimal hyper-plane in the feature space. In this study, the input of the SVM classi-

fier is a 641-dimensional vector that encodes the features of a given protein, and the

output is a binary label, indicating whether the given protein is an AFP or not. We

used the SVM implementation by means of WEKA package [27] with Pearson VII

function-based universal kernel (PUK).
on.2018.e00705
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2.4. Evaluation parameters for the prediction performance

A 10 fold cross-validation (10-fold CV) approach was used to evaluate the perfor-

mance of the proposed prediction model. Positive and negative instances were

distributed randomly into 10 folds. In each of the 10 iterative steps, 9 of the 10 folds

were used to train the classifier, and then the classifier was evaluated by using the

remaining data (test data). The predictions made for the test instances in all the 10

iterations were combined and used to compute the following performance measures:

Sensitivity ðor RecallÞ ¼ TP
TPþFN

Precision¼ TP
TPþFP

Specificity¼ TN
TN þFP

Accuracy¼ TPþ TN
TPþFPþ TN þFN

MCC¼ TP � TN �FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþFPÞðTPþFNÞðTN þFPÞðTN þFNÞp

F�measure¼ 2 � Precision �Recall
PrecisionþRecall

Where, TP and TN are the correctly predicted AFP and non-AFP instances, respec-

tively. Similarly, FP and FN are the number of proteins, wrongly predicted as AFP

and non-AFP. In addition to the mentioned measures, we used the receiver oper-

ating characteristic (ROC) curve, which is an important graphical tool for assessing

the classification performance. ROC plots sensitivity (true positive rate) against

false positive rate and shows the trade-off between sensitivity and specificity. We

also used the area under the ROC curve (AUC), as a reliable performance measure-

ment. For further assessment of the afpCOOL, in addition to the mentioned 10-fold

cross validation, we also obtained the prediction results by applying leave-one-out-

cross-validation procedure (LOOCV). LOOCV is similar to the 10-fold CV but the

number of folds is equal to the number of instances.
3. Results and discussion

We compared afpCOOL with two recently published methods, to show the strength

of the proposed method regarding the current state-of-the-art methods: AFP-Pred

and AFP-PSSM [16]. The prediction results of afpCOOL in the two benchmark
on.2018.e00705
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datasets, AFP481 and AFP517, and also an independent test set are described in the

following.
3.1. Results on the AFP481 dataset

Table 1 shows the most important prediction performance measures for afpCOOL on

the AFP481 dataset. This dataset contains 300 AFPs and 300 non-AFPs. According

to the 10-fold cross validation results, our method performed well in AFP detection:

the method achieved an accuracy rate of 93% with an f-measure of 93%.
3.2. Results on the AFP517 dataset

This dataset contains 1668 proteinswith equal number of positive (AFPs) and negative

(non-AFPs) instances. The various performancemeasures in a 10-fold cross validation

procedure revealed the strength of afpCOOL (Table 1). Our method achieved an accu-

racy of 91.9%, precision and sensitivity of 92%with anMCC of 84%. Fig. 2 shows the

ROC curve of the method on the two mentioned benchmark datasets. The proposed

model performed better on the larger dataset (AFP517 dataset), as these curves

disclose. It was clear that the results of LOOCV show the robustness of the method.
3.3. Comparison with the current state-of-the-art methods

For further evaluation of our method, an independent test set was used to compare

the method with the current state-of-the-art methods. We used a test dataset, which

has been recently exploited by Zhao et al [16] as the benchmark for comparison pur-

poses; this dataset contains 181 AFPs and 9193 non-AFPs. We have trained our

model with the same data that has been used by the two competitor methods

(AFP481), to have a fair comparison.

As Table 2 shows, AFP-Pred performed better in sensitivity measurement, but on the

other hand it’s the worse method according to the specificity and accuracy. The
Table 1. Prediction performance of the afpCOOL on two benchmark datasets in a

10-fold cross validation (10-fold CV) and leave-one-out (LOOCV) procedures.

The AFP481 dataset contains 300 AFPs and 300 non-AFPs; and, the AFP517

dataset contains 517AFPs and 517non-AFPs.

Dataset Performance measures

Accuracy Precision Sensitivity F-Measure MCC AUC

10-Fold CV AFP481 0.93 0.93 0.93 0.93 0.87 0.93
AFP517 0.91 0.92 0.92 0.92 0.84 0.92

LOOCV AFP481 0.89 0.90 0.88 0.86 0.78 0.91
AFP517 0.91 0.90 0.89 0.90 0.81 0.90

on.2018.e00705
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Fig. 2. The receiver operating characteristic (ROC) curves of our method on the two benchmark dataset

calculated from the ten-fold cross validation. The AFP481 dataset contains 300 AFPs and 300 non-AFPs;

and, the AFP517 dataset contains 517AFPs and 517non-AFPs.

Table 2. Performance comparison of the proposed method (afpCOOL) with the

two current state-of-the-art methods in AFP prediction. All methods are trained

on the AFP481 dataset in a 10-fold cross validation procedure and tested on an

independent test dataset with 181 AFP and 9193 non-AFPs.

Method Performance Measure

Sensitivity Specificity Accuracy

afpCOOL 0.72 0.98 0.96

AFP-Pred (Griffith and Yaish 2004) 0.85 0.82 0.83

AFP-PSSM (Zhao et al. 2012) 0.76 0.93 0.93
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accuracy of afpCOOL (96%) is higher than the accuracy rate of AFP-Pred (83%) and

AFP-PSSM (93%). It was clear that our method outperformed the other methods in

terms of specificity.
3.4. afpCOOL tool

We have developed the afpCOOL as a tool, enabling fast in-silico AFP detection.

This tool has been implemented as a stand-alone java application for various oper-

ating systems with a user-friendly graphical interface (Fig. 3). Users can use the
on.2018.e00705
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Fig. 3. Graphical user interface of afpCOOL.
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afpCOOL simply by providing sequences (in fasta format) and PSSMs of the inter-

ested proteins; afpCOOL extracts features from the provided inputs and then uses the

trained SVM-based model to assign AFP or non-AFP labels to the queries. The afp-

COOL is freely downloadable for non-commercial use at http://biocool.ir.
3.5. Need for a reliable computational tool for AFP prediction:
BLAST cannot effectively detect the AFPs

We ran BLAST by using each of the AFPs as the query against the last update

(August 12, 2015) of the UniProt Archive (UniParc) database with e-value �1e-3,

to show the strength of the afpCOOL. It should be mentioned that 801 proteins

have been mapped to UniParc identifiers, and as a result, 801 BLAST searches

were used for this analysis. More details were presented in Fig. 4.a. One can see

that the BLAST does not have a satisfactory specificity in AFP detection; more

than 62% (539 out of 801) and more than 87% of the BLAST searches had specificity
Fig. 4. Sensitivity (a) and specificity(b) of the BLAST when using each of the 801 AFPs as the query

against the last update.

on.2018.e00705
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rates of less than 10% and �50%, respectively. Considering the large dataset, used

for BLAST searches, it may be expected to have a low specificity and very good

sensitivity. Nevertheless, by considering the sensitivity of the BLAST searches,

Fig. 4.b, the condition is worse than the specificity: there is no BLAST search
Table 3. Anti-freeze proteins with no any hit in the BLAST search (35 proteins).

Proteins (UniProt ID) Organism

Q9DF23; P04367; P04368 Myoxocephalus scorpius (Shorthorn sculpin)
(Cottusscorpius).

Q1AMR6; Q1AMR7 Parachaenichthyscharcoti (Charcot’s
dragonfish) (Chaenichthyscharcoti).

Q1AMR9; Q9DFU2 Gymnodraco acuticeps (Antarctic
dragonfish).

P02733; P02734 Pseudopleuronectes americanus (Winter
flounder) (Pleuronectes americanus).

P20421; P20617 Myoxocephalus aenaeus (Grubby sculpin)
(Cottusaenaeus).

P11920; P11921 Eleginus gracilis (Saffron cod)
(Gadusgracilis).

Q9S8C6; Q9S8C5 Secale cereale (Rye).

Q90402 Dissostichus mawsoni (Antarctic cod).

Q8JHE3 Notothenia microlepidota.

Q1AMR4 Chaenocephalus aceratus (Blackfinicefish)
(Chaenichthysaceratus).

Q6JIC7 Liparis atlanticus (Atlantic seasnail).

F8UWP2 Tautogolabrus adspersus (Cunner).

Q1AMS2 Pogonophryne cerebropogon.

Q9DF18 Myoxocephalus octodecemspinosus
(Longhorn sculpin) (Cottus
octodecemspinosus).

Q6JIC6 Liparis gibbus (variegated snailfish).

B3EWE8 Trapa natans (Water chestnut).

P84794 Solanum tuberosum (Potato).

P02732 Pagothenia borchgrevinki (Bald rockcod)
(Trematomusborchgrevinki).

P86268 Antarctomycespsychrotrophicus.

Q3HYD3 Tenebrio molitor (Yellow mealworm beetle).

D7PBP2 Hypogastrura harveyi.

Q9S9D9 Nicotiana tabacum (Common tobacco).

H0SH19 Bradyrhizobium sp. ORS 375.

P85102 Cullen corylifolia (Malaysian scurfpea)
(Psoralea corylifolia).

K0P291 Cardinium endosymbiont cEper1 of Encarsia
pergandiella.

B4RIE8 Phenylobacterium zucineum (strain HLK1).

Q091Z2 Stigmatella aurantiaca (strain DW4/3-1).

on.2018.e00705
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Table 4. Anti-freeze proteins with 0% sensitivity in the BLAST search (11

proteins).

Proteins (UniProt ID) Organism

J7HY61; H2KMI2; H2KMI4; J7I1U4;
J7I1K6

Boreogadus saida (Polar cod).

A8P5U5 Coprinopsis cinerea (strain Okayama-7/130/
ATCC MYA-4618/FGSC 9003)

C6KF34 Ammopiptanthusnanus.

F2XFX1 Dissostichus mawsoni (Antarctic cod).

Q1AMR5 Chaenocephalus aceratus (Blackfinicefish)
(Chaenichthys aceratus).

H2KMI6 Gadus ogac (Greenland cod).

Q1AMR8 Gymnodraco acuticeps (Antarctic
dragonfish).
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with sensitivity higher than 10%; and also, 84% of the BLAST searches have sensi-

tivity �5% (673 search out of 801 BLAST searches).

Interestingly, there are 35 proteins without any search results in the BLAST search

and 11 proteins with a sensitivity rate of 0%. These proteins are listed in Tables 3

and 4, respectively. As it can be clear 5 out of 11 (45%) proteins with sensitivity rates

of 0% were extracted from Boreogadus saida (Polar cod). In addition, the proteins of

these two categories have a significantly different amino acid composition

comparing to the other AFPs. As more details were presented in Fig. 5, alanine
Fig. 5. Amino acid composition of AFP proteins that have been used in the BLAST searches.
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was the major building blocks of these AFPs (43% in the AFPs without any hit in the

BLAST search and 47% in the AFPs with 0% sensitivity in the BLAST search).
3.6. Feature importance

We have integrated the scores of three feature selection (FS) methods including, gain

ration, information gain and PCA, to select the most important features. To use the

scores obtained from the two first FS methods, scores have been normalized into the

range 0e1. For PCA, evi � wi for each feature was used as a score, where evi is the

Eigenvalue of the ith PC and wi is the weight of the feature in the corresponding

Eigenvector. Then, the PCA scores was also normalized into the range 0e1. Finally,

the sum of these three normalized scores, have been used as the feature importance

score. Fig. 6 shows the contribution of each feature type in the 100 most important

features. As it is apparent, the physicochemical descriptors are the most important

features.

According to the top 10 important features, presented in Table 5, physicochemical

descriptors are the most informative features to discriminate between AFPs and

non-AFPs. The importance of physicochemical properties of AFPs’ amino acids
Fig. 6. The percent of each feature type score regarding the total score of the 100 most important

features.

on.2018.e00705
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Table 5. The 10 most important features.

Rank Feature Type Feature’s Detail

1 Physicochemical The number of atoms in the side chain
labeled 2 þ 1
(AAIndex Code: CHAM830104)

2 Physicochemical Normalized positional residue frequency at
helix termini C
(AAIndex Code: AURR980118)

3 Physicochemical Average non-bonded energy per residue
(AAIndex Code: OOBM770104)

4 Physicochemical Free energy change of epsilon(i) to alpha(Rh)
(AAIndex Code: WERD780104)

5 Physicochemical The number of bonds in the longest chain
(AAIndex Code: CHAM830106)

6 PSSM-based H to H

7 Physicochemical Normalized positional residue frequency at
helix termini C4
(AAIndex Code: AURR980120)

8 PSSM-based H to G

9 Physicochemical Relative population of conformational state C
(AAIndex Code: VASM830102)

10 Physicochemical Loss of Side chain hydropathy by helix
formation
(AAIndex Code: ROSM880103)
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has been suggested in many studies. For example, it was suggested that AFPs mainly

bind to ice surfaces through hydrogen bonding or polar interaction between water

molecules and hydrophilic side chains of Thr, Gln and Glu [28, 29]. However, a

number of mutagenesis studies revealed that hydrogen bonds may not be necessarily

essential for the ice surface binding [18, 28, 30]. Also, there were reports that the ice-

binding sites of AFPs mainly consist of hydrophobic residues [31]. However, it has

been shown that the hydrophilic residue of serine (Ser) may be partially responsible

for its inferior antifreeze activity [18, 30].

In addition, the existence of a-helical structure is one the most important character-

istics of the different AFP types [3, 18, 28, 32, 33]. In agreement with the mentioned

AFPs’ property, four of the most informative features (out of ten) were related to the

helix structures.
4. Conclusion

We developed a novel SVM-based method to predict AFPs. In this method, each

protein has been encoded by four features (evolutionary profile, amino acid compo-

sition, Hydropathy, and physicochemical properties). The results indicated that these

types of features can significantly improve the prediction of AFPs. The obtained
on.2018.e00705

ors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).
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results on two benchmark datasets revealed the strength of our method in AFP detec-

tion. Also, the results on an independent test set confirmed the better performance of

the proposed method regarding the current state-of-the-art AFP prediction methods.

In addition, the more analysis we did, disclosed the poor performance of BLAST in

AFP detection and so indicates the critical need for an accurate tool for this purpose.

Finally, evolutionary profile and amino acid composition showed the most appli-

cable power in discriminating AFPs from non-AFPs.
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