
Citation: Sørensen, K.A.; Heiselberg,

P.; Heiselberg, H. Probabilistic

Maritime Trajectory Prediction in

Complex Scenarios Using Deep

Learning. Sensors 2022, 22, 2058.

https://doi.org/10.3390/s22052058

Academic Editor: Shuanggen Jin

Received: 9 February 2022

Accepted: 3 March 2022

Published: 7 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Probabilistic Maritime Trajectory Prediction in Complex
Scenarios Using Deep Learning
Kristian Aalling Sørensen 1,* , Peder Heiselberg 2 and Henning Heiselberg 1

1 DTU Security, National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
hh@dtu.dk

2 Geodesy and Earth Observation, National Space Institute, Technical University of Denmark,
2800 Kongens Lyngby, Denmark; ph@space.dtu.dk

* Correspondence: kaaso@space.dtu.dk; Tel.: +45-31419971

Abstract: Maritime activity is expected to increase, and therefore also the need for maritime surveil-
lance and safety. Most ships are obligated to identify themselves with a transponder system like
the Automatic Identification System (AIS) and ships that do not, intentionally or unintentionally,
are referred to as dark ships and must be observed by other means. Knowing the future location of
ships can not only help with ship/ship collision avoidance, but also with determining the identity of
these dark ships found in, e.g., satellite images. However, predicting the future location of ships is
inherently probabilistic and the variety of possible routes is almost limitless. We therefore introduce
a Bidirectional Long-Short-Term-Memory Mixture Density Network (BLSTM-MDN) deep learning
model capable of characterising the underlying distribution of ship trajectories. It is consequently
possible to predict a probabilistic future location as opposed to a deterministic location. AIS data from
3631 different cargo ships are acquired from a region west of Norway spanning 320,000 sqkm. Our
implemented BLSTM-MDN model characterizes the conditional probability of the target, conditioned
on an input trajectory using an 11-dimensional Gaussian distribution and by inferring a single target
from the distribution, we can predict several probable trajectories from the same input trajectory with
a test Negative Log Likelihood loss of−9.96 corresponding to a mean distance error of 2.53 km 50 min
into the future. We compare our model to both a standard BLSTM and a state-of-the-art multi-headed
self-attention BLSTM model and the BLSTM-MDN performs similarly to the two deterministic deep
learning models on straight trajectories, but produced better results in complex scenarios.

Keywords: Automatic Identification System (AIS); deep learning; trajectory prediction; Mixture
Density Network (MDN); Long Short Term Memory (LSTM); Maritime Situational Awareness (MSA)

1. Introduction

Maritime activities are affecting all our daily lives with approximately 90% of all cargo
being transported by ships, a number that is only anticipated to increase. It is therefore
essential to develop surveillance methods applicable for the maritime environment to
ensure governmental sovereignty, maritime safety and environmental protection [1]. With
the opening of the Northeast Passage to maritime activities such as cargo transport, tourism,
fishing, mining and commercial interest for oil, the Arctic ship traffic is expected to increase
by 24% by 2027 [2]. Maritime Situational Awareness (MSA) is thus globally becoming
increasingly more important, and especially so in the Arctic region [2,3].

For most ships, the Automatic Identification System (AIS) is a compulsory, cooperative
maritime communication system used mainly for collision avoidance [4–6]. Ships that do
not transmit self-reporting data like AIS are called dark ships and these must be observed by
other means such as drones, planes or satellites carrying, e.g., imaging sensors [7,8] or Radio
Frequency receivers [9]. High-resolution commercial satellite imagery must be scheduled
in advance, using both an acquisition time and location and can be acquired down to 3 h

Sensors 2022, 22, 2058. https://doi.org/10.3390/s22052058 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22052058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6443-1297
https://orcid.org/0000-0002-8847-634X
https://orcid.org/0000-0003-2229-2000
https://doi.org/10.3390/s22052058
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22052058?type=check_update&version=2

Sensors 2022, 22, 2058 2 of 21

after the scheduling. It is therefore essential to have models capable of predicting vessel
trajectories 3 h into the future. Considering the uncertainty of trajectories, several probable
future locations should be scheduled to increase the possibility of dark ship detection.
Similarly, when a dark ship has been located in, e.g., a SAR image, estimating the ship ID
increases maritime sovereignty. Using non-probabilistic methods will only allow ships
following the most-used routes to be IDed. Conversely, using a probabilistic model allows
for both the scheduling of several probable locations and the possible identification of the
dark ship(s).

Previously closed-off regions have sparse data suitable for deep learning models and
it is therefore excepted that transfer learning must be applied. A trajectory prediction
model trained on one region should share many of the same weights as a model needed
for another region, i.e., ships behave in much the same manner and have the same general
characteristics (sailing straight, not making 8 u-turns in a row etc.), thus motivating the
need for training models on other regions.

In this article, we introduce a novel approach to predict maritime traffic using AIS
data and deep learning. We implement a Bidirectional Long-Short Term Memory (BLSTM)
framework to capture the spatio-temporal dependency of the historical ship routes, similar
to current state-of-the-art (SOTA) methods. Future ship trajectories are inherently proba-
bilistic as opposed to deterministic and the novelty lies in our method of predicting the
trajectories where, instead of predicting the deterministic location, we model the underly-
ing distribution as a multi-dimensional Gaussian using a Mixture Density Network (MDN)
architecture whereafter we sample from the found distribution. We build upon SOTA se-
quential trajectory prediction methods by framing the problem using Bayesian probability.
This allows us to predict several probable trajectories to the same input trajectory at an
arbitrary number of time steps into the future. Our BLSTM-MDN model can predict several
probable outcomes at, e.g., 5 min or 3 h into the future, showing promising results in both
simple and complex scenarios.

In Section 2, we present earlier work done on maritime trajectory prediction and
thereby introducing SOTA. This leads to Section 3 in which we introduce both the theory
and methodology for our improved trajectory prediction model where we combine BLSTM
and MDN to perform an iterative multi step prediction. Then, in Section 4, we show the
results of our model both quantitatively and qualitatively and compare it with results from
a SOTA model, leading to the Conclusion in Section 5.

2. Related Work

Vehicle trajectory prediction has been studied greatly, and [10] analyses the different
SOTA methods for predicting the trajectories for cars. The same methods apply for ship
trajectory prediction, but whereas cars are constrained by both geometry and driving
rules which help in reducing the complexity of the problem, ships are not. Ships are only
constrained by geometry at few specific locations. Furthermore, environmental conditions
such as weather, currents and more influence the future trajectory, greatly increasing the
complexity of the problem. Ref. [10] characterizes exiting methods by input representation,
output type and prediction method. Ref. [10] further divide each group by different
sub-classes in which, e.g., the output type is characterised by a Manoeuvre Intention,
Unimodal Trajectory, Multimodal trajectory or an Occupancy Map. Most often, trajectories
are modelled as a unimodal output in which only a single deterministic trajectory is
estimated. The multimodal mode is then further divided into a static and a dynamic mode,
while the dynamic multimodal mode is more representative of real-world problems, it
generally suffers from poor convergence and difficulties in exploring different outcomes.
To summarise, while a dynamic multimodal trajectory output is more representative, it is
rarely predicted for vehicle prediction due to its complexity, and it has been researched
even less for maritime trajectory prediction. Ref. [10] describes the SOTA prediction
methods, all being Deep Learning methods. They briefly mention non-deep learning
models, such as physics-based models or classical statistical models, but conclude that

Sensors 2022, 22, 2058 3 of 21

they have poorer results. They divide the methods into Convolutional Neural Network
(CNN) based, Recurrent Neural Network (RNN) based and other deep learning methods
like Graph Neural Networks (GNN), Fully-Connected Neural Networks and combination
of them all. They conclude that LSTMs show superior results for the temporal correlation.
For static scenes, CNNs or GNNs shows superior results. In scenarios where image-like
data cannot be used, like regional scale maritime-traffic, both CNN and GNN show worse
results. Subsequently, they reach the conclusion that SOTA models must use stacked LSTM
layers and that for static scenes CNNs must be used. They also conclude that models
with multimodal outputs have worse RMSE scores that those with unimodal outputs. For
maritime traffic prediction, SOTA models estimate unimodal outputs using stacked BLSTM
layers. Only in rare occurrences, with limited regions, have CNN been used. We aim
to develop a model capable for predicting multimodal outcomes using stacked BLSTM
layers with added MDN. Considering the large region of interest, we do not opt for a CNN
based model.

It is only in recent years that much effort has been put into predicting maritime traffic.
Especially so since the advent of satellite based AIS receivers and the resulting near-global
and frequent AIS coverage. The work on maritime trajectory prediction consist mainly of
data-driven models including both supervised and unsupervised machine learning models.

In [11] the regression problem was turned into a classification problem using several
supervised machine learning models such as Decision Trees, Nearest Neighbours and
Naive Bayes as well as, e.g., a linear support-vector machine. The future region for a
ship was predicted instead of the actual location, with only the KNN model showing
promising results. In [12,13] they developed the unsupervised Traffic Route Extraction and
Anomaly Detection (THREAD) model which has been further developed in, e.g., [14,15].
The THREAD model is able to both detect anomalies and predict trajectories by extracting
the trajectory patterns and turning them into way points. In THREAD, the way points are
clustered using the DBSCAN method [16]. Predictions are then made by grouping a new
trajectory into a class with similar way points, and estimating the future trajectory using
the same-class trajectories.

Lately, deep learning models have outperformed classical machine learning models,
as was described in [10]. Refs. [17,18] predicted the future location as a class relative
to the last location resulting in a probabilistic relative prediction. They argued that a
global classification schema was near computationally impossible considering the grid-
size needed. Using a relative class, they circumvented this problem, albeit it showed
questionable results for operational usage. Researchers have since modelled trajectories
by regression models, where they try to predict a single unimodal deterministic location
not capturing the inherent probabilistic nature of ship trajectories. These models predict
only the most probable location. In scenarios with two routes where one is slightly more
probable than the other, the deterministic models will always predict the most probable
route [10].

Refs. [19–21] all implemented a BLSTM neural network, a deep learning framework
able to retain memory, in which they exploited somewhat large amount of historical data to
predict the future trajectories by learning how the vessels sail dependant on past trajectories.
Each showed promising quantitatively results for only one time step predictions and [19]
showed BLSTM models outperforms other recurrent networks like, e.g., Recurrent Neural
Networks [22] or unidirectional LSTM [23]. Ref. [21] only used a small data set but
reached the same conclusion. Each article neglects to show how the models performs when
predicting further into the future than one time step; Most deep learning models predict
the trajectory one step into the future, and quantifiable metrics like, e.g., the root-mean-
squared-error only shows how well the model performs one step into the future. Ref. [24]
implemented a MP-LSTM to perform an iterative Multi-step Prediction(MP). Here, they
designed the model to predict the location one time step, t1 into the future. The predicted
location at time t1 is used to make a prediction at time t2. It is then possible to predict
the location at an arbitrate time, defined by the span of a time step. Ref. [24] showed the

Sensors 2022, 22, 2058 4 of 21

advantages of an iterative MP approach as opposed to a direct MP approach. In a direct
MP approach, a single prediction is made at an arbitrary time as defined in the model
architecture. It is hence not possible to make predictions at, e.g., both time t1, t3 and t11 in a
direct MP model. The disadvantage of an iterative MP approach is therefore mainly that it
is more difficult to predict the locations far into the future.

Lately, Attention networks [25] has gained much interest in the deep learning com-
munity and [26–28] have implemented Attention in the schema of trajectory prediction.
Refs. [26,27] implemented Attention, with LSTM, for the mutual interaction of self-driving
cars and pedestrians, respectively. Ref. [28] used it for regional maritime trajectory pre-
diction. They decomposed the trajectories in a local region into clusters using both a
variational encoder/decoder structure and the DBSCAN method. They then learned the
features of each cluster using a BLSTM with added Self-attention and argued that the
Attention improved predictive capabilities.

Before the advent of deep learning, many experimented with modelling the underlying
probabilistic distribution of the trajectories instead of the deterministic location, such
as in, e.g., [12] or [29]. In [30,31] they combined the memory capabilities of a LSTM
network with the probabilistic-modelling capabilities of a MDN to predict the conditional
probability of the future location, and thereby getting a multimodal output as was described
in [10]. In [30], they used the method for projectile prediction and in [31] for basketball
trajectory prediction.

Not much effort has been put in combining the probabilistic approach in [29] and
deep learning methods in [21] for maritime traffic prediction. We therefore attempt to
improve SOTA maritime prediction methods as seen in, e.g., [28] by utilising the MDN
architecture enabling us to perform a probabilistic iterative multi step prediction, e.g., 3 h
into the future.

3. Methodology

The prediction of maritime traffic on AIS data is here modelled using a BLSTM network
for the spatio-temporal dependency and a MDN to capture the underlying trajectory
distribution. Firstly, a brief introduction to deep learning is given. Thereafter, the AIS data
processing, in the context of trajectory prediction, is explained.

3.1. Deep Learning

In deep learning, a mapping is made between a known input and output. This
mapping is made up by intertwined mathematical functions, called neurons, placed in
hidden layers between the input and output. These neurons learn to map the output based
on the input, by updating their weights through a forward and a backward pass [32]. In
the forward pass, the known output is estimated as

ŷ = f (xW + b), (1)

where x is the input and W the weight matrix of the neurons, describing the relationship
between the input and output and the neurons, and b is the bias. The function, f (·) is
called the activation function, describing the mathematical relationship between the input
and output. By superimposing many activation functions, ŷ can be estimated, where it can
be shown that all functions can be described using enough non-linear activation functions.
In practice, all differentiable functions can be used, albeit few specific types are often used
in the literature [32].

The error between the true output y and the estimated output ŷ, is quantified by a
loss function, L(y, ŷ). An often used loss function is the root-mean-squared-error func-
tion (RMSE)

L(y, ŷ) =

√√√√1
l

l

∑
i=1

(yi − ŷi)
2, (2)

Sensors 2022, 22, 2058 5 of 21

where l is the number of observation over which the forward pass is made, formerly called
the batch size. Better estimations, ŷ, are found by minimising L(y, ŷ) wrt. to both W and b
in the backward pass using an optimiser as

Wupdate = Wold − η
∂L(y, ŷ)

∂Wold
,

bupdate = bold − η
∂L(y, ŷ)

∂bold
. (3)

By updating W and b with a step size called the learning rate, η, the deep learning
network learns the mapping from inputs to outputs. With more layers, increasingly more
complex mappings can be made, such as in a Fully Connected layer (FC) in which the
output from each neuron in one layer is the input to all the neurons in another layer [32].

3.2. Long Short Term Memory Networks

In temporal problems, it is a necessity to map the output from not only the current
input, but the output at previous states, i.e., to retain memory. A LSTM network is a neural
network with connections pointing backwards, meaning that the output from a neuron is
sent back to the neuron itself in the next forward pass [32]. This is effectively a memory
state for the neuron, enabling it to learn based on past events. The manner of which the
LSTM learns, and weights are updated, is controlled by two states; the hidden state at time
t, ht and the cell state at time t, ct, both shown in Figure A6 in Appendix C. Whereas the
hidden state is used to make a prediction and can be seen by all other hidden states, ct is
internal and can only be seen by the specific neuron and is consisting of four internal cell
gates; the output gate, ot. The input gate, it. The forget gate ft and the gate gate, gt

it = sigm(Wiht−1 + Uixt + bi),

ft = sigm(W f ht−1 + U f xt + b f), (4)

ot = sigm(Woht−1 + Uoxt + bo),

gt = tanh (Wght−1 + Ugxt + bg).

With sigm(·) being the Sigmoid function and tanh (·) the Hyperbolic tangent function,
each acting as an activation function described in (1). Here, Wi, W f , Wo and Wg are the
weights flowing between the gates from the hidden states and Ui, Uo, U f and Ug the
weights for the input and bi, b f , bo and bg the biases. The sigm(·) function will scale the
input value to lie between 0 and 1, and if sigm(x) = 0, nothing is passed on. If sigm(x) = 1,
everything is passed on. The tanh (·) function will scale the input values to lie between −1
and 1, allowing neurons to have negative values. In the forward pass, the cell state, ct is
computed using the gates at each time step and the hidden state, ht using the cell state as

ct = ft · ct−1 + it · gt,

ŷt = ht = ot · tanh(ct). (5)

By combining (4) and (5), it is possible for a LSTM to better avoid the vanishing and
exploding gradients [33], often seen in Neural Networks by better modelling the informa-
tion that flows through the network - it can learn if and how much to remember using the
Sigmoid and Hyperbolic tangent activation functions and their described characteristics. In
the backward pass, the weights and biases are updated similar to (3), in a method called
Back-Propagation Through Time. Here, the loss is a superposition of the losses calculated
on the gradients flowing backwards; The gradients are calculated on the last observation in
a sequence. These gradients are then used to calculate the gradients of the second to last
observation in a sequence etc. For the first time step in, e.g., (5), an initialisation must be
made of ht. Often, this is chosen as zeroes. In a BLSTM [32], two symmetrical LSTMs are
placed in opposite directions with the first LSTM going in the forward direction and the

Sensors 2022, 22, 2058 6 of 21

second LSTM going in the backwards direction. BLSTM has been shown to outperform
unidirectional LSTM, [19]. For an illustrations of a LSTM cell, the reader is referred to
Appendix C.

3.3. Mixture Density Network

For most deep learning models, it is assumed that a target can be found determin-
istically from the given input, as seen in (1). For problems in which a specific input can
generate several probable outputs, for instance in maritime traffic prediction, deterministic
methods falls short. In a MDN, the underlying joint probability is modelled [34,35]; Instead
of predicting the conditional average, as in (1), the conditional probability of the output,
conditioned on the input is found by

p(x, y) = p(y | x)p(x). (6)

Since p(x) is independent of the target, only the conditional probability is modelled.
This is done by approximating the probability as a mixture of several known probability
density functions (PDF) as

p(y | x) =
M

∑
m=1

αm(x)φm(y | x), (7)

where M is the number of mixtures, αm(x) is the mixture weight for the m’th mixture
normalised using the softmax function, and φm(y | x) the individual mixture component,
modelled as a known PDF, depending on the problem definition. Each component is
modelled as a Gaussian PDF, i.e.,

φm(y | x) =
1

(2π) f /2σm(x) f exp

(
−||y− µm(x)||2

2σm(x)2

)
, (8)

in which f is the number of target features and µm(x) the mean vector of the mixture
features, representing the location parameter for the m’th mixture, and σm(x) the standard
deviation, representing the scale parameter. By designing an appropriate deep learning
network, the mixing parameters of the conditional probability can be computed using
backpropagation as in (3). Employing a MDN architecture makes it possible to predict ŷ
by taking either the most probable estimate or by sampling from the M’th dimensional
distribution and thereby getting a probabilistic target, ŷ instead of a deterministic target [34].

3.4. Data

Each AIS message contains static ship related information such as an identification
number (MMSI), it further includes voyage related information like destination and es-
timated time of arrival and lastly it includes dynamic information [4]. The dynamic
information is passed to the AIS transmitter automatically by an, e.g., an Inertial Measure-
ment Unit aboard the vessel and is sent regularly with a frequency depending on among
else, location and vessel status, and carries information such as latitude and longitude,
speed over ground (sog) and course over ground (cog). Only the dynamic information from
the messages, along with the MMSI number, is used in the following due to the many errors
(intentional or unintentional) in the crew-entered static and voyage related AIS data [4,36].

3.4.1. Data Pre-Processing

Each message is acquired chronologically and all messages should therefore firstly be
processed into trajectories for each ship. This is done by grouping the trajectories by MMSI
number. Each full vessel trajectory is then divided into sub-trajectories, corresponding
to when the ship stops for a time period longer than 3 h, e.g., when mooring, where
only sub-trajectories with a minimum of 50 messages are used. The dynamic data are
thereafter resampled and interpolated using the piece-wise cubic-spline interpolation as

Sensors 2022, 22, 2058 7 of 21

in [37], with a resampling time of 5 min. A filtering of the sub-trajectories is then made to
remove erroneous data including nonphysical and unlikely values such as NAN values
and messages with sog higher than 35 kn.

3.4.2. Data for Training

A sub-trajectory is represented by a dynamic tensor with four features, i.e., f = 4

x(j) = [lat(j), lon(j), sog(j), cog(j)],

where x(j) is the j’th sub-trajectory in which each element is a vector of length Tj > Minimum
messages and j = 1 . . . N, where N is the total number of sub-trajectories. Considering the
uncertainty in especially Satellite-AIS, lat and lon are both rounded to nearest 0.001◦. This
is also done to make it easier for the model to predict future locations. Similarly, cog and
sog are rounded to 0.1 kn and 0.1◦, respectively.

The data are then made suitable for a neural network; Firstly, the data are split into a
training and a testing set using a 8:2 split partitioned on the MMSI number, whereafter a
final training and validation set is made by making a 8:2 split of the training set. The model
is thus trained on the training data, as described above, and validated on the validation
set. Each dynamic attribute vector in the entire data set is standardised using the zscore
employing the parameters found from only the training set. The zscore standardisation is
given by [32]

x̃(j) =
x(j) − x(xtrain)

S(xtrain)
, (9)

with x() being the sample mean of each feature and S() the sample standard deviation.
This will give the different features the same importance, even if cog has unscaled values
larger than sog. The samples and targets for the network are then made by adopting the
sliding window approach as illustrated in Figure 1. From a sub-trajectory, x̃(j), of length Tj,
samples are found by taking b consecutive time steps. The targets are then the data for the
a next time steps.

Figure 1. Generating samples and targets from Automatic Identification System (AIS) data using
the sliding window approach here shown for a single sub-trajectory, x̃(j) of length Tj. Samples,
x̃(j),1 . . . x̃(j),Tj−a, of size b x f and targets of size a x f are made. With the sliding window approach,
time t0 shifts with the window.

By having a = 1, an iterative multi step prediction is made, in which the model
predicts only the data for the next time step, which can be used to forecast further. I.e., after
b predicted time steps, all inputs to the model will be predicted values from the model
itself. In this manner, both samples and targets are found using the AIS data. A direct multi
step prediction was also experimented with. Not only did this give worse results, it also

Sensors 2022, 22, 2058 8 of 21

resulted in less flexibility in predicting locations at several different time steps, as briefly
mentioned in Section 2.

3.5. Model

The predictive capabilities are acquired by six BLSTM layers that can capture the spatio-
temporal dependencies. The BLSTM layers learns the historic routes, and therefore also
how to make predictions based on not only the current trajectory but also past trajectories
of similar characteristics. Moreover, dropout layers are used after each BLSTM layer to
avoid overfitting [38]. In order to have a probabilistic model, as opposed to a deterministic
model, a MDN layer is applied as the final layer. Batch normalisation layers are further
used to normalise the input for each layer with Tensorflow default parameters [39]. The
model is illustrated in Figure 2, with its hyperparameters shown in Table 1.

Figure 2. Proposed Deep Learning model with the Bidirectional Long Short Term Memory (BLSTM)
model parameterising the temporal dependency and the Mixture Density Network (MDN) model
describing the underlying distribution: The input to the BLSTM layers, x̃(l) are batches of l same-size
samples shown in Figure 1. Six BLSTM layers are used, each followed by a dropout layer and
Batch Normalisation. Three Fully Connected (FC) layers are used to parameterise the features of the
Probability Density Function (PDF). The PDF is then used to predict the target for each sample in the
batch, ŷ(l).

Table 1. Values of hyperparameters for each part of the model shown in Figure 2 with * corresponding
to hidden units in a LSTM, ** is the dropout probability and *** the number of neurons in the respective
FC layer.

Hyperparameter Value Hyperparameter Value
BLSTM 1,2,3,5 * 456 ηinit 0.0005

BLSTM 4,6 * 256 ηdecay 0.7
Mixtures, M 11 ηmin 10−8

FC(1,2,3) *** (44, 44, 11) ηmax 0.1
Dropout ** 0.3 Batch Size, l 3000
Initializer LeCun N [40] Ei 10

3.5.1. MDN

For the MDN, each mixture parameter is parameterized by a FC layer with a specific
activation function, with a size depending on the number of mixtures, M and features, f .
The mean is parameterised by the output from the previous layer using the leaky-Relu
activation function. For a Gaussian distribution, the standard deviation has the boundary

Sensors 2022, 22, 2058 9 of 21

condition of σ ≥ 0 and is therefore parameterized using a non-negative Exponential Linear
Unit activation function [41]

σ(zk)m = 1 +

{
(exp(zk)− 1) if zk < 0
zk if zk ≥ 0

. (10)

With zk being the output of the previous layer. The distribution must sum to 1, and
the mixing parameter is therefore a FC layer with the softmax activation function, i.e.,
∑M

m=1 αm = 1.

3.5.2. Optimiser

To reduce the risk of local minima in the model, translating to some trajectories being
well predicted, and others less so, a cosine annealing is added onto the Adam optimiser
with Tensorflow default values [39,42]. An initial learning rate, ηinit is chosen, whereafter η
follows the cosine function with an allowed range of [ηmin, ηmax] and period of Ei. In this
manner, training is continuously restarted with increasingly better weights in a method
called warm-restarts [42].

3.5.3. Loss Function

The model should construct the mixtures such that the conditional probability of the
target y, conditioned on the input x is maximised. The objective is not to minimise, e.g., the
RMSE as this would only minimise the conditional average, neglecting information gained
from the standard deviation. Assuming the samples in each batch are independent, the
likelihood can be described as

L =
l

∏
q=1

p(yq, xq) =
l

∏
q=1

p(yq | xq)p(xq), (11)

with xq being the q’th sample and l the total number of samples in the batch. By maximis-
ing (11), better values for the mixture components in (8) are found. This corresponds to
minimising the negative log likelihood (NLL), − ln(L), in which p(x) is neglected [34]

LNLL =
l

∑
q=1

(
− ln

[
M

∑
m=1

αm(xq)φm(yq| xq)

])
, (12)

where we use M = 11; Few mixtures did not allow for enough flexibility in the prediction
of several probable trajectories, and too many mixtures were too difficult to train, albeit
more mixtures gives lower NLL. In Table A1, the model shown in Figure A1 has been tested
with mixture M = 1 . . . 12, showing decreasing NLL with increasing M.

When using a Gaussian distribution, minimising the conditional mean ||y− µi(x)||2
corresponds to minimising the RMSE. A deep learning model with the RMSE as a loss
function hence discard the knowledge from the standard deviation. Therefore, using a
MDN and NLL it is possible to predict a vessel to sail both east and west of a landmass.

4. Experimental Results and Discussion

AIS data have been acquired using a PostgreSQL database using a Python wrapper
for Python 3.8 [43]. For the deep learning models, the Keras front-end library to Google’s
Tensorflow back-end library has been used [39,44]. All models have been trained on a
Nvidia Tesla V100 SXM2 32 GB GPU, with an automatic termination when the validation
loss has not decreased for 50 consecutive epochs, whereafter the model corresponding to
the lowest validation loss is used. In Section 4.1, the data set is explained, and in Section 4.2,
the results will be shown. Code is available at https://github.com/aalling93/probabilistic-
maritime-trajectory-prediction-in-complex-scenarios-using-deep-learning (accessed on 2
February 2022).

https://github.com/aalling93/probabilistic-maritime-trajectory-prediction-in-complex-scenarios-using-deep-learning
https://github.com/aalling93/probabilistic-maritime-trajectory-prediction-in-complex-scenarios-using-deep-learning

Sensors 2022, 22, 2058 10 of 21

4.1. Data Set and Model Setup

Raw AIS data transmitted by cargo ships, originally captured from exactEarth satellites,
have been retrieved from Gatehouse Maritime’s servers from the region shown in Figure 3,
with an area ≈320,000 sqkm. Here, the colours correspond to the normalcy of the cargo
trajectories, with warm colours corresponding to often used routes. Data from the summer
months of June to August were acquired from 2016, 2017, 2018 and 2019.

Figure 3. Heatmap of pre-processed cargo ship AIS data near Norway with high density correspond-
ing to red colours. The red lines corresponds to the most used sea lanes. The red dots northeast of
Norway corresponds to, e.g., oil platforms.

For the entire time span, 113,788,768 AIS messages from 10,238 distinctive cargo ships
are acquired. Cargo ships are more difficult to model as opposed to passenger ships, but
less so than fishing vessels, and are consequently used to prove the model’s effectiveness.
The parameters for the data pre-processing can be seen in Table 2. Following the AIS data
pre-processing, 3631 different vessels remain. The data have been split such that the MMSI
in each data sets are unique for that set, i.e., the model has never seen the ships in the
testing set.

Sensors 2022, 22, 2058 11 of 21

Table 2. Data pre-processing values. With Look ahead of 1 time step, we are only prediction the
location 5 min into the future.

Parameters Value

Resampling time 5 min
Minimum messages 50

Stop time 3 h
Look back, b 20 time steps

Look ahead, a 1 time step
Features, f 4

4.2. Model Evaluation

The model is evaluated both quantitatively and qualitatively.

4.2.1. Quantitative Evaluation

In Figure 4, the training- and validation NLL loss for the model is shown. It can be
seen that the model learns an underlying distribution of the data with a decreasing NLL.
Note that there is no lower bound of the NLL.

At epoch 54, the validation NLL loss increases. This is due to overfitting which often
occurs when training deep learning models: For a MDN model, this could correspond to
specific routes being over-estimated, such as the high-density routes as seen in the normalcy
map in Figure 3. The validation loss is lower than the training loss. This is due to the
rather high regularisation (dropout) applied during training, but not so during inference,
as described in the official Keras documentation [45]. This can be related to the positive
impact of the turned off neurons.

Figure 4. Training and validation negative log likelihood (NLL) loss for the model shown in grey
circles and black stars, respectively. The red squares (from validation set) corresponds to when the
model starts to overfit the data. The final model is taken from epoch 54.

In Table 3, each NLL loss is shown. The testing loss for the model (terminated at Epoch
54) is comparable to both the validation loss and training loss. The even lower testing
loss could be due to a more representative data set, i.e., that the trajectories in the test set
are more similar to the training set than what the validation set is. We tried to avoid this
dependency between the data sets by ensuring that the MMSI is unique in each set, i.e., the
MMSI in the testing set is not the training set.

Sensors 2022, 22, 2058 12 of 21

Table 3. NLL loss for Training, Validation and Testing. The Training NLL is the highest due to a high
regularisation during training, but not so during inference. For each sample, a single target with f
features is given.

Data Set # MMSI Targets NLL Loss

Training 2316 4,810,199 −8.93
Validation 579 1,137,834 −9.55

Testing 726 1,765,351 −9.96
Total 3631 7,713,384 −

In Table 4, the results from the implemented BLSTM-MDN model is compared with
the results from a standard BLSTM model shown in Figure A2 and a SOTA BLSTM model
with Multi-headed Self-attention shown in Figure A3. Trajectories in the test set is predicted
25, 50 and 75 min into the future, and the corresponding absolute distance error for the
trajectories at each time step is calculated in kilometres using the Haversine function. The
Multi-headed Self-attention improves the predictive capabilities of the BLSTM model and
is similarly slightly better than the BLSTM-MDN model. This is expected since the MDN
will predict several probable trajectories, i.e., reducing the NLL instead of the RMSE.

The more probable routes the worse BLSTM-Attention results, whereas the BLSTM-
MDN can predict probabilistic for all different routes. With 10 equally likely routes, the
BLSTM-Attention model will predict the same route every time, wheres the BLSTM-MDN
can predict each with the same probability and thus return all 10 routes.

Table 4. Comparison of the BLSTM Mixture Density Network (BLSTM-MDN) model with a BLSTM
model and a BLSTM model with a 2-headed Self-attention mechanism. The distance errors are
calculated in kilometers as the mean of all the errors at a specific time step using the Haversine
distance function.

Model

Minutes BLSTM BLSTM-Attention BLSTM-MDN

25 2.2 1.19 1.75
50 3.5 2.42 2.53
75 4.9 4.0 5.07

4.2.2. Qualitative Evaluation

It is important to show how the model performs when doing an iterative multi-
step predictions, i.e., using predicted locations for future predictions, and thereby better
simulating an operational scenario.

To the left in Figure 5, we have illustrated the capabilities of the model more intuitively
using a trajectory from the unseen testing set, with a cargo ship sailing south of Norway
in the western direction. Here, the black points are the 20 time steps input equivalent
to 100 min of sailing. The orange points are the iterative multi step predictions 36 time
steps into future (3 h), sampled one time, with the corresponding true trajectory illustrated
in green and nearby harbours as red polygons. At every time step a single location is
sampled, resulting in slightly different outputs every time the same input is sampled. After
20 predictions, the predicted trajectory is fully based on historical data; The model has not
seen any auxiliary data like shorelines or harbour locations and has therefore learned the
trajectory using only past trajectories.

Sensors 2022, 22, 2058 13 of 21

Figure 5. Predictions made with the BLSTM-MDN model. (left): A simple cargo vessel trajectory with
input samples shown in black, true future trajectory in green and the predicted trajectory in orange.
Harbours are illustrated as red polygons with the harbour of Mendal being the leftmost polygon. The
model can satisfactorily predict simple trajectories. (right): 10 different sampled predictions 36 times
steps into the future (3 h), shown in a shade of orange. The predictions mostly follow the true track
shown in green, with one future trajectory heading to the harbour of Mandal.

The model has learned how to predict the future trajectory for simple trajectories. The
individual predicted location vary slightly from the true location due to the sampling of the
distribution. As explained in Section 3, the model has the capability of predicting several
probable outcomes, depending on the sampled distribution. If the future, true trajectory
(shown in green in Figure 5), was unknown one might expect the ship to sail north towards
the harbour of Mandal, Norway.

To the right in Figure 5, 10 different 3 h predictions are illustrated, made from the same
input sample. The model primarily expects the cargo ship to continue westward, correctly
so. The model also predicted a single trajectory to sail towards the Harbour of Mandal,
a harbour known to have cargo ships, whereafter the model fails at future predictions as
illustrated with the scattered predictions. This is expected since the model has not seen any
training data of cargo ship in harbours.

To further visualise the model’s capabilities, Figure 6 illustrates a more complex
scenario in which a cargo ship is sailing en route to Tau, Norway—a region with many
inlets and harbours. Most of the predicted trajectories avoid the shorelines, with a single
trajectory sailing through an island. This illustrates the difficulties when no auxiliary data
are provided to the model. We also see that few trajectories are predicted to continue
Northward. This is understandable since many cargo ships are sailing south/north in this
region. Furthermore, we see that none of the predicted locations are predicted correctly to
sail to Tau. Instead, six of the trajectories are predicted to sail to Stavanger, a much larger
harbour located close to Tau, explained by many more ships sailing to Stavanger in the
training set.

Similarly, Figure 7 (left) shows ten predicted trajectories from the same input sample.
All are predicted correctly in the span of 3 h whereafter most trajectories continue eastward
with one sailing south towards the harbours. Figure 7 (mid-right) displays two complex
3 h predictions with same input sample: One follows the true path, albeit at a slower speed,
and one sails towards nearby harbours (while beautifully avoiding islands).

Sensors 2022, 22, 2058 14 of 21

Figure 6. 10 predicted trajectories 36 times steps into the future (3 h) in a complex scenario. The
model occasionally predicts the wrong trajectory and in rare cases, the future trajectory is predicted
to go through, e.g., an island. Two trajectories are predicted to sail northward, the rest are predicted
to sail to larger harbours than Tau.

Figure 7. Model predictions with the input sample illustrated in black, the true trajectory in green
and the predicted samples in shade of orange. Nearby harbours are shown in red polygons. The
predicted trajectory avoid land and follows different probable trajectories.

4.3. Discussion
4.3.1. Model

Our model consists of six BLSTM layers. More advanced architectures were experi-
mented with, such as adding Multi-headed Self-attention layers [25] and encoding/decoding
architectures. We did not see a substantial decrease of the NLL loss, compared with the
increase of model complexity (when keeping M constant). The disadvantage of using the
MDN layer is firstly in the choice of mixtures and secondly in the added model complexity;
In our model, M = 11 was decided upon after experimenting with several discrete choices,
see Table A1. With few mixtures, we could not adequately predict several probable tra-
jectories. Conversely, with too many mixtures it is difficult to train. Furthermore, MDN
inherently uses FC layers to parametrise the mixing components and this increases the
complexity. We modelled the trajectories using a Gaussian distribution, in part because
it can be proven that sufficiently many Gaussians can model any distribution [34]. We
therefore made the assumption that the trajectories in fact can be modelled using a 11-
dimensional Gaussian distribution. Our model showed promising results in a region near
Norway in which we had much data. In future work, we will apply transfer learning to the
Arctic region.

A prediction at time t1 was made by sampling from the modelled distribution. This
prediction was then assumed to be correct in the next prediction at time t2. If we instead
sampled many predictions at time t1, this would correspond to Monte Carlo sampling
giving the conditional mean similar to the results from a non-MDN model.

Sensors 2022, 22, 2058 15 of 21

In Table 4, we saw the comparison of the different models and how the LSTM model
with Multi-headed Self-attention gave the best quantitatively results when analysing the
mean absolute distance error. This can be explained using the prediction in Figure 5;
the MDN model will occasionally predict different probable routes which increases the
mean distance. The trajectory predicted on route to the harbour of Mendal will inherently
increase the mean distance error motivating the usage of NLL loss function instead of a
RMSE loss function.

In Figure 8, we have illustrated several predictions from a single input trajectory.
The blue points corresponds to the 3 h predictions from the BLSTM-Attention model,
and the orange shaded points corresponds to 5 different sampled predictions from the
BLSTM-MDN model. We can see that the BLSTM-Attention model is predicting the vessel
to wrongly sail straight, corresponding to what most ships does. The BLSTM-MDN model
has predicted one trajectory to go towards a nearby harbour. It has furthermore predicted
two tracks to go in the same direction as the BLSTM-Attention model’s prediction. Lastly,
it has predicted two trajectories to head in the true direction and thereby illustrating the
power of a BLSTM-MDN model. All routes are probable, but the BLSTM-Attention only
predicted the most probable route. It would not have been possible to find the ship in a
commercial satellite image if the BLSTM-Attention was used to task a satellite. If a satellite
was scheduled using the two most probable areas from the BLSTM-MDN model, the ship
would have been found.

Figure 8. Qualitatively comparison of the predictions from the BLSTM-MDN model (orange shaded
points) and the BLSTM-Attention model (blue points). Even if the BLSTM-Attention model had a
lower mean distance error that the BLSTM-MDN model, we can see that the BLSTM-MDN model
can capture the different possible outcomes better than the BLSTM-Attention model.

4.3.2. Data

For the model, the most important characteristic was firstly the ability to model historic
routes (here solved using BLSTM) and secondly to do so using the conditional probability,
solved with the MDN. No considerable improvement was seen when trying to improve
the network’s hyperparameters. Instead, it was seen that processing the data differently
increase the model performance, i.e., trajectory prediction is greatly data driven. It would
therefore be worthwhile to analyse the added predictive capabilities when including
static/voyage related data; Smaller vessels can sail where larger vessels can not. The Static
data can be found using only the MMSI/IMO number and a correct look up table and
the voyage-related data can similarly be made using historical data, i.e., determining the
destination harbour beforehand.

The data were generally modelled using a regression approach. In the literature, many
attempts have been done in predicting future trajectories using a classification schema in
which the trajectories are projected onto a grid, see, e.g., [17]. We argue that a regression

Sensors 2022, 22, 2058 16 of 21

approach is a necessity for operational solutions. Considering the innumerable amount
of future trajectories of vessels, not restricted to roads, a classification schema can not
adequately portrait a real world scenario. Furthermore, a classification approach restrict
the possibilities of using an iterative multi step prediction approach.

5. Conclusions

Maritime trajectory prediction is becoming ever more important with more cargo being
transported by sea. Not only is trajectory prediction important for collision avoidance,
but also in maritime surveillance and securing sovereignty. Most often, future trajectories
are modelled using a deterministic deep learning model in which historic trajectories are
used to predict a specific future path. In this article, we introduced a Mixture Density
Network (MDN) in combination with a Bidirectional Long Short Term Memory (BLSTM)
network and we consequently modelled the underlying distribution of the trajectories and
compared the model with a SOTA Attention-based LSTM model. More specifically, we
modelled the trajectories using a 11-dimensional Gaussian PDF, enabling us to predict 1
time step into the future with a Negative Log Likelihood loss of −9.97 resulting in a mean
distance error of 2.53 km, 50 min into the future. By sampling from this distribution, we
showed that we can predict several probable future locations resulting in more realistic
predictions. The same past trajectory can result in several probable future trajectories.

Author Contributions: Conceptualization, K.A.S. and H.H.; methodology, K.A.S.; software, K.A.S.
and P.H.; validation, K.A.S.; formal analysis, K.A.S.; investigation, K.A.S.; resources, K.A.S. and
P.H.; data curation, K.A.S. and P.H.; writing—original draft preparation, K.A.S.; writing—review
and editing, K.A.S., P.H. and H.H.; visualization, K.A.S.; supervision, H.H.; project administration,
H.H.; funding acquisition, H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Gatehouse Maritime for providing AIS data
and the Danish Defence for providing support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MSA Maritime Situational Awareness
AIS Automatic Identification System
BLSTM Bidirectional Long-Short Term Memory
SOTA State-Of-The-Art
MDN Mixture Density Network
THREAD Traffic Route Extraction and Anomaly Detection
MP Multi-step Prediction
RMSE Root-Mean-Squared-Error
FC Fully Connected
PDF Probability Density Function
sog Speed Over Ground
cog Course Over Ground
NLL Negative Log Likelihood

Sensors 2022, 22, 2058 17 of 21

Appendix A. Choice of Mixtures

The number of mixtures, m was decided upon after training identical models with
m = 1− 12. The model is illustrated in Figure A1, and is less complex than the proposed
model in Figure 2 due to the training time. The models were restricted 120 Epochs, training
for approximately 20 h each. The BLSTM-MDN model in Figure 2 took approximately 36 h
to train.

Figure A1. Deep learning model used to estimate the number of mixtures.

In Table A1, the results for each model is shown. The NLL loss is decreasing with
increasing Mixtures. Similar to Table 3, the testing loss is smaller than the training loss.
Due to the corresponding increase in model complexity, 11 mixtures has been chosen as an
executive choice.

Table A1. Training, Testing and Validation NLL for Mixture m = 1− 12.

Mixtures m Training NLL Testing NLL

1 −5.43 −6.84
2 −5.808 −7.19
3 −6.446 −7.87
4 −6.401 −7.88
5 −6.556 −7.97
6 −6.518 −7.99
7 −6.688 −8.12
8 −6.927 −8.37
9 −6.699 −8.1

10 −7.163 −8.58
11 −6.898 −8.35
12 −7.048 −8.47

Appendix B. Models for Comparison

LSTM models have long been hailed as the SOTA for trajectory prediction albeit
recently, attention models has gained much recognition. The MDN model shown in
Figure 2 is thus compared to firstly a standard LSTM model illustrated in Figure A2 and
secondly the Attention model illustrated in Figure A3. Both models are comparable to
the MDN model. For the Attention model, 2-headed Self-attention layers were used [25].
Excluding the final layers, all BLSTM layers, dropout etc. have the same parameters as the
proposed BLSTM-MDN model.

Sensors 2022, 22, 2058 18 of 21

Figure A2. BLSTM model: Same model as the proposed MDN model, without the added MDN layer.
RMSE loss function has been used.

Figure A3. BLSTM with Multi-headed Self-attention model. RMSE loss function has been used.

Appendix C. RNN and LSTM

A Recurrent Neural Network (RNN) is both a specific type of architecture, and a group
of similar networks capable of handling sequential data of varying sizes. All RNNs have
connections pointing backwards, meaning that the output of a neuron is sent back to the
neuron itself in the next forward pass. This is effectually a memory state for the neuron,
and such a neuron is consequently called a memory cell or simply a cell. A simple RNN
is illustrated in Figure A4 with a single hidden neuron. Often, many of such neuron are
placed in each layer, e.g., 456 are used in each LSTM in this work. At each time step, each
recurrent neuron in the layer will receive the input xt at time step t, and the output from
the neuron at the previous time step yt−1.

To the left in Figure A4, we see how the input to the neuron is the activation from
the previous layer, x and the neuron’s output from the previous time step, yt−1. To the
right, we see how this is unrolled through time. The weights for the neuron is shared
for all time steps, and the back propagation seen in Equation (3) is therefore for RNNs
called back propagation through time (BPTT). In the forward pass, each sample(a sequence
has many samples) is passed through the neural network resulting in a loss as described
in Equation (12). This loss is firstly used to calculate the gradients and hence the weight-
update for the last time step, like in Equation (3). The gradient from the last time step
is then passed backwards. In the second-to-last time step, a gradient will be calculated
depending on the gradient and loss from the last time step, and so on. In this manner, the
gradients are updated backwards through time, flowing though each time step [32]. This
makes the RNNs difficult to train as opposed to other networks architectures where a single
gradient is found for each sample. For a RNN, it is very difficult to find the best weights
for the early time steps due to the BPTT. Furthermore, in deep learning, efficiency is often
very important. RNNs are inherently inefficient since the gradients are update through
each time step every time. Hence, RNNs are both more difficult to train, and takes longer
time to train. Still, due to their performance on sequential data, they are widely used.

Sensors 2022, 22, 2058 19 of 21

Figure A4. A recurrent neuron (left) that is unrolled through time (right).

A deep, stacked RNN with 3 layers is illustrated in Figure A5. Here we see how the
output from one layer is the input to the next, unrolled through time.

Figure A5. A deep RNN unrolled through time. The output of layer 1 is the input to layer 2. At each
time step, each recurrent neuron will receive the input xt.

A neuron’s values at time t is called its hidden state, ht, given by:

ht = f (ht−1, xt), (A1)

where ht−1 is the hidden state for previous time step. We can therefore see it depends
on the input and all the past states(memory). For the first hidden state, ht−1 is often
initiated as 0. Moreover, if a weight becomes slightly smaller or larger than 1, the BPTT
gradients will go towards zero or infinity for long sequences, the vanishing gradient problem
and exploding gradient problem, respectively. The effect of these vanishing and exploding
gradients are orders of magnitude worse in RNNs as compared to other neural networks.
Due to the BPTT, regular RNNs can in practise only “remember” short sequences in the
order of ≈10 samples (the gradients are multiplied, and after 10 samples, the gradients of
the gradients are either indefinitely small or large, and they can thus not remember further).
An alternation has therefore been made to the normal RNN in a neural network called the
Long Short Term Memory (LSTM).

The LSTM network is to some extent designed to avoid the problem of vanishing
and exploding gradients. This is done by designing how the gradients will flow through
the network. The RNN only maintains one state, ht. The LSTM maintains two states, the
hidden state ht and the cell state, ct. The cell state is internal and is only seen by the neuron.
This cell is illustrated in Figure A6:

The input to a LSTM are samples of sequences. These sequences can then correspond to
any order, e.g., time, sentences etc. The first input for the LSTM is then the first observation,
corresponding to t = t0, they model will then learn the mapping of going from t = t−1 →
t = t0 dependant on the initialisation of the model. The model will then learn the mapping
of going from t = t0 → t = t1 etc. For each time, the weight (both U and W) in the LSTM
are shared.

The input to the hidden state ht is the past hidden state h−1, as shown in (A1) and
the input sample at xt. The LSTM hidden cell will then decide how much of the sample
to forget, use, and learn from using the gates. This is illustrated as the shaded area in

Sensors 2022, 22, 2058 20 of 21

Figure A6. The output of the different gates is passed out of the hidden state, as input to the
cell state. Here, the past cell state ct−1 is both multiplied and added with the different gates
to give a new cell state ct. The newly updated cell state, ct is then used to both compute the
new hidden state ht and the output of the LSTM (ŷt = ht).

Figure A6. Illustration of the Long Short Term Memory cell. Here, f t is the forget gate, it the input
gate, gt the gate gate and ot the output gate, each with input weights U, hidden state weights, W and
biases, b. ⊗ it the multiplication operator and ⊕ the addition operator.

References
1. Danish Ministry of Foreign Affairs. The Cutting Edge of Blue Business. 2020. Available online: https://investindk.com/set-up-a-

business/maritime (accessed on 17 December 2021).
2. Forsvarsudvalget. Forsvarsministeriets Fremtidige Opgaveløsning i Arktis; Danish Ministry of Defense: Copenhagen, Denmark, 2015.

Available online: https://www.ft.dk/samling/20151/almdel/FOU/bilag/151/1650324.pdf (accessed on 17 December 2021).
3. Jakobsen, U.; í Dali, B. The Greenlandic sea areas and activity level up to 2025. In Maritime Activity in the High North—Current and

Estimated Level up to 2025; Borch, O.J., Andreassen, N., Marchenko, N., Ingimundarson, V., Gunnarsdóttir, H., Iudin, I., Petrov, S.,
Jakobsen, U., Dali, B., Eds.; Nord Universitet Utredning, NORD Universitet: Bodø, Norway, 2016; pp. 86–111.

4. Ball, H. Satellite AIS for Dummies; Wiley: Hoboken, NJ, USA, 2013.
5. International Maritime Organization. Revised Guidelines for the Onboard Operational Use of Shipborne Automatic Identification

System (AIS): Resolution A.1106(29). 2015. Available online: https://www.navcen.uscg.gov/pdf/ais/references/IMO_A1106_29
_Revised_guidelines.pdf (accessed on 17 December 2021).

6. International Maritime Organization. Regulations for Carriage of AIS. 2020. Available online: https://wwwcdn.imo.org/
localresources/en/OurWork/Safety/Documents/AIS/Resolution%5C%20A.1106(29).pdf (accessed on 17 December 2021).

7. Heiselberg, H. A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral Imagery. Remote Sens. 2016,
8, 1033. [CrossRef]

8. Heiselberg, H. Ship-Iceberg Classification in SAR and Multispectral Satellite Images with Neural Networks. Remote Sens. 2020,
12, 2353. [CrossRef]

9. Forskningsinstitutt, F. NorSat-3—Ship Surveillance with a Navigation Radar Detector. 2019. Available online: https://ffi-
publikasjoner.archive.knowledgearc.net/handle/20.500.12242/2593?show=full (accessed on 17 December 2021).

10. Mozaffari, S.; Al-Jarrah, O.Y.; Dianati, M.; Jennings, P.; Mouzakitis, A. Deep Learning-Based Vehicle Behavior Prediction for
Autonomous Driving Applications: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 33–47. [CrossRef]

11. Lo Duca, A.; Marchetti, A. Exploiting multiclass classification algorithms for the prediction of ship routes: A study in the area of
Malta. J. Syst. Inf. Technol. 2020, 22, 289–307. [CrossRef]

12. Pallotta, G.; Vespe, M.; Bryan, K. Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and
Route Prediction. Entropy 2013, 15, 2218–2245. [CrossRef]

13. Pallotta, G.; Vespe, M.; Bryan, K. Traffic knowledge discovery from AIS data. In Proceedings of the 16th International Conference
on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1996–2003.

14. Mazzarella, F.; Arguedas, V.F.; Vespe, M. Knowledge-based vessel position prediction using historical AIS data. In Proceedings of
the 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 6–8 October 2015; pp. 1–6. [CrossRef]

15. Mazzarella, F.; Vespe, M.; Santamaria, C. SAR Ship Detection and Self-Reporting Data Fusion Based on Traffic Knowledge. IEEE
Geosci. Remote Sens. Lett. 2015, 12, 1685–1689. [CrossRef]

16. Han, X.; Armenakis, C.; Jadidi, M. DBSCAN optimization for improving marine trajectory clustering and anomaly detection. Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 455–461. [CrossRef]

17. Liraz, S.P. Ships Trajectories Prediction Using Recurrent Neural Networks Based on AIS Data; Calhoun Institutional Archive of
the Naval Postgraduate School: Monterey, CA, USA, 2018. Available online: https://calhoun.nps.edu/handle/10945/60431
(accessed on 17 December 2021).

18. Charla, J.L. Vessel Trajectory Prediction Using Historical AIS Data. Master’s Thesis, Portland State University, Oregon, Portland,
12 August 2020. [CrossRef]

https://investindk.com/set-up-a-business/maritime
https://investindk.com/set-up-a-business/maritime
https://www.ft.dk/samling/20151/almdel/FOU/bilag/151/1650324.pdf
https://www.navcen.uscg.gov/pdf/ais/references/IMO_A1106_29_Revised_guidelines.pdf
https://www.navcen.uscg.gov/pdf/ais/references/IMO_A1106_29_Revised_guidelines.pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/AIS/Resolution%5C%20A.1106(29).pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Safety/Documents/AIS/Resolution%5C%20A.1106(29).pdf
http://doi.org/10.3390/rs8121033
http://dx.doi.org/10.3390/rs12152353
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/2593?show=full
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/2593?show=full
http://dx.doi.org/10.1109/TITS.2020.3012034
http://dx.doi.org/10.1108/JSIT-10-2019-0212
http://dx.doi.org/10.3390/e15062218
http://dx.doi.org/10.1109/SDF.2015.7347707
http://dx.doi.org/10.1109/LGRS.2015.2419371
http://dx.doi.org/10.5194/isprs-archives-XLIII-B4-2020-455-2020
https://calhoun.nps.edu/handle/10945/60431
http://dx.doi.org/10.15760/etd.7500

Sensors 2022, 22, 2058 21 of 21

19. Zhang, S.; Wang, L.; Zhu, M.; Chen, S.; Zhang, H.; Zeng, Z. A Bi-directional LSTM Ship Trajectory Prediction Method based
on Attention Mechanism. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation
Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; Volume 5, pp. 1987–1993. [CrossRef]

20. Park, J.; Jeong, J.; Park, Y. Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data. J. Mar. Sci. Eng. 2021,
9, 1037. [CrossRef]

21. Gao, M.; Shi, G.; Li, S. Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional
Long Short-Term Memory Recurrent Neural Network. Sensors 2018, 18, 4211. [CrossRef]

22. Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850.
23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
24. Gao, D.W.; Zhu, Y.S.; Zhang, J.F.; He, Y.K.; Yan, K.; Yan, B.R. A novel MP-LSTM method for ship trajectory prediction based on

AIS data. Ocean Eng. 2021, 228, 108956. [CrossRef]
25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need.

In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

26. Messaoud, K.; Yahiaoui, I.; Verroust-Blondet, A.; Nashashibi, F. Attention Based Vehicle Trajectory Prediction. IEEE Trans. Intell.
Veh. 2021, 6, 175–185. [CrossRef]

27. Liu, Z.; Zhang, L.; Rao, Z.; Liu, G. Attention-Based Interaction Trajectory Prediction. In Artificial Intelligence and Mobile Services—
AIMS 2020; Xu, R., De, W., Zhong, W., Tian, L., Bai, Y., Zhang, L.J., Eds.; Springer International Publishing: Cham, Switzerland,
2020; pp. 168–175.

28. Murray, B.; Perera, L.P. An AIS-based deep learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 2021,
215, 107819. [CrossRef]

29. Rong, H.; Teixeira, A.; Guedes Soares, C. Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean Eng.
2019, 182, 499–511. [CrossRef]

30. Hou, L.H.; Liu, H.J. An End-to-End LSTM-MDN Network for Projectile Trajectory Prediction. In Proceedings of the Intelligence
Science and Big Data Engineering, Big Data and Machine Learning, Nanjing, China, 17–20 October 2019; Cui, Z., Pan, J., Zhang, S.,
Xiao, L., Yang, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 114–125.

31. Zhao, Y.; Yang, R.; Chevalier, G.; Shah, R.C.; Romijnders, R. Applying deep bidirectional LSTM and mixture density network for
basketball trajectory prediction. Optik 2018, 158, 266–272. [CrossRef]

32. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems;
O’Reilly Media: Newton, MA, USA, 2017.

33. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Dasgupta, S., McAllester, D., Eds.; PMLR: Atlanta, GA,
USA, 2013; Volume 28, pp. 1310–1318.

34. Bishop, C. Mixture Density Networks; Working Paper; Aston University: Birmingham, UK, 1994.
35. Bishop, C. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany,

2007; ISBN 0387310738.
36. Høye, G.K.; Eriksen, T.; Mel, B.J.; Narheim, B.T. Space-based AIS for global maritime traffic monitoring. Acta Astronaut. 2008, 62,

240–245. [CrossRef]
37. Sang, L.Z.; Yan, X.P.; Mao, Z.; Ma, F. Restoring Method of Vessel Track Based on AIS Information. In Proceedings of the 2012

11th International Symposium on Distributed Computing and Applications to Business, Engineering Science, Guilin, China,
19–22 October 2012; pp. 336–340. [CrossRef]

38. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

39. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

40. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. arXiv 2017, arXiv:1706.02515.
41. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).

arXiv 2015, arXiv:1511.07289.
42. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017, arXiv:1608.03983.
43. Van Rossum, G.; Drake, F.L., Jr. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands,

1995.
44. Chollet, F.; Zhu, Q.S.; Rahman, F.; Gardener, T.; Gardener, T.; de Marmiesse, G.; Zabluda, O.; Chenta, M.S.; Watson, M.;

Santana, E.; et al. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 17 December 2021).
45. Keras. Keras FAQ: Why Is My Training Loss Much Higher than My Testing Loss? 2021. Available online: https://keras.io/

getting_started/faq/ (accessed on 17 December 2021).

http://dx.doi.org/10.1109/IAEAC50856.2021.9391059
http://dx.doi.org/10.3390/jmse9091037
http://dx.doi.org/10.3390/s18124211
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.oceaneng.2021.108956
http://dx.doi.org/10.1109/TIV.2020.2991952
http://dx.doi.org/10.1016/j.ress.2021.107819
http://dx.doi.org/10.1016/j.oceaneng.2019.04.024
http://dx.doi.org/10.1016/j.ijleo.2017.12.038
http://dx.doi.org/10.1016/j.actaastro.2007.07.001
http://dx.doi.org/10.1109/DCABES.2012.84
https://github.com/fchollet/keras
https://keras.io/getting_started/faq/
https://keras.io/getting_started/faq/

	Introduction
	Related Work
	Methodology
	Deep Learning
	Long Short Term Memory Networks
	Mixture Density Network
	Data
	Data Pre-Processing
	Data for Training

	Model
	MDN
	Optimiser
	Loss Function

	Experimental Results and Discussion
	Data Set and Model Setup
	Model Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion
	Model
	Data

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

