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Abstract

Motivation: Intermediately methylated regions occupy a significant fraction of the human genome and are closely
associated with epigenetic regulations or cell-type deconvolution of bulk data. However, these regions show distinct
methylation patterns, corresponding to different biological mechanisms. Although there have been some metrics
developed for investigating these regions, the high noise sensitivity limits the utility for distinguishing distinct
methylation patterns.

Results: We proposed a method named MeConcord to measure local methylation concordance across reads and
CpG sites, respectively. MeConcord showed the most stable performance in distinguishing distinct methylation pat-
terns (‘identical’, ‘uniform’ and ‘disordered’) compared with other metrics. Applying MeConcord to the whole gen-
ome data across 25 cell lines or primary cells or tissues, we found that distinct methylation patterns were associated
with different genomic characteristics, such as CTCF binding or imprinted genes. Further, we showed the differences
of CpG island hypermethylation patterns between senescence and tumorigenesis by using MeConcord. MeConcord
is a powerful method to study local read-level methylation patterns for both the whole genome and specific regions
of interest.

Availability and implementation: MeConcord is available at https://github.com/WangLabTHU/MeConcord.

Contact: xwwang@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is one of the most pervasive and well-studied epi-
genetic modifications in mammalian genomes. In human genome,
intermediately methylated regions (0.05<DNA methylation <
0.95) occupied 33–76% for 150-bp bins harboring more than 5
CpG sites (Fig. 1A; Supplementary Fig. S1 for more stringent cut-
offs). There mainly are three methylation patterns (‘identical’, ‘dis-
ordered’, ‘uniform’, Fig. 1B and C) in these regions (Derrien et al.,
2021; Landan et al., 2012). These patterns usually imply different
biological mechanisms and can arise from a mix of different cell
types or cell states, genomic imprinting, DNA methylation
erosion and dynamic competition between DNMT and TET.
Intermediately methylated regions are informative regions, as they
either act as potential features used for cell-type deconvolution in
bulk data (Li et al., 2018; Zheng et al., 2014) or underlie the diver-
sity and heterogeneity of cell states which contribute to gene ex-
pression regulation (Derrien et al., 2021; Landau et al., 2014).
Quantitatively characterizing and distinguishing different DNA
methylation patterns of these regions are markedly valuable for
studying the underlying regulation mechanisms and developing
new biomarkers.

Because single bisulfite sequencing reads often cover multiple
CpG sites at one time, read-level methylation analysis could uncover
the methylation patterns in these intermediately methylated regions.
However, it requires a suitable metric to efficiently describe and dis-
tinguish different methylation patterns. At present, methylation en-
tropy (Jenkinson et al., 2017; Xie et al., 2011), epi-polymorphism
(Landan et al., 2012), proportion of discordant reads (PDR)
(Landau et al., 2014) and fraction of discordant reads pairs (FDRP)
(Scherer et al., 2020) were proposed to describe within-sample
methylation heterogeneity of reads. Although these metrics have
been successfully used in some specific conditions, they always har-
bor two disadvantages. One is the neglect of the concordance be-
tween adjacent CpG sites. Methylation entropy, epi-polymorphism
and FDRP focused on the methylation differences between reads but
did not consider the association between local CpG sites. The other
is high sensitivity to methylation noise. DNA methylation is highly
dynamic and a snapshot of DNA methylation for a sample is noisy.
The noise could come from both technical noise and biological
noise. For example, the former could be caused by incomplete bisul-
fite conversion (Olova et al., 2018); the latter could result from a
competition between DNMT and TET during DNA replication and
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transcription (Charlton et al., 2018; Ginno et al., 2020;
Kangaspeska et al., 2008; M�etivier et al., 2008). Methylation en-
tropy, epi-polymorphism and PDR showed poor performance in
coping with the simulated noisy data (Fig. 1C, E and F). Besides,
methylation haplotype load (MHL) is a metric used to amplify the
differences between fully consecutively methylated and interspers-
edly methylated patterns (Guo et al., 2017) and has limited applica-
tion scenarios. All these drawbacks limit the investigation of
intermediately methylated regions.

In this study, we leveraged Hamming distance to define two met-
rics to characterize DNA methylation concordance at read and CpG
levels, respectively. Two metrics and their corresponding P-values
calculated by Binomial tests clearly distinguished three methylation
patterns in intermediately methylated regions and showed good per-
formance in coping with noisy data. Using MeConcord, we found
distinct methylation patterns were associated with different genomic
characteristics, such as CTCF binding and genomic imprinting.
Further, we identified the differences of CpG island’s hypermethyla-
tion patterns between senescence and tumorigenesis by using
MeConcord. MeConcord is a powerful method to study local
methylation patterns for both the whole genome and specific regions
of interest.

2 Materials and methods

2.1 Overview
To quantitatively measure DNA methylation heterogeneity in inter-
mediately methylated regions, we introduced concordance scores at
two dimensions—concordance between reads and concordance be-
tween CpG sites. For example, Figure 1D showed the fractions of
concordant CpG pairs for Reads 3 and 7 (5/8), Reads 7 and 10 (8/
8), where numerator values were concordant CpG pairs (with the
same methylation states at the same CpG sites for two reads), while
denominator values were the number of all valid pairs (with cover-
ages at the same CpG sites for two reads). Similarly, for the other di-
mension, the fractions of concordant CpG pairs for CpG sites 2 and
4 (4/12), CpG sites 7 and 8 (12/12) were shown in Figure 1D.

Iteratively counting concordant CpG pairs and all valid CpG
pairs across possible pairwise comparisons of reads, we could obtain
reads concordance (RC) scores by dividing all concordant CpG pairs
by all valid CpG pairs. Similarly, we could also get CpGs concord-
ance (CC, short for CpG sites concordance) scores (The middle of
Fig. 1D). Matrix multiplication was used to speed up the calculation
(see following methods and more details with an example shown in
Supplementary Fig. S2).

Reads concordance and CpGs concordance are not comparable,
because they are biased by mean methylation levels (Supplementary
Fig. S3). So, we calculated expected concordance scores under ran-
dom conditions for the given methylation data to normalize reads
concordance and CpGs concordance, and calculated corresponding
P-values by Binomial tests (the right of Fig. 1D; more calculation
details in Supplementary Fig. S2) to show the significance of
concordance.

2.2 Calculating reads concordance and CpGs

concordance
This section is the implementation of reads concordance and CpGs
concordance with matrix multiplication. First, to be compatible
with missing data in methylation matrix (reads � CpG sites), we
defined methylated matrix M, with element scores 1 indicating
methylated CpGs and 0 indicating missing data or unmethylated
CpGs; unmethylated matrix N, with element scores 1 indicating
unmethylated CpGs and 0 indicating missing data or methylated
CpGs. The coverage matrix T is the summarization of M and N,
with element score 1 indicating coverages and 0 indicating missing
data. Matrix M, N and T have the same sizes, with the number of
rows r representing the number of reads and the number of columns
c representing the number of CpG sites on the specific region, which
was 150-bp bins in this study. 150 bp was chosen due to its compati-
bility with the length of next-generation sequencing reads.

Then, reads concordance (RC) was calculated as

mr ¼
X

all elements

ðMMT � ðUr�r � IrÞÞ (1)

nr ¼
X

all elements

ðNNT � ðUr�r � IrÞÞ (2)

tr ¼
X

all elements

ðTTT � ðUr�r � IrÞÞ (3)

RC ¼ ðmrþ nrÞ=tr (4)

where mr, nr, tr represent the numbers of concordantly methylated
CpG pairs, concordantly unmethylated CpG pairs, all valid CpG
pairs across all possible pairwise comparisons of reads, respectively.
Besides, Ur�r represents an all-ones matrix with size r� r, where r is
the number of reads, which is equal to the row numbers of matrix
M, N and T. Ir represents an identity matrix with all-ones in the
main diagonal and all-zeros for other elements. � represents dot
product.

Similarly, CpGs concordance (CC) was calculated by counting
all concordant CpG pairs across all pairwise comparisons of CpG
sites (Fig. 1D). CC was implemented as

mc ¼
X

all elements

ðMTM� ðUc�c � IcÞÞ (5)

nc ¼
X

all elements

ðNTN� ðUc�c � IcÞÞ (6)

tc ¼
X

all elements

ðTTT� ðUc�c � IcÞÞ (7)

CC ¼ ðmcþ ncÞ=tc (8)

where mc, nc, tc represents the numbers of concordantly methylated
CpG pairs, concordantly unmethylated CpG pairs, all valid CpG pairs
across all possible pairwise comparisons of CpG sites, respectively.
Besides, Uc�c represents an all-ones matrix with size c� c, where c is
the number of CpGs, which is equal to the column numbers of matrix
M, N and T. Ic represents an identity matrix with size c� c.

2.3 Calculating normalized concordance metrics and P-

values
We noticed that reads concordance and CpGs concordance were
biased by DNA methylation levels. More close to 0.5 the methyla-
tion level is, lower values two metrics are (Supplementary Fig. S3).
So we computed expected reads concordance and expected CpGs
concordance with the methylation matrix and further normalized
two metrics by subtracting the raw concordance by the expected
concordance.

Normalized reads concordance (NRC) was calculated as

mpr ¼
X

all elements

ðTMT � ðUr�r � IrÞÞ (9)

npr ¼
X

all elements

ðTNT � ðUr�r � IrÞÞ (10)

pr ¼ mpr=ðmpr þ nprÞ (11)

er ¼ pr2 þ ð1� prÞ2 (12)

NRC ¼ RC� er (13)

where mpr, npr represent the numbers of methylated CpGs,
unmethylated CpGs in all possible CpG pairs across all pairwise
comparisons of reads, respectively. pr represents the expected
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Fig. 1. The motivation of this study and the workflow of MeConcord. (A) The fractions of 150-bp bins (>5 CpG sites) with different DNA methylation levels. Intermediately

methylated bins are defined as bins with methylation levels >0.05 and <0.95 and occupy a large fraction (0.33–0.76, median¼0.57) across the whole genome. (B) A cartoon

represents three different methylation patterns for intermediately methylated regions. Each cell represents a haploid genome. (C) Five different methylation patterns for inter-

mediately methylated regions (methylation levels were around 0.25 for each pattern) with 8 CpG sites and 12 reads. Top: methylation patterns without methylation mutations.

Bottom: methylation patterns with 5% random methylation mutations to mimic real experiment data. Patterns 1, 3 and 5 correspond to the cartoon shown in panel B. (D) The

workflow of Meconcord. Methylation concordance was calculated across reads (reads concordance) and CpG sites (CpGs concordance) by applying Hamming distance to

pairwise comparisons. Reads concordance and CpGs concordance are biased by mean methylation levels, so expected reads concordance and expected CpGs concordance

were calculated based on the number of methylated and unmethylated CpGs across all pairwise comparisons. Normalized reads concordance and normalized CpGs concord-

ance were defined by the differences between raw and expected scores. P-values were calculated by using Binomial tests. (E–H) The scatter plots of metrics measuring regional

methylation heterogeneity for 10 methylation patterns including both the base and mutated patterns. E and F show four metrics used in previous studies, exhibiting poor per-

formance in distinguishing different methylation patterns. However, G and H show metrics used in this study, exhibiting good performance in distinguishing different methyla-

tion patterns, especially for P1, P3 and P5, and in coping with noise
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methylation level according to the composition of CpG pairs, er
represents the expected reads concordance given the expected
methylation level pr.

To represent the significance of concordance over expectations
under random conditions, we leveraged Binomial tests to calcu-

late P-values to represent the significance of concordance for the
methylation matrix. P-values of reads concordance (Pr) was cal-

culated as

Pr ¼

Xmrþnr

i¼0

� tr
i

�
erið1� erÞtr�i; if mrþ nr < tr� er

Xtr

i¼mrþnr

�
tr
i

�
erið1� erÞtr�i; if mrþ nr � tr� er

8>>>><
>>>>:

(14)

where mrþ nr is the observed counts; tr is all possible counts; er is
the expected reads concordance.

Similarly, normalized CpGs concordance (NCC) was calculated
as

mpc ¼
X

all elements

ðTTM� ðUc�c � IcÞÞ (15)

npc ¼
X

all elements

ðTTN� ðUc�c � IcÞÞ (16)

pc ¼ mpc=ðmpc þ npcÞ (17)

ec ¼ pc2 þ ð1� pcÞ2 (18)

NCC ¼ CC� ec (19)

where mpc, npc represents the numbers of methylated CpGs, unme-
thylated CpGs shown in all possible CpG pairs across all pairwise

comparisons of CpG sites, respectively. pc represents the expected
methylation level according to the composition of CpG pairs, ec rep-

resents the expected reads concordance given the expected methyla-
tion level pc.

P-values of CpGs concordance (Pc) was calculated as

Pc ¼

Xmcþnc

i¼0

� tc
i

�
ecið1� ecÞtc�i; if mcþ nc < tc� ec

Xtc

i¼mcþnc

�
tc
i

�
ecið1� ecÞtc�i; if mcþ nc � tc� ec

8>>>><
>>>>:

(20)

2.4 Data collection and processing
We collected whole genome bisulfite sequencing data of human sam-

ples from both ENCODE (Davis et al., 2018) and previously pub-
lished datasets (Cruickshanks et al., 2013; Jenkinson et al., 2017)

under GEO accession GSE48580 and GSE86340. Bam files mapped
to GRCh38 under ENCODE3 version with Bismark were directly
used. Raw sequencing data from GEO was used followed by quality

control, adapter sequences removal and mapping. We employed
Cutadapt (Martin, 2011) to remove adapter sequences. Then
Bismark (Krueger and Andrews, 2011) was used to map sequencing

reads against GRCh38.
Bam files of transcription factors and histone modifications

ChIP-seq, DNase-seq for H1 and K562 cell lines were downloaded
from ENCODE and used for the enrichment. The feature enrich-

ment was performed by deepTools (Ram�ırez et al., 2016).
Human reference genome GRCh38 was used in this study. The

genome was binned at 150-bp windows (bins) and bins with more
than 5 CpG sites were used for MeConcord analyses.

2.5 MeConcord implementation and functions
MeConcord was implemented by Python and included three main
functions.

1. Converting bam files from Bismark to reads-level methylation

recording files. Each single-end read or paired-end read was con-

verted to one methylation recording considering the overlapping

of two ends of paired-end reads. This part was compatible with

both sam files (or sam.gz files) and bam files with even a mix of

single-end and paired-end reads. This part required reads ID

sorted files.

2. Calculating reads concordance, CpGs concordance, normalized

reads concordance, normalized CpGs concordance and corre-

sponding P-values from methylation recording files for any given

genomic regions. Because this part was implemented by matrix

multiplication, the coverage of reads could be more than 1000�,

much higher than FDRP, which is compatible with less than

40� (Scherer et al., 2020). This enabled MeConcord coping

with target sequencing data with extremely high sequencing

depths, such as RRBS.

3. Deriving methylation matrix (reads � CpG sites) from

methylation recording files for any given genomic regions. The

methylation matrices could be used for visualization by plotting

lollipop plots (PDF format) with the script embedded in

MeConcord.

2.6 Identifying differentially methylated regions on CpG

islands
To well study the differences of CpG island hypermethylation pat-
terns between cellular senescence, aging and tumorigenesis, at first
we binned CpG islands into 150-bp bins and calculated mean
methylation levels for each cell state or tissue. Next, we chose bins
whose mean methylation levels in control samples (proliferating
cells for cellular senescence, T cells from young individuals for
aging, normal liver and lung tissues for tumorigenesis) <0.20 and
standard deviations of control samples <0.05. Finally, differentially
methylated regions for each case sample were independently identi-
fied with the threshold that methylation levels of the case sample
minus mean methylation levels of controls >0.1. Methylation pat-
terns were analyzed for these differentially methylated bins of CpG
islands.

3 Results

3.1 MeConcord showed good performance in

distinguishing different methylation patterns
First, we borrowed the naming of three canonical methylation
patterns in intermediately methylated regions from a previous
study (Derrien et al., 2021), where the ‘identical’ methylation pat-
tern represents a pattern with high consistency between reads but
low concordance across adjacent CpG sites; the ‘disordered’
methylation pattern represents a pattern with low concordance
both between reads and CpG sites; the ‘uniform’ methylation pat-
tern represents a pattern with highly concordant CpG sites
within single reads but large differences between some reads
(Fig. 1B and C).

To examine the performance of MeConcord in distinguishing
different methylation patterns, we simulated 5 methylation matrices
with similar methylation levels, corresponding to different methyla-
tion patterns (Fig. 1C). Bottom of Figure 1C showed the simulated
noisy methylation matrices to mimic real data. Both raw concord-
ance scores (reads concordance and CpGs concordance) and nor-
malized concordance scores [normalized reads concordance (NRC)
and normalized CpGs concordance (NCC)] showed good perform-
ance in distinguishing five different methylation patterns (Fig. 1G
and H). In contrast, previously used metrics showed poor perform-
ance in distinguishing these patterns, especially for the noisy matri-
ces. Besides, methylation entropy, epi-polymorphism, PDR and
MHL showed large differences between the base methylation matri-
ces and the noisy methylation matrices, whereas our metrics, NRC
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and NCC, showed more similar scores. This suggested the better
performance of our metrics in coping with noise. Our metrics also
showed more stable performance than other metrics when applying
them to shorter stretches of four CpG sites (Supplementary Fig. S4).
Notably, Patterns 2 and 4 are not canonical patterns, therefore was
excluded in the following analyses.

To examine MeConcord’s performance in real data, we performed
the analysis on a thymus tissue sample from ENCODE
(Supplementary Fig. S5, Fig. 2A). ‘Uniform’ regions exhibited a

pattern that DNA methylation of CpGs on the same reads are highly
consistent and there is a divergence among reads (left two examples of
Fig. 2B), and were defined as bins showing high NCC (>0.1), low
NRC (<0.1) and low P-values (<1�10�10) (Top square of Fig. 2A).
Similarly, ‘disordered’ and ‘identical’ regions are defined as low NCC
(<0.1), low NRC (<0.1) and high P-values (>1�10�5); low NCC
(<0.1), high NRC (>0.1) and low P-values (<1�10�10), respectively
(Fig. 2A and B). In contrast, other existing metrics could not efficient-
ly distinguish different patterns in real data (Supplementary Fig. S6).

Fig. 2. Distinct methylation patterns identified by MeConcord. (A) The distribution of normalized concordance scores and the classification of methylation patterns. Colors

indicated the significances of concordance (P-values) at two different dimensions for top and bottom scatterplots, respectively. Each point represented a 150-bp bin with more

than 5 CpG sites and more than 5 mapped reads. Shown points were subsampled at 1% from the whole gnome. (B) Lollipop plots of five examples for distinct methylation pat-

terns. (C) The compositions of three distinct methylation patterns for 25 samples from ENCODE. These analyses were performed for intermediately methylated regions

(0.05<DNAme < 0.95). (D) The distributions of normalized concordance scores for GM12878 cell line and placenta tissue, which represented two extremes of the composi-

tions. Top and bottom plots are colored by two types of P-values. (E) Lollipop plots for six genomic regions corresponding to GM12878-specific ‘identical’ patterns, H1-specif-

ic ‘uniform’ patterns and placenta-specific ‘uniform’ patterns, respectively
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Taken together, MeConcord was a reliable method for investigating
methylation patterns in intermediately methylated regions.

3.2 Different proportions of distinct methylation

patterns across samples
To investigate the different compositions of methylation patterns in
different samples, we applied MeConcord to 25 samples from
ENCODE, including 4 primary cells, 10 cell lines and 11 tissues. In
general, ‘disordered’ bins occupied the highest fractions (43%–
91%) (Fig. 2C). The proportions of ‘identical’ and ‘uniform’ bins
showed large differences across different cell types/tissues (the pro-
portions of ‘identical’ bins from 2% in placenta to 50% in
GM12878; the proportions of ‘uniform’ bins from 3% in mammary
epithelial cells to 40% in testis) (Fig. 2C and D). We found that tis-
sues always showed higher proportions of ‘uniform’ bins than pri-
mary cells or cell lines, especially for placenta and testis. We
speculated that multiple cell types within tissues contributed to a
high fraction of ‘uniform’ bins. There were two exceptions; H1 and
H9 cell lines showing high fraction of ‘uniform’ bins. However, This
is in line with the previous finding that a high proportion of CpGs
(14%) genome-wide showed allele-specific methylation in H1 and
H9 (Chen et al., 2011). More stringent cutoffs for intermediately
methylated regions did not change these trends (Right part of
Supplementary Fig. S1). Figure 2E showed some examples for
GM12878-specific ‘identical’ bins, H1-specific ‘uniform’ bins and
placenta-specific ‘uniform’ bins.

To well understand the biological relevance of these different
methylation patterns in GM12878, H1 and placenta, we performed
gene function enrichments. GREAT genomic enrichments (McLean
et al., 2010) of GM12878 ‘disordered’, ‘identical’ and ‘uniform’
bins showed different functions and phenotypes, and ‘uniform’ bins
were enriched for genomic imprinting (Binomial P-values <
1�10�30) (Supplementary Fig. S7). Similarly, we found that H1
‘uniform’ bins were enriched for embryonic morphogenesis
(Binomial P-values < 1�10�7) and imprinting (Binomial P-values
< 1�10�40) (Supplementary Fig. S8); placenta ‘uniform’ bins were
enriched for embryonic placenta development (Binomial P-values <
1�10�10) and imprinting (Binomial P-values < 1�10�30).
Interestingly, placenta ‘disordered’ bins were enriched for tropho-
blast (will develop into a large part of the placenta) morphology

(Binomial P-values < 1�10�10) and abnormal placenta size
(Binomial P-values < 1�10�10) (Supplementary Fig. S9). Taken to-
gether, different local methylation patterns are related to genomic
regions with different biological functions.

3.3 Genomic features for three different methylation

patterns
To better understand the differences between three methylation pat-
terns, we included H1 and K562 cell lines, which have comprehen-
sive ChIP-seq data for various transcription factors and histone
modifications in ENCODE, to investigate the relationship between
these methylation patterns and these genetic and epigenetic charac-
teristics. First, we examined the distributions of DNA methylation
levels for three methylation patterns and found that ‘uniform’ and
‘identical’ bins showed similar methylation level distributions,
whereas ‘disordered’ bins showed distinct methylation levels
(Fig. 3A and B). To avoid the effect of different methylation levels of
three methylation patterns on the following genomic feature enrich-
ment analyses, we randomly selected genomic regions of ‘uniform’
and ‘disordered’ patterns in each methylation level interval to make
sure that they showed similar distributions of methylation levels as
‘identical’ pattern (Selected bins of Fig. 3A and B).

The enrichments indicated that ‘identical’ bins were specifically
associated with CTCF, RAD21 and ZNF143 bindings and placed
around but not within these binding sites (Fig. 3C and D). It sug-
gested that ‘identical’ patterns might be mediated by genome insula-
tors or 3D genome organizers. ‘Disordered’ bins were depleted for
H3K4me3, a mark of promoter, but enriched for H3K4me1, a mark
of active and poised enhancer. In contrast, ‘uniform’ bins were
enriched for both H3K4me3 and H3K4me1. These findings indi-
cated that three different methylation patterns harbored distinct
genomic characteristics.

3.4 Distinct CpG island hypermethylation patterns

between senescence and tumorigenesis
To further examine the power of MeConcord to investigate methy-
lation patterns, we leveraged datasets of cellular senescence, aging
and tumorigenesis to study the differences of CpG island hyperme-
thylation between senescence and tumorigenesis. Previous studies

Fig. 3. Different genomic features for three methylation patterns. (A) The distributions of DNA methylation levels for different methylation patterns in H1 cell line (All bins).

We randomly selected bins of ‘uniform’ and ‘disordered’ in each methylation level interval to make their distributions be consistent with the distribution of ‘identical’ bins

(Selected bins for enrichments). These selected bins were used for genomic feature enrichment analyses. This could largely avoid the effects of different DNA methylation levels

on feature enrichments. (B) The distributions of DNA methylation levels for different methylation patterns in K562 cell line. (C) The enrichment of DNase-seq and ChIP-seq

signal (CTCF, RAD21, ZNF143, H3K4me3, H3K4me1) around different methylation patterns for H1. The signal was shown upstream 3000 bp and downstream 3000 bp of

these bins. We chose the 150 bp bins, which were 100 kbp upstream and downstream from the foreground bins (‘uniform’, ‘identical’, ‘disordered’), as the background regions.

(D) The enrichment of DNase-seq and ChIP-seq signal around different methylation patterns for K562
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Fig. 4. Distinct CpG island hypermethylation patterns in senescence and tumorigenesis. (A–D) The compositions of different methylation patterns and distributions of DNA

methylation levels for hypermethylated CpG islands in cellular senescence (A), aging (B), liver cancer (C) and lung cancer (D). The scatterplots on the left showed the distribu-

tions of normalized concordance scores in one senescence sample, one aging sample or one tumor sample. Bar plots in the middle showed the compositions of three methyla-

tion patterns across all samples in each dataset. Tumor samples showed higher fraction of ‘uniform’ bins than cellular senescence samples or aging samples. Histograms on the

right showed the distributions of DNA methylation of hypermethylated CpG islands for all case samples (senescence samples, aging samples, tumors). Except for liver tumor

2, all case samples showed similar distributions. (E) Lollipop plots of two examples for cellular senescence and tumorigenesis. The scores for MeConcord and existing metrics

were shown in Supplementary Tables S1 and S2. For all metrics, NCC and its P-values of MeConcord showed the clearest differences between the senescence sample S1 and

the lung cancer 1. One of the examples (Chr12:128 853 775–128 853 924) is located at the promoter of GLT1D1, which is associated with the occurrence of chronic obstruct-

ive pulmonary disease (Morrow et al., 2016) and immunosuppression in B-cell lymphoma (Liu et al., 2020). However, the relationship between different methylation patterns

and biological mechanisms remains unclear. (F) A cartoon showing the differences of CpG island hypermethylation patterns between cellular senescence and tumorigenesis
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have shown that tumors and senescent cells harbors similar methyla-
tion alterations (Cruickshanks et al., 2013; Zane et al., 2014), but
this finding is upsetting as it will be more difficult to specifically de-
tect tumors from aged individuals in clinical care with DNA methy-
lation markers. However, the differences between local methylation
patterns might give some insights into this problem.

We collected four datasets including cellular senescence dataset
(3 proliferating biological replicates, 3 replicative senescence bio-
logical replicates), aging dataset (T cells from 3 young individuals
and 3 old individuals), liver cancer dataset (3 normal liver tissues, 3
liver tumor tissues), lung cancer dataset (3 normal lung tissues, 3
lung tumor tissues). We focused on CpG island bins which showed
hypermethylation during senescence or tumorigenesis and found
that tumors showed higher fractions of ‘uniform’ bins than senescent
cells (tumors, 0.24–0.88, mean¼0.65; senescence or aging, 0.10–
0.23, mean¼0.17). In contrast, the distributions of DNA methyla-
tion levels for these hypermethylated CpG island bins were similar
between senescence and tumorigenesis (Fig. 4A–D). It suggested that
local methylation patterns identified by MeConcord were more suit-
able for distinguishing senescence and tumorigenesis than DNA
methylation levels.

Figure 4E showed two examples of hypermethylated regions in
both senescent cells and lung tumors. CpG islands of senescent cells
tended to be methylated by ‘disordered’ or ‘identical’ patterns,
whereas tumor tissues tended to be methylated by a ‘uniform’ pat-
tern. For single reads, senescent cells tended to be methylated at
some discrete CpG sites, while tumors tended to be methylated at
nearly all consecutive CpG sites (Fig. 4E and F). Although ‘uniform’
patterns in tumor samples might be due to tumor purity, read-level
methylation patterns revealed by MeConcord could help us to
distinguish tumors and senescent cells.

4 Discussion

In this study, we introduced a new method, MeConcord, for analyz-
ing local DNA methylation patterns at single-read level. This
method leveraged Hamming distance, matrix multiplication and
Binomial tests to overcome some limitations that present methods
are facing. DNA methylation data was noisy due to the dynamics of
DNA methylation mechanisms (Charlton et al., 2018; M�etivier
et al., 2008) and technical noise, which required metrics to have a
good ability to cope with noisy methylation data. However, methy-
lation entropy, epi-polymorphism and PDR either required very
high coverages or focused on very local regions (4 CpG sites) to re-
duce the effect of noise. In contrast, MeConcord and quantitative
fraction of discordant reads pairs (qFDRP) (Scherer et al., 2020)
leveraged Hamming distance to improve the stability in real data-
sets. Although one of our metrics, reads concordance, is equal to 1-
qFDRP, qFDRP alone is impossible to distinguish three different
methylation patterns. To our knowledge, there was no such a
method distinguishing three distinct methylation patterns in inter-
mediately methylated regions before MeConcord.

We leveraged matrix multiplication to calculate two concord-
ance metrics, with an ability to include very-high-coverage datasets
than qFDRP. This method can easily deal with >1000 reads for a
single bin, while qFDRP had to subsample reads when the number
exceeds 40 reads (Scherer et al., 2020), which hampers its utility in
deep sequenced datasets.

Present metrics including methylation entropy, epi-
polymorphism and our raw metrics RC, CC were biased by
DNA methylation levels (Landan et al., 2012; Shao et al., 2014)
(Supplementary Fig. S3). This hampers us to set thresholds to distin-
guish different methylation patterns. However, we computed the
expected concordance scores under random conditions for a given
methylation matrix to normalize RC and CC, which is more effi-
cient than permutations (Tsai et al., 2012), and leveraged Binomial
tests to assign a P-value for each score. This enabled us to easily dis-
tinguish different methylation patterns by setting an unbiased
threshold.

By applying Meconcord to different samples and biological proc-
esses, we found that different methylation patterns identified by

MeConcord harbored different genomic features and MeConcord
could enable us to study the local read-level methylation patterns for
both the whole genome and some specific regions. Currently,
MeConcord can only process DNA methylation of CpG sites, and
does not include non-CpG methylation frequently appeared in
brains, stem cells and plant cells. However, MeConcord is a power-
ful method to study local read-level methylation patterns on CpG
sites for intermediately methylated regions.
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