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low visual speeds. These results suggest
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speeds and running can explain

sensorimotor mismatch signals in the

visual cortex.
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SUMMARY
Sensory experience often depends on one’s own actions, including self-motion. Theories of predictive cod-
ing postulate that actions are regulated by calculating prediction error, which is the difference between sen-
sory experience and expectation based on self-generated actions. Signals consistent with prediction error
have been reported in the mouse visual cortex (V1) when visual flow coupled to running was unexpectedly
stopped. Here, we show that such signals can be elicited by visual stimuli uncoupled to an animal running.
We record V1 neurons while presenting drifting gratings that unexpectedly stop. We find strong responses
to visual perturbations, which are enhanced during running. Perturbation responses are strongest in the
preferred orientation of individual neurons, and perturbation-responsive neurons are more likely to prefer
slow visual speeds. Our results indicate that prediction error signals can be explained by the convergence
of known motor and sensory signals, providing a purely sensory and motor explanation for purported
mismatch signals.
INTRODUCTION

Sensation and action are two intertwined processes that the

brain continuously executes and adjusts (Claxton, 1975; Wolpert

et al., 1995; Rao and Ballard, 1999; Koster-Hale and Saxe, 2013;

Friston, 2018). Theories of predictive coding postulate that

sensation is an active process that uses information about

one’s own actions to distinguish between self-generated and

external sensory stimuli. One feature of such predictive coding

is the computation of prediction error—the difference between

observed features and those expected based on one’s own ac-

tions. Prediction error signals have been shown to be encoded in

many neural circuits, most famously in the reward system

(Schultz et al., 1997), and also in motor (Wolpert and Ghahra-

mani, 2000) and sensory brain regions (Schneider et al., 2014;

Rummell et al., 2016).

Locomotion through a familiar environment can generate pre-

dictable sensory experiences, including visual flow, that are in

turn important in guiding behavior. It has been suggested that er-

rors in the prediction of visual flow are encoded as early as in the

primary visual cortex (Keller et al., 2012; Keller and Mrsic-Flogel,

2018), based on large responses to sudden stops of visual flow

that were normally coupled to an animal running. The same vi-

sual perturbation (cessation of visual flow) played back to a

stationary animal elicited smaller responses. In agreement with

theories of predictive coding, such activity would provide the

mouse visual cortex (V1) with the ability to encode the error be-

tween the actual sensory feedback and the expected one, i.e., a

visuomotor mismatch signal (Keller et al., 2012). It has been sug-
This is an open access article und
gested that this visuomotor mismatch is driven by the compari-

son of excitatory, motor inputs with inhibitory, visual flow inputs

(Attinger et al., 2017; Jordan and Keller, 2020). However, neu-

rons in V1 have a wide range of visual speed (or temporal fre-

quency) preferences (Niell and Stryker, 2008; Andermann

et al., 2011; Marshel et al., 2011), and running both drives V1 ac-

tivity and modulates responses to visual stimuli (Niell and

Stryker, 2010; Keller et al., 2012; Saleem et al., 2013; Fu et al.,

2014; Lee et al., 2014; Busse et al., 2017; Millman et al., 2020).

An alternate and untested hypothesis is that responses to sud-

den stops of visual flow are simply due to the convergence of

motor and visual inputs and do not arise from the precise

coupling between an animal’s actions and the visual stimulus.

RESULTS

To test how changes to visual flow affected neural activity in the

V1, we presented gratings drifting at a constant speed in eight di-

rections (0.04 cycles/�, 3 cycles/s, 0�:45�:315�, trial duration =

7.3 s), in the right visual field (covering 120� by 120�, Figure 1A).

Mice were head restrained and free to run on a polystyrene

wheel. The open-loop stimulus allowed measurements in the

absence of explicit sensorimotor expectation and therefore

characterizing the individual contribution of motor and visual in-

puts. For example, the open-loop stimulus allowed us to test

different stimulus directions compared to closed-loop in which

only front-to-back motion would be viable. On each trial, the

contrast of the drifting grating slowly increased from 0 to 0.8

and was then held constant for 1 s, before decreasing back to
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Figure 1. V1 neurons show responses to visual flow perturbations that are stronger during running

(A) Top and side view of the recording apparatus. Top right: schematic of the multi-electrode array (MEA) silicon probe and recording area.

(B) Top: normalized mean response of all recorded units (n = 1,019) for trials with perturbation. Firing rate of single units was normalized by their maximum

recorded during the session. Units are sorted in descending order based on the mean firing rate during the perturbation period. Bottom: contrast and temporal

frequency of the drifting grating for trials with perturbation (temporal frequency, TF = 0 cycles/s). Triangles refer to the position of example units shown in (C).

(C) Mean response to trials with perturbation (red/black/blue trace) and without perturbation (gray trace) of four example units. Units 62, 70, and 742 are

significantly responsive to perturbation (red and blue traces indicate positive and negative modulation, respectively); the third example is not perturbation

responsive. Unit number is consistent with rows in (B). Shaded areas indicate SEM.

(D) Probability distribution of the area under the receiving operating characteristic curve of logistic classifier trained on shuffled and recorded data. Dotted line

represents the 95 percentile threshold.

(E) Probability cumulative distribution of the modulation indices (MIs) of perturbation-responsive units (red) and the other units (gray). p value from two-sample

Kolmogorov-Smirnov test.

(F and G) Modulation of perturbation responses in running trials versus stationary trials for neurons recorded in sessions in which there were at least 4 trials for

each condition (n = 174 neurons). (F) Normalized mean population firing rate activity during perturbation trials in running and stationary conditions. Shaded areas

indicate SEM. (G) The modulation of each unit, for each condition, was computed as the sum of all firing rates of the perturbation period minus those evaluated

during 1 s preceding the perturbation. Solid dots show units that were significantly modulated by running individually (non-parametric test with significance

threshold at p = 0.05, see STAR Methods for details). See also Figures S1 and S2.
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0 again. We chose this protocol so that mice did not experience

sudden, transient changes of stimulus appearance or speed. On

the recording day, however, the drifting grating was suddenly

stopped for 1 s in a random 25%of the trials, thus causing an un-

expected perturbation of the visual flow (Figure 1B).

The perturbation of purely visual flow was clearly reflected in

the activity of neurons recorded in V1 (Figure 1B). We used

multi-electrode array silicon probes to record the activity of neu-

rons in the visual cortex. Many individual neurons showed a
2 Cell Reports 37, 109772, October 5, 2021
change in their firing rates during the perturbation (Figures 1B

and 1C). To quantify the reliability of each neuron’s perturbation

response, we trained a logistic regression classifier to discrimi-

nate between perturbation and non-perturbation trials based

on features of an individual neuron’s activity, including response

amplitude during the visual flow halts (Figures 1C and 1D; see

STAR Methods for details). The classifier would discriminate

only between the trial types when the perturbation responses

are large and reliable. We considered a unit reliable if the
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classifier performed better than 95% of classifiers trained on

shuffled data (Figure 1D), and we found that 60% of neurons

(n = 615/1,019) were reliably responsive to visual perturbation.

As the classifier could use either positive or negative perturba-

tion responses, we also characterized the sign of the responses

by measuring a modulation index (MI), which is the proportional

change in firing rate during the perturbation, relative to the pre-

perturbation period. We found that most neurons responded to

the perturbation by increasing their firing rate (n = 345 of 1,019

versus 270 of 1,019 units that reduced responses; Figure 1E).

Perturbation-responsive units were similarly represented in

both putative fast and regular spiking classes, so we analyzed

them together.

Perturbation-responsive neurons appear to respond as if they

encode visuomotor mismatch: activity increases when the visual

flow, otherwise coupled to the animal running, is suddenly

stopped. We therefore evaluated the effects of running on the

perturbation responses, in sessions that had at least 4 trials in

both running (speed, R2 cm/s) and stationary conditions.

Although perturbation responses were present in both stationary

and running conditions, they were markedly different, as follows:

pre-perturbation activity was higher during running (Figure 1F;

p = 0.002, Wilcoxon rank-sum test), and the MI was higher

when the animal was running than when it was stationary (n =

65/174 units, p < 10�7, Wilcoxon rank-sum test). Therefore, the

perturbation responses were larger when animals were running.

Visual perturbation responseswere not explained by perturba-

tion-induced changes in running behavior. We quantified

changes in running speed in each recording session by using

the same metrics as for neural responses, calculating reliability

and MIs for speed changes. Mice showed reliable changes in

speed following the perturbation in less than one-half the ses-

sions (n = 19/47 sessions with 95 percentile performance; Fig-

ures S1A and S1B), and these sessions had a similar fraction

of perturbation units as sessions with no running speed changes

(35% compared to 34% in other sessions). Importantly, trial-by-

trial MIs of neural responses were rarely (n = 8/345 units) corre-

lated with MIs of speed changes (Figures S1C, S1D, and S1E).

Therefore, neither the occurrence nor the magnitude of changes

in running speed explained perturbation responses.

A crucial feature of the sensorimotor mismatch hypothesis is

that perturbation responseswill be largest for themotiondirection

predicted by the animal’s running (front-to-back or naso-tempo-

ral flow). Previous reports of responses during sensorimotor

mismatchweremeasured using stimuli moving only along this di-

rection, leaving open the question of whether perturbation re-

sponses might also be present for other motion directions. We

therefore tested theperturbation response in eight different direc-

tions—in each case, the stimulus moved in a particular direction

and suddenly stopped during the perturbation period.

We found that population perturbation responses were similar

in every motion direction tested (Figure 2). For each direction, we

measured the population perturbation response as the average

normalized response across all the perturbation units within a

recording session (n = 47 recordings). The population perturba-

tion responses did not display a preference for any direction (Fig-

ure S3B) or orientation (Figure 2B). We next asked if individual

neurons showed any preference to the direction of the perturba-
tion. Although some neurons showed no preference for the

orientation of the perturbation (Figure 2C), we found some neu-

rons that had a higher response along certain orientations (Fig-

ures 2D and 2E). We defined the orientation with the maximal

perturbation response as the preferred perturbation orientation.

The distribution of preferred perturbation orientations did not

show a bias for any particular orientation or direction (Figure 2E;

Figure S3C), which is consistent with the lack of bias in the pop-

ulation responses. Therefore, the perturbation responses were

not biased in the front-to-back direction as predicted by a senso-

rimotor mismatch.

The perturbation responses were influenced by the orientation

selectivity of the neuron (Figures 2C and 2E). We measured the

orientation selectivity in the period before the perturbation onset

(pre-perturbation) and found 268/345 perturbation units to be

orientation selective (Hotelling’s T2 test, p < 0.01). Interestingly,

the preferred perturbation orientation often matched the

preferred orientation of neurons (Figures 2D and 2E). Neurons

with significant orientation selectivity showed a perturbation

response tuning similar to that obtained with the drifting gratings

(Figure 2D and Figure S3D). The distribution of the difference be-

tween the preferred visual and perturbation orientation was

centered close to zero (0� ± 30� for n = 104/268 neurons, Fig-

ure 2E). We did not find a significant relationship with direction

preference of the neurons (Figure S3C). These results suggest

that the perturbation responses are more influenced by sensory

feature selectivity of the neuron than by running direction.

The perturbation responses, although not consistent with trial-

by-trial sensorimotor expectations, might be related to expecta-

tions built up by prior exposure to the visual stimuli. To test this

hypothesis, we recorded from two groups of animals, as follows:

one group (experienced mice, n = 7 subjects, 37 recording ses-

sions) was exposed to the open-loop drifting gratings (without

perturbations) over 8–13 days, whereas the other group (naı̈ve

mice, n = 3 subjects, 10 recording sessions) did not experience

any stimuli before the first recording session. We found a similar

percentage of perturbation units in both groups (60% for naive

and 58% for experienced mice; Figure S2), suggesting that prior

exposure did not influence the occurrence of perturbation

responses.

What properties of a neuron determine whether or not it is

perturbation responsive? Although expectation was a potential

hypothesis, our evidence did not support it, and instead we

found a larger role for stimulus orientation. We therefore inves-

tigated whether additional stimulus properties predict neural

responses to visual flow perturbations. Given that the perturba-

tion responses occurred when the drifting grating was suddenly

stopped (or made static), we hypothesized that the positively

modulated perturbation units preferred static gratings over drift-

ing gratings. To test this hypothesis, we tested a range of

speeds of the grating (different temporal frequencies at a fixed

spatial frequency), moving along the naso-temporal (front-to-

back) direction (Figure S4A; 3 animals, n = 109 neurons, tempo-

ral frequencies tested: 0:0.5:8.5 cycles/s; Figures S4B and

S4C). The speed preferences of perturbation units were consis-

tent with our hypothesis (Figure S4H): positively modulated

units mostly preferred static gratings, whereas negatively

modulated units mostly preferred speeds greater than 3
Cell Reports 37, 109772, October 5, 2021 3
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Figure 2. Perturbation responses are not biased to the front-to-back direction and are stronger at the preferred orientation of single neurons

(A) Mean normalized population responses of the perturbation-responsive units (only positively modulated) for different grating directions. Dotted lines indicate

the start/end of the trial and of the perturbation period. Firing rate of single units was normalized by their maxima. Shaded areas indicate SEM.

(B) Perturbation responses to orientation angles for all recording sessions (n = 41) minus responses to naso-temporal orientation. Colors of boxplots indicate

mean (red), SEM (light gray), and SD (dark gray).

(C and D) Mean responses of two example units for the different grating directions. The central panel of each example shows the mean responses for different

grating directions computed during the first 4 s of the trials minus the baseline activity (black line). Red line is the mean firing rate computed during the visual

perturbation period (same baseline as the grating stimulus is used to avoid any bias from visual direction/orientation tuning of the unit). Surrounding plots show

mean responses for each direction. The responses to the visual stimulus (0–4 s) are averaged over all trials in the direction. Responses to the visual perturbation

are averaged over the number of trials for each condition (red, with perturbation; light gray, no perturbation). Circles indicate preferred orientation. Triangles

indicate preferred direction.

(E) Scatterplot of preferred orientation angle for grating stimulus and visual perturbation. Black data point indicates example unit shown in (D). Only units tuned to

orientation are considered (Hotelling’s T2 test, p% 0.01 n = 268). Marginal distributions above and to the right of the plot show preferred perturbation and visual

orientation angles, respectively. The distribution of the difference between the preferred perturbation and visual orientation angle of each neuron (DOri) is shown

on the top right. Shuffled data are indicated in gray. See also Figure S3.

Report
ll

OPEN ACCESS
cycles/s (MI > 0, n = 62; MI < 0, n = 47, Mann-Whitney U test,

p = 1.3e-6; Figure 3C). We then considered the possibility that

perturbation responses could be explained by direction selec-

tivity. For instance, a grating moving in the opposite or orthog-

onal direction from that preferred by the neuron might suppress

its firing rate. However, we found that the preference for slow

speeds was not explained by a preference for other motion di-

rections (Figure S4I). These data suggest that a preference for

static or slower moving gratings explains the increases in firing

rate observed in response to the visual flow perturbation, irre-

spective of predictions based on running direction.

DISCUSSION

We have shown that a significant proportion of neurons of the vi-

sual cortex of mice respond to visual flow perturbations during
4 Cell Reports 37, 109772, October 5, 2021
passive viewing of drifting gratings. Although these responses

were enhanced when animals were running, the presence or

strength of perturbation responses did not depend on the direc-

tion of the previously experienced visual flow. Visual perturbation

responses were instead better explained by the preferred orien-

tation of the neuron and preferences for static or slowly moving

stimuli. This finding suggests that perturbation responses can be

explained by visual feature tuning that is enhanced by locomo-

tion and do not require internal monitoring of prediction error

relative to self-generated motion.

Neurons responding to visual perturbations are qualitatively

similar to sensorimotor mismatch neurons previously described.

Specifically, neurons have been classed as sensorimotor

mismatch neurons when their responses match the following

conditions (Keller et al., 2012): they increase their activity in

response to sudden stops of visual flow, and the response
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Figure 3. Temporal frequency tuning can explain perturbation responses

(A) Example neuron positively modulated by the visual perturbation. Left: mean response to perturbation trials (red trace) and non-perturbation trials (black trace).

Shaded area indicate SEM. MI stands for modulation index of perturbation response. Right: temporal frequency (TF) tuning. Error areas indicate SEM.

(B) Like in (A) but with example neuron negatively modulated by the visual perturbation.

(C) Top: perturbationMI as a function of the preferred speed for all units. Circled data points are units shown on (A) and (B). Bottom: distribution of preferred TF for

positively (red, n = 62) and negatively (blue, n = 47) modulated perturbation-responsive units. All preferred speeds greater or equal to 7 cycles/s are grouped for

illustration purposes. See also Figures S4 and S5.
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magnitude is at least twice as strong when animals run. We have

shown here that many visual perturbation neurons can also

satisfy these conditions. Using the same criterion, we found

13% of recorded neurons could be classed as sensorimotor

mismatch neurons, which is in range of the percentages previ-

ously reported (Keller et al., 2012; Liebscher et al., 2016; Zmarz

and Keller, 2016; Attinger et al., 2017) (which vary between

studies from 5% to 39%).

Our observation that visual perturbation unitswould be classed

as sensorimotor mismatch neurons does not exclude the possi-

bility that there are neurons that are indeed selective to true

sensorimotor mismatch, especially in animals that have had an

extended experience of closed-loop conditions (Attinger et al.,

2017). However, to assess the prevalence of purely sensorimotor

mismatch neurons, one would have to discount effects of stim-

ulusproperties, also present in open-loopconditions, that explain

visual perturbation sensitive units shown here. True visuomotor

mismatch neurons should have greater responses to visual per-

turbations in closed-loop thanduringplaybackof thesamestimuli

while the animals are running, and these responses should be

higher in the direction of expected visual flow during locomotion.

The visual tuning properties of neurons that respond to sudden

stops (perturbation or mismatch) are consistent with typically

reported properties of V1. The direction tuning of perturbation re-

sponseswasnotbiased in theexpectedvisual flowdirection—the

front-to-back direction. Instead, we found perturbation re-

sponses to be better predicted by the orientation tuning of the
neurons. Previous work characterizing visual responses to sud-

den stops in running animals have only explored responses to

front-to-backmotion. Neurons responding positively to a sudden

stop also prefer slow speeds. That is, they prefer the speed expe-

riencedduring the sudden stop, rather than that experienced dur-

ing the visual flow. This simple visual tuning is enhanced during

running, a well-known property of visual neurons (Niell and

Stryker, 2010; Saleem et al., 2013; Busse et al., 2017).

For a neural network to implement predictive coding, a fraction

of neurons need to encode prediction errors (Keller and Mrsic-

Flogel, 2018). In the case of visual flow, high prediction error

would be represented by high activity levels when an animal is

running fast, but experienced visual flow is slower. The sensori-

motor mismatch model suggested encoding prediction errors in

V1 combines an excitatory efference signal (motor command)

and an inhibitory sensory feedback (Attinger et al., 2017; Jordan

and Keller, 2020). However, our data show that it is possible that

a preference for low visual flow and high running speeds, which

are both potentially excitatory inputs, can produce responses

consistent with a prediction error signal. Our observations also

explain why the distribution of visual speed tuning preferences

across the layers of V1 are consistent with the prevalence of neu-

rons responsive to sensorimotor mismatch (Jordan and Keller,

2020): superficial layers that have a larger fraction of mismatch

neurons than deeper layers also have a larger fraction of neurons

preferring low temporal frequencies (based on the Allen Institute

dataset; de Vries et al., 2020; Figure S5). Therefore, encoding of
Cell Reports 37, 109772, October 5, 2021 5
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prediction error in the visual cortex can be achieved by the

convergence of distributed visual tuning properties with a mod-

ulation of responses by running.

Features consistent with the predictive coding hypothesis

have been observed in primary sensory areas in responses to

the omission of expected stimuli (Fiser et al., 2016; Garrett

et al., 2020) and suppression of responses to expected sounds

(Rummell et al., 2016). Similarly, internal representations of

spatial location predict the responses of upcoming stimuli (Fiser

et al., 2016) and modulate the responses to identical sensory

stimuli (Saleem et al., 2018; Poo et al., 2020). These responses

are often explained as the difference between efference informa-

tion and the sensory signal, but our results propose a simpler

model that may be useful, as follows: the convergence of distrib-

uted sensory and motor response codes. Incorporating and ac-

counting for these factors provide a richer testbed for theories of

sensory coding during self-generated actions.
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KEY RESOURCES TABLE
Reagent or resource Source Identifier

Isoflurane Piramal Critical Care CAS 26675-46-7

Experimental models: organisms/strains

Mouse: C57BL6/J Charles River Laboratories RRID:IMSR_JAX:000664

Software and algorithms

MATLAB 2019a Mathworks https://www.mathworks.com/

OpenEphys Siegle et al., 2017 https://open-ephys.org/

Bonsai 4.3 Lopes et al., 2015 https://bonsai-rx.org/

BonVision Lopes et al., 2021 https://bonvision.github.io/info/Home/#
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aman

Saleem (aman.saleem@ucl.ac.uk).

Materials availability
This study did not generate new unique reagents. Commercially available reagents are indicated in the Key resources table.

Data and code availability
Newcode isavailableonGitHubhere: https://github.com/SaleemLab/MuzzuSaleem_2021.Datacollected in this study isavailableupon

request. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed in accordance with the Animals (Scientific Procedures) Act 1986 (United Kingdom) and Home Office

(United Kingdom) approved project and personal licenses. The mice (n = 10 C57BL6 wild-type, 7 females and 3 males, age 16-

24 weeks) were housed in groups of maximum five under a 12-hour light/dark cycle, with free access to food and water. All electro-

physiological recordings were carried out during the dark phase of the cycle.

METHOD DETAILS

Surgery
Micewere implantedwith acustom-built stainless-steelmetal plateon the skull under isofluraneanesthesia, andallowed to recover for

seven days with analgesia. The area above the left visual cortex was kept accessible for electrophysiological recordings. Seven days

following the surgerymice underwent the first habituation session. Following the habitation period (one session per day, 8-13 days), a

craniotomywasperformedover V1, centered at 2mm lateral to sagittalmidline and0.5mmanterior to lambda). Thedurawas left intact

to preserve the brain tissue, andmaximize recording time. Mice were allowed to recover for 4-24 hours before the first recording ses-

sion. Multiple recording sessionswere performed on each animal (one per day, n = 37 recordings, min 2, max 9). Three animals (naive)

were exposed to only gray screen during the habituation sessions (5-10 sessions) andwere exposed to the visual stimulus for the first

time on the day of the first recording session.

Visual Stimulus
The display apparatus was similar to those used in previous studies (Schmidt-Hieber and Häusser, 2013; Muzzu et al., 2018). Mice

were head-fixed on a polystyrene wheel (Saleem et al., 2018) (radius 10 cm), with their heads positioned in the geometric center of a

truncated spherical screen onto which we projected the visual stimulus. The visual stimulus was centered at +60� azimuth and +30�

elevation and had a span of 120� azimuth and 120� elevation.
The visual stimulus was designed using BonVision (Lopes et al., 2021), an open-source visual environment generator based on

graphical programming language of the Bonsai framework (Lopes et al., 2015). A session was structured in trials during which a drift-

ing sinusoidal grating was presented for approximately 7.3 s (sinusoidal grating with spatial frequency of 0.04 cycles/� and temporal
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mailto:aman.saleem@ucl.ac.uk
https://github.com/SaleemLab/MuzzuSaleem_2021
https://www.mathworks.com/
https://open-ephys.org/
https://bonsai-rx.org/
https://bonvision.github.io/info/Home/#


Report
ll

OPEN ACCESS
frequency of 3 cycles/s). The grating was made visible by increasing the contrast from 0 to 0.8 in the first 240 frames of the trial.

Contrast remained at 0.8 for the following 100 frames and then decreased to zero in 100 frames. Total trial duration was 440 frames

at 60 Hz frame rate, i.e., 7.3 s. The direction of the grating was randomly picked between eight directions: 0�:45�:315�. Each grating

direction was shown at least twenty times. For each combination of directions a trial was shown with zero contrast. The inter-trial

interval varied randomly between 1 to 2.5 s. The firing rate during this inter-trial interval and the zero-contrast trial was used as a base-

line. Habituation sessions for naive mice were run with a gray screen.

The visual perturbation was presented in a random 25% of the trials during the recording sessions. The perturbation onset

happened between 30 and 40 frames after the contrast had reached its highest value (0.8), and the perturbation lasted between

60 and 70 frames.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike sorting and clustering
To record the neural activity we usedmulti electrode array silicon probes with two shanks and 32 channels (ASSY-37 E-1, Cambridge

Neurotech Ltd, Cambridge, UK). Electrophysiology data was acquired using an OpenEphys acquisition board (Siegle et al., 2017).

The electrophysiological data from each session were processed using Kilosort version 1 (Pachitariu et al., 2016). Spike timeswere

synchronized with the behavioral data by aligning the signal of a photodiode that detected the visual stimuli transitions (PDA25K2,

Thorlabs, Inc., USA). They were then analyzed conjointly in MATLAB R2019a. Firing rate was sampled at 60 Hz and smoothed with a

300-ms Gaussian filter.

Logistic regression classifier
To estimate the reliability of the responses to the visual perturbation we trained a trial classifier based on a logistic regression model

(MATLAB function fitglm). Neural responses of single units were normalized by their maximum values recorded during the entire ses-

sion before being processed. We used six parameters from each trial as inputs for the model:

1) the ratio of mean firing rate during the perturbation period (Rpert) and during the second preceding it (Rpre�pert):
Rpert

Rpre�pert

2) the difference between them: Rpert � Rpre�pert
3) their sum across the whole period:
P

Rpre�pert +
P

Rpert
4) the summed firing rates during the perturbation period:
P

Rpert
5) a depth of modulation index:
DM =
Rpert � Rpre�pert

Rpert +Rpre�pert

: (Equation 1)

6) a response modulation index:
MI =
Rpert � Rpre�pert

Rpre�pert

(Equation 2)

The output of the classifier was the identity of the trial: 1 for perturbation or 0 for non-perturbation trial. We then computed the

receiving operating characteristic curve (true positive rate VS negative positive rate) and its area under this curve (AUC) was used

as reliability parameter. We then shuffled the trial type 1000 times and rerun the above steps to evaluate the statistical significance

of this metric. If the AUC of each unit was greater than 95% (p < 0.05) of the AUC’s computed from all shuffled data, we considered

the unit as perturbation responsive.

Modulation index
We quantified the magnitude of the perturbation response and identified whether a unit increased (MI > 0) or decreased (MI < 0) its

firing rate during the perturbation, using the modulation index as defined in Equation 2.

Responses during running
To evaluate the effects of running on perturbation responses we divided the perturbation trials in two groups based on the running

state of the mice. If the mouse ran at speeds greater than 2 cm/s during the perturbation period and the second preceding it, we
Cell Reports 37, 109772, October 5, 2021 e2
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consider it a running trial. Other trials are considered stationary trials. As the animals were free to run or stand still as they wished, we

often found an imbalance in the number of stationary and running trials. To better compare the two conditions, we selected only ses-

sions that had at least 4 trials per condition. This allowed us to compare the activity of 174 neurons from 22 sessions. We measured

the modulation of the running and stationary trials as the area under the response curve during the perturbation period (analytically is

the sum of all firing rates) minus the area under curve evaluated during the pre-perturbation (1 s).

MIrunjstill =
Xtpert�OFF

tpert�ON

RrunjstillðtÞ �
Xtpert�ON

tpert�ON�1s

RrunjstillðtÞ (Equation 3)

where RrunjstillðtÞ is the average of the mean instantaneous firing rates of either the run or still perturbation trials. To compensate for

biases due to smaller number of trials for either condition, we compared the activity of 20 trials per condition by re-sampling 1000

times with replacement. An individual neuron was classified as significantly modulated by running if both the peaks and the mean

responses computed for running trials RrunðtÞ were larger than those computed for still trials RstillðtÞ in 950/1000 of the cases (5%

significance level).

Orientation and direction tuning
We estimated themean responses to the drifting grating at different angles bymeasuring themean firing rate in the first 3.5 s from the

onset of the stimulus and subtracting the pre-stimulus mean firing rate. Similarly, the neural response for different perturbation di-

rections were computed as the mean firing rate during such period, minus the pre-stimulus (inter-trial period) mean firing rate. We

then estimated the preferred orientation and direction tuning of the neurons for the drifting grating using standard methods (Mazurek

et al., 2014). Briefly, responses to various directions and orientations were evaluated in either a direction or orientation vector space,

and we evaluated the normalized length of the vector sum as a measure for direction and orientation selectivity:

Lori =

����
P

kRðqkÞeð2iqk Þ
P

kRðqkÞ
���� (Equation 4)

where RðqkÞ is the response to angle qk

Ldir =

����
P

kRðqkÞeðiqk Þ
P

kRðqkÞ
���� (Equation 5)

The preferred orientation or direction of a unit were estimated from the angles of the vectors in the numerator of Equation 4 and Equa-

tion 5, respectively. The significance of orientation tuning was computed using Hotelling’s T2-test, which is a multivariate general-

ization of the Student’s T-test. The significance of direction tuning was computed using ‘‘direction dot product’’ test. Significance

level was set at 99%. For perturbation responses, we used the direction/orientation with the maximal responses, as the number

of trials for each direction was too small to implement the aforementioned method.

Temporal frequency tuning
To estimate the temporal frequency tuning we used stimuli with similar specifications to those used for the visual perturbation stimuli

(sinusoidal grating only at 0� direction and SF = 0.04 cycles/�, contrast = 0.8, Figure S4). This was presented only to naive mice. Each

trial commenced with a grating moving at either 1.5, 3, or 6 cycles/s. After one second (60 frames) there was a period of acceleration,

where the temporal frequency linearly increased or decreased at a random rate between seven possible values (�3:1:3 cycles/s2) for

0.5 or 1 s (30 or 60 frames). At the end of the acceleration periods the grating speed was kept constant for 1.5-2 s (90-120 frames)

followed by a gray inter-trial interval of 1 to 2.5 s. Twenty-one combinations of initial temporal frequencies and acceleration rateswere

presented twenty times each. The mean firing rates of the final second of all trials with a specific temporal frequency were used to

calculate the speed tuning curve for the perturbation-responsive neurons (n = 109). Preferred temporal frequency was the temporal

frequency with the maximal response.

Classifying regular and fast spiking units
To estimate whether the units were regular or fast spiking, we used an automated classification algorithm (MATLAB function kmeans)

applied onto the first three principal components (> 90% variance explained) of the mean spike waveforms of all units. The two main

clusters had a mean trough-to-peak duration of 0.83 ± 0.15 ms (n = 684 units, mean ± std) and 0.37 ± 0.12 ms (n = 255 units), which

we considered putative regular and fast spiking units respectively. The trough-to-peak duration was measured as the delay between

the trough of the spike and the successive local maximum. This measure is equivalent to the width of the action potential waveform at

half maximum (McCormick et al., 1985). Perturbation-responsive neurons made up 67% of fast spiking and 58% of regular spiking

units.
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