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ABSTRACT: The selective functionalization of sp3 C−H bonds is
a versatile tool for the diversification of organic compounds.
Combining attractive features of homogeneous and enzymatic
catalysts, artificial metalloenzymes offer an ideal means to
selectively modify these inert motifs. Herein, we report on a
copper(I) heteroscorpionate complex embedded within streptavi-
din that catalyzes the intramolecular insertion of a carbene into sp3

C−H bonds. Target residues for genetic optimization of the
artificial metalloenzyme were identified by quantum mechanics/
molecular mechanics simulations. Double-saturation mutagenesis
yielded detailed insight on the contribution of individual amino
acids on the activity and the selectivity of the artificial
metalloenzyme. Mutagenesis at a third position afforded a set of
artificial metalloenzymes that catalyze the enantio- and regioselective formation of β- and γ-lactams with high turnovers and
promising enantioselectivities.

■ INTRODUCTION

The selective functionalization of inert C−H bonds currently
lies at the forefront of modern synthetic chemistry. It alleviates
the laborious interconversion of functional groups, minimizes
the number of synthetic steps, and enables capitalizing on
previously inaccessible bond formation strategies.1−3 This
reduces the environmental footprint of lengthy chemical
processes.
Thus far, the field of homogeneous C−H functionalization

has been mostly dominated by precious-metal catalysts used in
combination with directing groups and is often performed at
elevated temperatures.4 One of the recurring challenges faced
with such methodologies is the reductive elimination of the
stable M−C bond.5 An attractive approach to circumvent this
limitation is the insertion of a reactive M−X species into the
C−H bond of a substrate that does not interact with the metal
(Scheme S1).6−9 Largely developed by Peŕez and co-workers,
complexes bearing a tris(pyrazolyl)borate (Tp) ligand have
been shown to enable the functionalization of simple alkanes
with carbene, nitrene, and oxo intermediates.9−11 The pyrazole
motif offers the possibility to readily fine-tune both steric and
electronic properties of the TpM-catalyst to achieve the
desired reactivity. Remarkably, perfluorinated azolylborate
complexes of silver and copper catalyze the functionalization
of methane in supercritical CO2 with ethyl diazoacetate.12,13

However, this system occasionally yielded complex mixtures of

regioisomers when substrates containing different C−H bonds
were subjected to functionalization.
With the aim of combining the benefits of homogeneous and

enzymatic catalysts, artificial metalloenzymes (ArMs) have
attracted increasing attention since the pioneering work of
Wilson and Whitesides.14−17 The anchoring of an abiotic
catalytic moiety within a protein enables combining of
attractive assets of both homogeneous and enzymatic
catalysis.17−21 Certain natural enzymes including S-adenosyl
methionine-dependent (SAM) enzymes catalyze the alkylation
of C−H bonds. They are however mainly limited to the
transfer of methyl groups or highly specific C−C bonds with
radical acceptors.22,23 Repurposed (natural) enzymes and
ArMs offer an attractive means to complement SAM-
dependent enzymes for C−H activation purposes.21,24−28

Among the most noteworthy achievements in “new-to-nature”
C−C bond formation via C−H functionalization, one should
mention engineered P411,29,30 repurposed P450,31−34 my-
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oglobin,35,36 and streptavidin37,38 ArMs. However, examples of
highly active C−H insertion biocatalysts that are based on first-
row transition metals and tolerate aerobic reaction conditions
remain scarce. The work presented herein capitalizes on a
Cu(I) heteroscorpionate complex to engineer a highly active
ArM that catalyzes the intramolecular insertion of carbenes
into different types of C−H bonds in a regio- and
enantioselective fashion.

■ RESULTS AND DISCUSSION

Cofactor Synthesis and Computational Modeling.
The remarkable affinity of biotin for streptavidin (Kd < 10−13

M) offers an attractive means to anchor any biotinylated probe
within streptavidin (Sav). Several groups have relied on this
tool to assemble ArMs.14,37−46 A common strategy for the
synthesis of anchored Tp complexes relies on the introduction
of a fourth substituent on the boron, replacing the hydride
moiety.47−49 In our hands, however, this strategy proved
challenging as tetrasubstituted Tp-derivatives bearing electron-
deficient pyrazoles revealed insufficient stability. Inspired by
the work of Desrochers and co-workers on heterocycle
metathesis,50 we selected the Tp(tBu)2K 1 as the precursor for
the assembly of a biotinylated, electron-deficient TpM-
cofactor. The pronounced steric bulk around the boron

Scheme 1. Artificial Metalloenzyme for C−H Insertion Resulting from Anchoring a Biotinylated Copper(I) Heteroscorpionate
Complex in Sav (Streptavidin)a

a(a) Synthesis of the cofactor via pyrazole/triazole metathesis on Tp(tBu)2K 1 and conjugation with a modified biotin anchor to afford the cofactor
biotC4−TazCu. PFP = pentafluorophenyl; (b) artificial metalloenzyme assembly via supramolecular anchoring of biotC4−TazCu into Sav. The
assembled artificial metalloenzyme catalyzes the formation of β- and γ-lactams via intramolecular C−H insertion of carbene intermediates.
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enabled the selective substitution of the three tert-butyl
pyrazole groups by the benzotriazole 2 bearing an activated
ester and two tribromopyrazole moieties to afford the
intermediate 3, albeit in low yield, as shown in Scheme 1a.
This intermediate was characterized by X-ray crystallography
(Figure S1). Trans-metalation with cuprous chloride yielded
compound 4, which was also characterized by X-ray
crystallography (Figure S2). Interestingly, the structure
revealed that the benzotriazole coordinates to a second copper
center through the third nitrogen to afford a dimeric structure.
To ensure additional electron-deficient character to the
cofactor, the benzotriazole was equipped with a carboxylate
moiety. Coupling to biotin thus required the use of biotin−
amine (i.e., biotC4−NH2),

51 rather than biotin, which bears a
valeric acid. The biotinylated cofactor biotC4−TazCu was
assembled by reacting biotC4−NH2 with the activated ester 4
to ensure its localization within Sav, as shown in Scheme 1b.
High-resolution mass spectrometry (HRMS) and detailed
nuclear magnetic resonance (NMR) analysis enabled un-
ambiguous characterization of the biotinylated cofactor
biotC4−TazCu (see Supporting Information Figures S3−S5).
The quantitative anchoring of the cofactor biotC4−TazCu

into Sav was assessed via CD spectroscopy, as shown in Figure
S6.52 The overall binding affinity relies on a one-to-one
binding stoichiometry with the mathematical expression
derived in the Supporting Information (Figure S6).53 The
fitted dissociation constant was Kd = 2.37 ± 1.40·10−8 M, thus
leading to >99% of bound biotC4−TazCu in the presence of
equimolar concentrations of the cofactor and tetrameric Sav.
Unfortunately, all attempts to crystallize the ArM: biotC4−
TazCu·Sav WT were vain. Accordingly, we turned to quantum
mechanics/molecular mechanics (QM/MM) calculations to
model biotC4−TazCu·Sav WT ArM (see the Supporting
Information for details). Both the HABA displacement
titration and the QM/MM modeling confirmed that up to
four biotC4−TazCu cofactors could be accommodated in the
homotetrameric host Sav WT. Amino acids that point toward
the docked Cu-center include K121, S112, and L124 with a
second, more remote shell that includes T114, T115, and
N118, Figure 1. Based on the computed structure, we selected
residues K121, S112, and L124 for the genetic optimization of
the ArM.
Single-Mutant Screening. Reports by Peŕez and co-

workers suggest that sterically hindered diazoacetamides are
less prone to undergo homocoupling in copper tris(pyrazolyl)-
borate-catalyzed intramolecular C−H insertion reactions.54

The diazoacetamide substrate 5 was selected for initial
screening, as shown in Table 1. This reaction is of particular
interest as it provides a straightforward access to β- and γ-
lactams upon C−H insertion. These represent ubiquitous
structural motifs in numerous pharmaceutically relevant
compounds.55−57 Similarly, Fasan and co-workers reported
the stereoselective formation of fused γ-lactams via biocatalytic
intramolecular cyclopropanation of diazoacetamide.58

As the cofactor’s activity was affected by the presence of
cellular metabolites, we adapted a purification protocol of Sav
mutants in a 96-well plate based on our streamlined protocol.59

Cytoplasmic protein overexpression was carried out in the E.
coli strain BL21 (DE3) in 24-deep-well plates. Following cell
lysis and centrifugation, the cell-free extract was applied to an
iminobiotin-Sepharose resin under basic conditions (pH =
10.6, 100 mM carbonate buffer), leading to the immobilization
of Sav on the resin. After washing (pH = 7.9, 100 mM MOPS

buffer), elution with an acidic solution (pH = 5.5, 100 mM
MES buffer) led to protonation of the iminobiotin, thus
releasing Sav. Its concentration in the elution buffer was
determined via a fluorescence assay with biotin-4-fluorescein,
as shown in Figure S7. Concentrations >5 μM Sav (tetramer,
>20 μM biotin-binding sites) were obtained for most of the
Sav mutants. Early catalytic experiments revealed a decrease in
performance with decreasing Sav: biotC4−TazCu ratios (i.e.
1,:1 vs 1:4). We surmise that binding of two biotC4−TazCu in
adjacent biotin-binding sites impedes catalytic activity.
Accordingly, an excess of biotin-binding sites in the reaction
was enforced (e.g., >4 equiv of Sav monomers vs 1 equiv of the
cofactor).
To evaluate the effect of residual cellular debris, a culture of

E. coli harboring an empty plasmid (i.e., no Sav overexpressed)
was subjected to the above iminobiotin purification protocol.
The collected eluate was evaluated in catalysis at pH 6.5 in the
presence of 1 μM of either complex 4 or biotC4−TazCu
(0.02% loading) and the diazoacetamide substrate 5, as shown
in Table 1, entries 2 and 3. A 1:3 mixture of racemic β/γ
lactams 6a and 6b was obtained with a total turnover number
(TTON) of 371 and 458, respectively. To our disappointment,
upon incorporation in WT Sav, no conversion could be
detected by supercritical fluid chromatography (SFC); see
Table 1 (entry 20). As both lysine residues K121 and K121′
were computed to lie closest to Cu, we initiated our genetic
optimization efforts by mutating this position. Gratifyingly, the
ArM biotC4−TazCu·Sav K121A proved catalytically active and
afforded >900 TTONs with a 1:2 r.r. (β/γ, i.e., 6a:6b) but as a

Figure 1. Close-up view of the structure resulting from modeling
biotC4−TazCu within Sav WT. The cofactor was docked into one
monomer (Sav′, gray), leaving the adjacent (Sav″, pale blue) binding
site empty. Cu−Cβ distances (Å) of the closest-lying amino acid:
S112′ (11.8); T114′ (11.9); T115′ (14.3); N118′ (10.1); K121′
(8.1); L124′ (13.8); S112″ (10.5); T114″ (12.3); T115″ (15.6);
N118″ (12.2); K121″ (9.9); L124″ (12.9). Sav is displayed as a
transparent solvent-accessible surface overlaid with a cartoon
representation of the 8-stranded β-barrel. Close-lying residues and
the biotC4−TazCu cofactor are displayed as color-coded sticks and
Cu as an orange sphere.
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(near) racemate; see entry 4. Next, we screened the ArMs
resulting from saturation mutagenesis at position Sav K121X;
see Table 1. As can be appreciated, the nature of the residue at
Sav K121X significantly affects the catalytic performance. From
these results, the following trends emerge: positively charged
residues at position K121 (Lys, His, and Arg) consistently shut

down activity (entries 19, 20, and 21). We hypothesize that
such close-lying, potentially coordinating Lewis basic residues
may coordinate with the Cu(I), and prevent the formation of
the Cu−carbene moiety. On the other hand, apolar (Ile, Leu,
and Val) and aromatic residues (Phe, Trp, and Tyr) have a
beneficial effect on activity (entries 5, 6, 8, 9, 10, and 11). The

Table 1. Summary of the Screening Results of biotC4−TazCu·Sav K121X for the C−H Insertion in the Presence of Substrate 5

entry SAV TONa e.r.a TONa e.r.a r.r. (β/γ) TTON (yield (%))

1b,c ND ND ND
2c empty vector 91 50:50 280 50:50 24:76 371(7,4)
3 empty vector 112 50:50 346 49:51 24:76 458(9,2)
4 K121A 334 49:51 577 48:52 37:63 912(18,2)
5 K121I 741 40:60 1708 49:51 30:70 2449(49,0)
6 K121L 594 36:64 1693 34:66 26:74 2287(45,7)
7 K121M 109 52:48 317 45:55 26:74 426(8,5)
8 K121V 550 41:59 1124 50:50 33:67 1674(33,5)
9 K121F 709 37:63 1449 64:36 33:67 2157(43,1)
10 K121W 588 38:62 870 49:51 40:60 1458(29,2)
11 K121Y 718 39:61 923 46:54 44:56 1640(32,8)
12 K121C 511 44:56 768 50:50 40:60 1280(25,6)
13 K121N 312 43:57 358 45:55 47:53 670(13,4)
14 K121Q 390 40:60 506 48:52 44:56 895(17,9)
15 K121S 549 42:58 645 51:49 46:54 1192(23,8)
16 K121T 329 41:59 650 45:55 34:66 979(19,6)
17 K121D 62 48:52 146 52:48 30:70 208(4,2)
18 K121E 421 40:60 560 52:48 43:57 980(19,6)
19 K121H ND ND ND
20 WT ND ND ND
21 K121R ND ND ND
22 K121G 455 51:49 753 49:51 38:62 1208(24,2)
23 K121P 365 50:50 626 55:45 37:63 991(19,8)

aDetermined by chiral SFC using 1,3,5-trimethoxybenzene as the internal standard. bThe reaction was performed in DCM with 5% DMSO and 5%
acetone. cThe reaction was performed with complex 4 instead of biotC4−TazCu. ND = not detected.

Figure 2. Relative contribution of each amino acid at positions S112 and K121 to (a) TON for C−H insertion (average of all the double mutants
for a respective mutation); (b) and (c) enantio-induction for the β-lactam 6a and the γ-lactam 6b, respectively (average of the absolute
enantiomeric excess value for all the double mutants with a respective mutation). Amino acids with similar properties are highlighted in the same
color (light blue: apolar; green: aromatic; yellow: polar nonionic; dark blue: basic; red: acidic; purple: special). The enantioselectivity obtained with
residues H, K, and R is not displayed due to the very low conversions.
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ArM biotC4−TazCu·Sav K121L provided 74% γ-lactam with
the highest enantiomeric ratios (36:64 and 34:66 for 6a and
6b, respectively) of the single mutants (entry 6). ArM biotC4−
TazCu·Sav K121I displayed the highest activity with 2648
TTON, corresponding to 53% yield (i.e., assay yield, used
throughout unless specified). Polar uncharged residues (Asp,
Glu, Asn, Gln, Ser, and Thr) generally yielded lower
conversions than their apolar counterparts. Interestingly, the
mutant bearing an aspartate (entry 17) impeded the reaction
much more than its glutamate homologue (entry 18). Similar
effects on the turnover number (TON) and e.r. could also be
observed between the two isosteric residues cysteine and serine
(entries 12 and 15). Overall, a large hydrophobic residue at Sav
K121I/L/F appeared essential to maximize the three figures of
merit TTON, r.r., and e.r. Interestingly, the ArM also afforded
non-negligible amounts of the Büchner ring-expansion product
depending on the mutant tested (see the Supporting
Information for details). Water insertion and diazo-coupling
byproducts could be detected by ESI−MS of the catalytic
reactions but were not investigated further (Scheme S2).
Although reported for C−H bonds of methyl groups in Rh-
and TpCu-based catalysts,54,60 C−H insertion into the tert-
butyl group was not detected, thus minimizing the formation
of additional regioisomers.
Double-Saturation Mutagenesis. With the aim of

identifying synergistic interactions between residues K121
and S112, we set out to screen the double-saturation
mutagenesis library comprising the 400 Sav isoforms Sav
S112X K121X′. Of the 400 double mutants, 362 could be
screened and 220 afforded detectable levels of activity (see
Table S1). The general trends observed in the single-mutant
Sav K121X screening were confirmed for the double mutants.
Positively charged residues (His, Lys, and Arg) consistently
impeded activity, particularly at position K121, where none of

the three were tolerated, irrespective of the nature of residue
S112X, as shown in Figure 2a. Proline and cysteine displayed a
deleterious influence as well at both S112 and K121 positions.
The unexpected difference between the homologous amino
acids aspartate and glutamate was also visible in this screening.
The aspartate residue proved to be less advantageous than
glutamate at both positions. An apolar side chain (aliphatic or
aromatic) at position K121 turned out to be an absolute
requirement to obtain a higher activity of the ArM. While the
two isoforms leucine and isoleucine provided comparable
levels of activity at positions K121 and S112, a pronounced
difference in enantioselectivity was observed, as shown in
Figure 2b,c. The leucine residue afforded much higher levels of
enantio-induction for both the β-lactam 6a and the γ-lactam 6b
on average. The asparagine at position S112 appeared to be
crucial for enantioselectivity for both reaction products.
Among other occurrences, K121V, K121E, and K121Q had a
positive influence on the enantioselective formation of 6a but
turned out to be less relevant for the other regioisomer 6b.
To help identify a suitable double mutant subject to another

round of directed evolution, we analyzed e.r, r.r., and TTON
by displaying the e.r. versus r.r. for the γ-lactam (+)-6b, as
shown in Figure 3. The absolute configuration of the γ-lactam
(+)-6b was determined as (S)-6b by comparison with the
secondary amide (deprotected, following treatment of (+)-6b
with TFA).61 The data reveal a clear trend for the
functionalization of the benzylic position. Both enantiomers
of the γ-lactam 6b could be accessed, albeit with a higher
enantioselectivity for the (S)-6b. Interestingly, mutation of the
K121L to K121F while conserving the S112M residue allowed
us to invert the enantioselectivity from 28:72 to 91:9 e.r.
Variants S112N−K121L and S112N−K121I revealed similar
performance. Strikingly, substitution of S112N for S112Q led
to an inversion of enantioselectivity (e.g., S112N K121L/I and

Figure 3. Graphical summary of the screening results of biotC4−TazCu·Sav S112X K121X′ for the C−H insertion of substrate 5 to afford lactams
6a and 6b. The axes display the enantiomeric and the regiomeric ratios of the γ-lactam (S)-6b. Key mutations leading to high e.r. and r.r. include
asparagine and methionine at position S112 and a hydrophobic residue at K121.
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S112Q K121L/I afford (S)-6b and (R)-6b, respectively). Of
note, a pronounced difference in regioselectivity was observed
between S112Q-K121L and S112Q-K121I, the former clearly
favoring the formation of the γ-lactam 6b, as shown in Figure
3.
High levels of activity, regioselectivity, and enantioselectivity

could be obtained with the S112N−K121V variant (86:14 e.r.,
80% regioselectivity and 2731 TTON). On average, the valine
residue did not display as high levels of enantioselectivity as
leucine or phenylalanine for 6b, as shown in Figure 2c. This
finding highlights the importance of cooperative effects
between sites and would not have been identified with an
iterative single-site-saturation strategy.
The β-lactam 6a product could not be obtained in >51% r.r.

and modest conversion (<10%, < 500 TON). The higher bond
dissociation energy of the amide’s vicinal C−H bond (BDE ≈
93 kcal/mol vs 87 kcal/mol for the benzylic C−H bond,
predicted with ALFABET from the corresponding acet-
amide)62 and the ring strain in the transition state leading
the four-membered β-lactam 6a both favor the formation of
the γ-lactam 6b. In some occurrences, considerable amounts of
the Büchner ring-expansion product were detected. This was
particularly pronounced when position S112 contained an
aromatic residue (i.e., S112Y or S112F: up to 1783 TON for
S112F−K121I; see Figure S8 and Table S2). The second
coordination sphere of Sav could also induce enantioselectivity
for this transformation (up to 24:76 e.r. for S112F−K121I).
Detailed data for selected mutants are collected in Table S3.
L124 Saturation Mutagenesis and Substrate Scope.

Critical inspection of the results of the double-saturation
mutagenesis screening led us to select the double mutant Sav
S112N−K121V for the next round of directed evolution,
focusing on residue Sav L124. A library encoding all 20 amino
acids was prepared, relying on NDT, VMA, ATG, and TGG
codons. The screening revealed that the size of the amino acid
at position L124 had a significant impact on both the e.r and
r.r. The triple mutant Sav S112N−K121V−L124I led to
slightly improved e.r. (88:12) and r.r (14:86) for the γ-lactam
(S)-6b, as shown in Figure 4. Strikingly, substitution of the
bulky hydrophobic L121I residue by a glycine, Sav S112N−
K121V−L124G, led to the preferential formation of the β-
lactam 6a with 65:35 r.r. (compared to 19:81 for the parent
double mutant) at the cost of a lower TTON. Interestingly, the
enantioselectivity was reversed, favoring the β-lactam (−)-6a
(identified as the (R)-enantiomer by vibrational circular
dichroism spectrometry; see the Supporting Information for
details). Attempts to further improve the catalytic performance
by applying site-saturation mutagenesis at positions T114,
T115, and N118 did not lead to any improvement for either
TTON, r.r., or e.r.
To further investigate the performance of the earth-

abundant ArM, we selected substrates with either a shorter
or longer aliphatic chain, as shown in Table 2. Substrate 7
yielded the corresponding β-lactam (+)-8a (corresponding to
(R)-8a)63 in 1290 TON and e.r. of 79:21 with biotC4−TazCu·
Sav S112N−K121L. To verify if the selective formation of the
γ-lactam 6b was caused by the lower BDE of the benzylic C−H
bond (BDE ≈ 87 kcal/mol, predicted with ALFABET from the
corresponding acetamide),62 we also subjected substrate 9
bearing a propylene spacer (BDE ≈96 kcal/mol for the
homobenzylic C−H bond) to the transformation. To our
delight, the γ-lactam 10b was obtained with 3585 TON, 88%
regioselectivity, and 27:73 e.r with biotC4−TazCu·Sav

S112N−K121V. However, regioselectivity could not be
tuned to favor the β-lactam 10a when biotC4−TazCu·Sav
S112N−K121V−L124G was used: only a modest increase
from 12 to 28% β-lactam 10a was observed. The ArM also
catalyzed the carbene insertion into a tertiary C−H bond
(BDE ≈ 93 kcal/mol)62 with high efficiency: biotC4−TazCu·
Sav S112N−K121L afforded the spirocyclic γ-lactam 12b in
93% yield and 4627 TON. The four-membered ring
regioisomer could not be detected either by 1H NMR or
HPLC. A selection of para-substituted derivatives of substrate
5 was also tested. Significantly lower TON and selectivities
were observed, independently of the nature of the substituent.
This highlights a preference of the ArM for unsubstituted
phenyl rings. Detailed data are collected in Table S4.

■ CONCLUSIONS
While Tp complexes can efficiently functionalize inert sp3 C−
H bonds by insertion of a reactive carbene intermediate, the
absence of interactions between the metal and the substrate
render the selectivity of the reaction challenging to control.
This study reveals that this challenge can be addressed by
providing a well-structured second coordination sphere around
the transition state. The synthesis of a modified biotin-bearing
copper(I) heteroscorpionate enabled its incorporation into a
genetically evolvable host protein. The resulting ArM catalyzes
the enantio- and regioselective formation of β- and γ-lactams
via the insertion of a carbene intermediate into secondary and
tertiary sp3 C−H bonds. Double-saturation mutagenesis and
directed evolution at a third position shed light on individual

Figure 4. Evolutionary lineage of the ArM for regio- and
enantioselective C−H insertion. Initial double-saturation mutagenesis
on WT Sav to identify improved double mutants was followed by
single-site-saturation mutagenesis at position L124. Mutation of L124
with an isoleucine slightly increased the selectivity of the ArM for the
γ-lactam (S)-6b, while a glycine residue favors the β-lactam (−)-6a.
The data are the average of biological triplicates.
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amino acid contributions to the cofactor’s activity. TONs up to
4627 (corresponding to 93% yield) in the case of the C−H
insertion into a cyclohexyl substituent were achieved. We
envision that the use of the highly versatile scorpionate
complexes for ArMs could open new opportunities to expand
the enzymatic repertoire of C−H functionalization strategies,
based on earth-abundant metal cofactors.
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