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Separation of B cells into different subsets has been useful to understand their different
functions in various immune scenarios. In some instances, the subsets defined by
phenotypic FACS separation are relatively homogeneous and so establishing the
functions associated with them is straightforward. Other subsets, such as the “Double
negative” (DN, CD19+CD27-IgD-) population, are more complex with reports of differing
functionality which could indicate a heterogeneous population. Recent advances in single-
cell techniques enable an alternative route to characterize cells based on their
transcriptome. To maximize immunological insight, we need to match prior data from
phenotype-based studies with the finer granularity of the single-cell transcriptomic
signatures. We also need to be able to define meaningful B cell subsets from single cell
analyses performed on PBMCs, where the relative paucity of a B cell signature means that
defining B cell subsets within the whole is challenging. Here we provide a reference single-
cell dataset based on phenotypically sorted B cells and an unbiased procedure to better
classify functional B cell subsets in the peripheral blood, particularly useful in establishing a
baseline cellular landscape and in extracting significant changes with respect to this
baseline from single-cell datasets. We find 10 different clusters of B cells and applied a
novel, geometry-inspired, method to RNA velocity estimates in order to evaluate the
dynamic transitions between B cell clusters. This indicated the presence of two main
developmental branches of memory B cells. A T-independent branch that involves IgM
memory cells and two DN subpopulations, culminating in a population thought to be
associated with Age related B cells and the extrafollicular response. The other, T-
dependent, branch involves a third DN cluster which appears to be a precursor of
classical memory cells. In addition, we identify a novel DN4 population, which is IgE rich
and closely linked to the classical/precursor memory branch suggesting an IgE specific T-
dependent cell population.

Keywords: B cells, single-cellRNAseq, cell atlas, B cell development, B cell subsets, memory B cells
org March 2021 | Volume 12 | Article 6025391

https://www.frontiersin.org/articles/10.3389/fimmu.2021.602539/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.602539/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.602539/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.602539/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:d.dunn-walters@surrey.ac.uk
mailto:franca.fraternali@kcl.ac.uk
https://doi.org/10.3389/fimmu.2021.602539
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.602539
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.602539&domain=pdf&date_stamp=2021-03-18


Stewart et al. Single-cell B Cell Atlas
INTRODUCTION

B cells can differentiate into plasma cells and secrete large
amounts of antibody. There are, however, many more B cell
functions which contribute to an effective immune response. B
cells are highly effective antigen presenting cells, capable of
presenting both protein and lipid antigens to T and NKT cells.
B cell – T cell interactions trigger a variety of activation signals in
both directions resulting in enduring affinity matured B cell
memory, that may also be class switched, and activated T helper
cells. B cells can also be activated via TLRs, producing pro-
inflammatory cytokines such as IL6, TNFa and IFNg in the
process and resulting in differentiation into short-lived
plasmablasts. The former, T-dependent, response will involve
formation of germinal centers over time and, since it is
dependent on T cells for maturation which have also been
through tolerance checkpoints, it would normally have low risk
of producing autoantibodies. The latter, extrafollicular, B cell
response has the advantage of being more rapid, but also runs
some risk of producing lower specificity antibodies. B cells can
also be regulatory, producing IL10 and ensuring that
autoreactive responses are not perpetuated.

In studying different functions of human B cells in health and
disease most studies rely upon phenotypic differentiation in
FACS analyses from peripheral blood using IgD and CD27, or
CD24 and CD38, in conjunction with the pan B cell marker
CD19. For example, the CD19+CD27+IgD+ IgM memory
population (1, 2) is reduced in the elderly as a percentage of
total B cells (3, 4) This has important consequences for older
people, since the IgM memory population is thought to provide
protection against the bacterial polysaccharide T-independent
antigens. Higher dimensional phenotyping shows that the IgM
memory population in the blood is heterogeneous and further
age-related differences are also seen (5), although the likely
functional significance of this age related heterogeneity has yet
to be determined.

The CD19+IgD-CD27- ‘double negative’ (DN) cells are of
particular interest. Many different roles have been ascribed to
this population; ‘memory precursors’, “exhausted memory cells”,
‘tissue based memory’, ‘extrafollicular ASC precursors’ and
‘atypical memory’ (6–15) or the most recent nomenclature
DN1 (memory precursor) and DN2 (extrafollicular ASC
precursor B cells) (16). DN cells are increased in older people,
and in chronic infections such as HIV (6, 7, 10, 11). DN cells are
also expanded in autoimmune disease such as Systemic Lupus
Erythematosus (SLE) (14, 17) where they are responsive to IFNg
and thought to be precursors for pathogenic antibody secreting
cells (8, 9, 18). Repertoire studies to try and clarify the
relationship of DN cells to classical CD19+CD27+IgD-
memory cells have been carried out and find both evidence for
a close relationship with classical cells, with clones shared in both
populations, as well as a difference in overall average repertoire
character, with less hypermutation and larger complementarity
determining regions (19). It is therefore likely that the DN
compartment is functionally heterogeneous and only with high
resolution techniques, such as single-cell transcriptomics, will it
be possible to tease apart the sub-populations.
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Single-cell transcriptomics is rapidly becoming a key
methodology in biology thanks to its high resolution in terms
of individual cells and high dimensional data. It offers the ability
to discriminate between subsets of heterogeneous populations to
understand individual contributions which may have previously
been confounded by the Simpson’s paradox of studying averaged
data. Unsupervised clustering algorithms offer us the chance to
define subsets transcriptionally and interrogate the results to find
tractable markers for use in phenotypical distinction of the same.
Information about the possible functions of cell clusters can be
inferred from the transcriptome relative to other clusters.
scRNAseq is particularly useful in B cell immunology, where it
has made pairing of heavy and light chain sequences
possible (20).

Curated reference databases, such as the Human Cell Atlas
(21), and baseline transcriptomic profiles of particular immune
sites (22) are important for comparison to experimental datasets
as well as providing new insights into already well studied
biological systems. A frequently occurring problem in single-
cell datasets, however, is the relative lack of B cells, given that
most human experiments are run on readily available PBMCs;
where B cells only make up between 5-10% of the total. Hence B
cells are often under-described in single-cell experiments, and
often only divided into naive, memory and plasma cells which
may miss important distinctions in disease. This is a general
problem but has been particularly evident in recent COVID-19
papers (16, 23–29). We have therefore produced a dataset
looking exclusively at five commonly defined B cell
populations by phenotype to improve the resolution and better
understand the heterogeneity present in B cells. This
phenotyping followed by transcriptomic characterization was
performed to give the clearest possible identity of known
functionally relevant populations at the transcriptomic level.
By producing this dataset, we reconcile known phenotypic
populations with those found in the transcriptome and can
identify previously unknown populations in high dimensional
space, thus providing a basic map of peripheral blood B cells as a
reference dataset for the B cell community. We describe 10 major
populations of B cells, including a novel population of IgE-
expressing cells in the double negative compartment.
MATERIALS AND METHODS

Samples, Library Preparation
and Sequencing
Peripheral blood mononuclear cells were isolated from a male
healthy volunteer aged 25 (HB6) using BD-bioscience lithium
heparin vacutainersTM and Ficoll-Paque Plus (GE-healthcare).
REC authority 17/LO/1877.

Cells were stained in BD Horizon Brilliant stain buffer with
(Biolegend: CD19 HIB19 BV421, CD27 M-T271 FITC, IgD AI6-
2 BV785, CD10 HI10a BV605, Live/Dead Zombie NIR), doublet
and dead cells removed and lymphocytes gated on FSC/SSC, and
sorted into Transitional (CD19+IgD+CD27-CD10+), Naïve
(CD19+IgD+CD27-CD10-), IgM Memory (CD19+IgD+CD27+),
March 2021 | Volume 12 | Article 602539
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Classical Memory (CD19+IgD-CD27+) and Double Negative
(CD19+IgD-CD27-) populations on a FACSAria (BD
Biosciences) at 4°C (Supplementary Figure S1). Cells were
washed twice (5 min at 400 g, supernatant removed and replaced)
in PBS supplemented with 0.04% non-acetylated BSA with a final
spin through a 40 mM cell strainer. Populations were counted and
run on a Chromium 10X controller using 5’ chemistry (10X
Genomics) in individual lanes with an expected recovery rate of
4,000 cells per lane, according to the manufacturer’s instructions.
Libraries were generated according to 10X Genomics instructions
and run on a High Output HiSeq2500 at 1 library per lane in 30-10-
100 format. Additional HB34 (male, 36 y.o.) and HB78 (male, 25
y.o) B cell samples were isolated using StemCell (Kit), FACS sorted
in the same manner and each population tagged with Biolegend
TotalSeq-C Hashtag antibodies, washed on the Curiox laminar flow
system (9 washes at 5 ul/sec) before being recombined in equal
ratios to run on the 10X at 4,000 cells per lane; all other methods
were identical.

Data Preprocessing, Clustering and
Differential Expression
Data was processed through CellRanger (10X Genomics, v3.1.0)
and aligned to the GRCh38 genome. The raw transcript count
matrix was loaded into R (v3.6.3) using the Seurat (v3.0) package
(30, 31). Cells were selected for further analyses according to the
following criteria: (i) express zero CD3E, GNLY, CD14, FCER1A,
GCGR3A, LYZ, PPBP and CD8A transcripts, to exclude any non-B
cells and; (ii) express at least 200 distinct genes. Additionally, cells
with total transcript count in the top 1% percentile were removed, as
these cells were manually inspected to express transcripts of
multiple V gene families per cell, indicating possible cell clumps
tagged with the same barcode. Gene counts were log-normalized
and the top 2,000 variably expressed genes were extracted using a
variance-stabilizing transformation (vst) as implemented in the
FindVariableFeatures function in Seurat. The following genes
were removed from the list of variably expressed genes in order
to prevent downstream dimensionality reduction and clustering to
reflect individual/clonotype specific gene usage: all Ig V, D, J genes
(extracted using the regular expression [regex] “IG[HKL][VDJ]”), Ig
constant genes (IGHM, IGHD, IGHE, IGHA[1-2], IGHG[1-4],
IGKC, IGLC[1-7], and AC233755.1 [which encodes IGHV4-38-
2]), IGLL genes, T-cell receptor genes (regex “TR[ABGD][CV]”).
This pruned the variably expressed gene list to n = 1,840 genes.
Principal Component Analysis (PCA) was then performed on this
pruned gene list. Surveying the first 50 principal components, the
proportion of variance explained plateaued at ~ 1.5% from the 15th

PC onwards. Uniform Manifold Approximation and Projection
(UMAP) was performed based on the first 14 PCs, using the
implementation in the python umap-learn package with
correlation as the distance measure in the PC space. UMAP
projections were produced on both two-dimensional and three-
dimensional spaces. To define cell clusters, a shared nearest
neighbor (SNN) graph was constructed using Seurat::
FindNeighbors based on the first 14 PCs, and cell clusters were
defined on the SNN graph with Seurat::FindClusters (resolution
parameter = 1). Clusters were named according to manual
Frontiers in Immunology | www.frontiersin.org 3
inspection for their composition in terms of the original FACS-
defined populations. Differential expression was examined using the
Wilcoxon rank-sum test provided in Seurat::FindMarkers. Analysis
for the additional samples followed the same procedure, retaining
principal components that explained at least 1.5% of the variance.
We followed the data integration protocol in Seurat to map all
samples to the same UMAP projection. The integrated dataset
contains a total of 12,973 cells.

Trajectory and RNA Velocity Analysis
To study the trajectory across the Seurat-defined cell subsets, a
spanning tree across the data points was inferred using the
monocle3 package (v0.2.0), based on the 3D UMAP
embedding produced as detailed above. To estimate RNA
velocity, spliced and unspliced transcripts were enumerated
using the velocyto package (v0.17) (32). RNA velocity stream
was mapped onto the UMAP space according to the pipeline
provided in the SeuratWrappers package (v0.1.0) which uses
functionalities provided in the velocyto.R package (v0.6) (32).

Based on the inferred velocity stream we also scored the
transition between cell clusters using a geometrical approach. We
evaluated, for each arrow depicting the velocity stream, its
alignment with the projection towards cluster centroids, using
the following procedure (illustrated in Supplementary Figure
S2): first, for each arrow Ai with starting point Xi and ending
point Yi, we determined the ‘starting cluster’ (i.e. the original cell
identity from which transition is considered) by a majority vote
of the identities of cells within the grid around Xi as given when
the velocity stream was overlaid. We next considered, for every
‘destination’ cell cluster, the distance between Xi and its cluster
centroid Zj. This permitted calculation of the angle q between
and XiZj, using the cosine formula:

cosqi,j =
(XiYi)

2 + (YiZj)
2 − (YiZj)

2

2(XiYi)(XiZj)
(1)

for each arrow I and each ‘destination’ cluster j. q should
approach zero (and hence cosq = 1) if the arrow is perfectly
aligned to the direction pointing from the starting cluster to the
destination. This forms the basis to define a ‘transition score’,
taking into effect of the strength of the velocity (represented by
the size of the arrow projected – i.e. XiYi; it should positively
contribute to the score) and the distance XiZj (which should
negatively impact the score). This score, here denoted S, is given
by:

Si,j =
(1 − cosqi,j)XiYi

XiZj
(2)

For every I and j the (1−cosq) functional form ensures Si,j
increases as the arrow becomes more geometrically align to point
to cluster j. This was performed for every arrow I and every
cluster j. To summarize scores from individual i’s into a
composite transition score (CTS) between every starting cluster
j1 and destination cluster j2, all i’s are classified by their starting
cluster and Si,j are summed together for each j. Finally the CTS,
i.e. Si∈j1,j=j2Si,j, are adjusted by a weighting factor based on the
March 2021 | Volume 12 | Article 602539
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distance between cluster centroids d1 (for cluster j1) and d2 (for
j2). We first computed the pairwise distance between d1 and d2.
Then, for each d2 (which corresponds to the destination cluster),
we scaled all distances into a weighting factor w of range [0,1]:

w = 1 −
z −min(z)

max(z)�min(z)
(3)

for all distances z pointing towards d2. Again, this functional
form implies heavier weight is given for clusters which are close
to one another in the dimensionality-reduced space. The final
CTS was scaled by this factor:

CTSj1,j2 = w� Si∈j,j=j2Si,j (4)

For our datasets RNA velocity streams were considered on two
perspectives to view the 3D UMAP space: (1) UMAP1 vs UMAP3
(2) UMAP2 vs UMAP3, as visually these two perspectives separate
the clusters the best. All arrows visualized in these two perspectives
contributed towards the final CTS. These were plotted in Figure 2F
in log2 scale to dampen extreme signals.

Protein-Protein Interaction Network
Inference
The R package ACTIONet (v1.0) (33) was used to infer protein-
protein interaction networks (PPINs) for (i) each FACS-defined
population; (ii) each cell cluster defined by Seurat, and; (iii) cells
positive for T-bet (TBX21) transcripts. ACTIONet takes as input a
reference protein interactome and uses the transcriptomic data to
filter and score protein interactions relevant to a given cell subset.
Here, the Unified PPIN (UniPPIN), which we previously compiled
and recently updated (April 2020; Marzuoli, Ng and Fraternali,
manuscript in preparation), was used as the reference interactome.
UniPPIN contains in total of 17,997 proteins and 647,508
interactions, after mapping UniProt identifiers to HGNC gene
symbols using the biomaRt (v2.42.1) R package. To reduce
dimensionality, genes expressed in less than 10 cells were omitted,
leaving a total of n = 12,867 genes for PPIN inference. Raw gene
counts were used to calculate a ‘gene specificity’ score using the
compute.annotations.feature.specificity function in ACTIONet, for
each cell subset as defined above. This step enhances signals from
genes exhibiting expression patterns specific to distinct cell
subpopulations and penalizes commonly-expressed genes. These
gene specificities were subsequently used to infer a PPIN for each
cell subset using ACTIONet::run.SCINET.annotations. Each node
(i.e. protein) in the network is scored by a ‘specificity’ metric, which
quantifies the centrality of the protein in the network scaled by its
gene expression specificity. Since ribosomal and mitochondrial
proteins frequently formed cliques (highly interconnected
components) in biological networks, in order to mediate the impact
of the inclusion of these proteins in analyzing the topological and
functional properties of the inferred PPINs, all ribosomal and
mitochondrial proteins were removed from all the inferred
networks prior to any statistical analyses and functional annotations.

Functional Annotation
Gene sets from Gene Ontology (GO) biological processes (BP) were
downloaded from MSigDB (v7.1). Cluster-specific markers were
Frontiers in Immunology | www.frontiersin.org 4
annotated for GO BPs, by testing for gene set overrepresentation
using Fisher exact tests. Gene Set Enrichment Analysis (GSEA) was
also carried out (using the fgsea package [v1.4.1]) on the
ACTIONet-inferred PPINs, with the proteins ranked using the
ACTIONet per-node specificity metric.

Data Visualization
Reads coverage was visualized using the Integrated Genomics
Viewer (IGV, v2.8.2). All statistics and data visualization were
performed under the R statistical computing environment
(v3.6.3). Heatmaps of gene expression were produced using
pheatmap (v1.0.12). Visualizations of PPINs were produced
using visNetwork (v2.0.9). Volcano plots were produced using
EnhancedVolcano (v1.4.0). Visualization of three-dimensional
data embeddings were performed using the rgl package
(v0.100.54). All other data visualizations were produced using
functionalit ies provided in Seurat and the ggplot2
package (v3.3.0).
RESULTS

B Cell Subsets
B cell sorted single-cell transcriptome libraries from five FACS
sorted populations based on IgD/CD27/CD10 (Transitional
‘Trans’, Naive, IgM Memory ‘M-mem’, Classical Memory ‘C-
mem’ and Double Negative ‘DN’) clustered into 10 unique
populations using UMAP (Figure 1A). Of the 10 clusters
formed in the UMAP analysis in all but 1 case (DN1) over
75% of the cells matched with their original FACS sorted
population (Figure 1B); the disparity between phenotype and
transcriptome was possibly due to impure sorting. Differential
gene expression analysis highlights these discrete populations
(Figure 1C). Even though these cells were CD19-sorted only
34.4% percent of cells had CD19+ in the transcriptome, CD20
proving to be a much more reliable B cell marker in the
transcriptome (Figure 1D) (30). Similarly, CD27 mRNA was
not as abundant as CD27 surface protein, particularly in the C-
mem cells. Importantly, we have explicitly filtered any
immunoglobulin-related genes prior to clustering to avoid
biasing the clustering algorithms by light chain or class of
antibody. Even so, we find that IGHE and IGHA2 cells can be
differentiated by their transcriptome: DN1 being enriched for
IGHA2 and DN4 for IGHE. After finding the unusual DN4 IgE
population, further investigation leads us to postulate that it is
due to a cat hair allergy, exposure 3 days prior to sampling. M-
mem1 cells were distinguished from M-mem2 by higher IgD
expression (Figure 1D). Transitional and Naive cells are best
distinguished from other B cells by expression of TCL1A, higher
in transitional, present in Naive and absent in all other cells.

Relationships Between B Cell Subsets
We performed dimensionality reduction and pseudotime
analyses to decipher the relationships between clusters and
RNA velocity measurements were added to superimpose
directionality information onto the trajectory (Figure 2). Four
March 2021 | Volume 12 | Article 602539
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distinct branches of B cell clusters were seen in three dimensions
(Figure 2A); 1) a transitional and naïve branch, 2) a classical
memory and DN1 branch, 3) an IgM and DN3/2 branch and 4) a
separate branch for the IgE-high DN4s (Figures 2A, B). In
branch 1 the clear direction of development was transitional to
naïve to memory and markers such as CD38 and TCL1A are lost
in the progression (Figure 2C). The relationships between the
different memory populations are more complex (Figures 2A, D,
E). We therefore developed a new method, by performing
geometry-based calculations on the mapped velocity landscape
(Supplementary Figure S2; also see Materials and Methods), to
summarize the directionality, strength and position of individual
RNA velocity streams between individual cell clusters. This
produced a composite transition score (see Materials and
Methods) that quantifies the developmental flow of cell clusters
(Figure 2F) which can be mapped conceptually onto the inferred
trajectory (Figure 2G). From this the M-mem2 population
almost appears as a separate originating singularity with flow
Frontiers in Immunology | www.frontiersin.org 5
out of the IgM memory cluster, to DN3/2 and C-mem1, but with
relatively little flow from Naïve into the M-mem clusters
themselves (Figures 2F, G). The unidirectional flow from DN3
to termination at DN2 is strong. We also see a very strong flow
from DN1/4 towards C-mem1/2 terminating in C-mem2.

A UMAP projection considering only the DN population
highlights the distinct and robust partitioning of these cells into 4
subpopulations (Figure 3A). DN3 and DN2 display similar
immunoglobulin class distribution, although DN3 expressed
IgM which is absent in DN2. DN1 is IgA2-rich, while DN4 is
IgE-rich (Figure 3B).

As a unifying marker both DN3 and DN2 have higher
expression of RHOB (Ras Homolog Family Member B,
involved in intracellular protein trafficking) compared to DN1
and DN4 (Figure 3C). The DN2 population at the terminal point
of the M-mem/DN development branch is of interest, expressing
T-bet (TBX21), CD11c (ITGAX), and lacking CD21 (Figure 3D,
Supplementary Figure S3) concomitant with an identity of Age-
A B

D

C

FIGURE 1 | Single-cell atlas of peripheral B cell subsets for one individual (HB6). (A) Two dimensional UMAP projection of scRNA-seq data of peripheral B cell
subsets from sample HB6. (B) Breakdown of each cell cluster defined using scRNA-seq data, in terms of the FACS-defined B cell identities. (C) Expression of top
markers for each cell cluster. Here, only markers with average log fold difference > 0.75 for at least one cluster are included. (D) Expression of CD19, MS4A1
(CD20), CD27, IGHD, and IGHM across cell clusters.
March 2021 | Volume 12 | Article 602539
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related B cells (34). This population is also enriched in the
inhibitory receptors FCRL3, FCRL5 and lacks lymphotoxin-B
(LTB), CD24 and CXCR5 (Figure 3D). These are features in
common with a previously identified precursor population for
extrafollicular antibody secreting cells (ASCs) (16). T-bet has
been shown to mediate IFNg-dependent (but not IL4 dependent)
development of antibody secreting cells from B cells (35). With
this in mind we looked at all cells that were T-bet positive and
showed that the large majority were in the DN population in the
order DN2>DN3>DN1>DN4 (Figure 3E). Other transcriptional
markers for the T-bet+ cells include ACTB, MPP6, (Figures 3F,
G) and ALOX5AP, GSTP1, LAPTM5 (Figure 4A)

The DN1 population expresses high levels of IGHA2 and
JCHAIN (Figure 4). Upregulation of Transgelin-2 (TAGLN2)
expression suggests an activated state (36). Inferred protein-
protein interaction network (PPIN) analysis of the DN1
Frontiers in Immunology | www.frontiersin.org 6
population shows genes enriched in proteins involved in actin
filament formation and organization (Figure 4C). This
population falls on a separate differentiation pathway from
DN3 and DN2 and more closely resembles classical Memory B
cells in differential gene expression (Figures 1C, 2G).

The IgE-expressing DN4 population has very high levels of
FCER2 expression, the low affinity receptor for IgE, as well as
IL4R, IL13RA1, and the co-stimulator CD40 (Figures 4D, E); all
forming part of the same activation network (Figure 4F). This
IgE population is therefore in an active state and suggests the
donor was undergoing an allergic response.

Traditionally humanmemory B cells were known as CD27+IgD-
and we have designated these “classical memory”. The
transcriptomic clustering reveals two different subpopulations in
our data: C-mem1 and C-mem2. The main differences between the
two are in expression of mitochondrial and ribosomal genes
A B

D E

F G

C

FIGURE 2 | Trajectory and RNA velocity analyses of B cell clusters. (A) Trajectory inferred using monocle3, overlaid onto cell clusters in a three-dimensional UMAP
space. (B) Pseudotime order of cells inferred using monocle3, in (top) Trans, Naïve and C-mem1, and (bottom) M-mem1, DN3, DN2 clusters. (C) Change in
expression level of selected genes across the pseudotime axis for Trans, Naïve and C-mem1. (D, E) RNA velocity stream overlaid on three-dimensional UMAP
space. Notice the different UMAP dimensions depicted in each panel. In (D), the inset represents a close-up view into the space between Naive, M-mem2, and the
class-switched memory clusters. (F) Composite transition score between cell clusters, calculated based on examining geometrically the alignment of velocity streams
to cluster positions. (G) Summary of trajectory and RNA velocity analyses.
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(Supplementary Figure S5A). This might reflect a low overall gene
expression by C-mem1, meaning ribosomal genes are over-
represented (Supplementary Figure S5A). Coupled with their
relative positioning in the pseudotime/RNA velocity analysis
(Figure 2G) this could indicate a more quiescent population
awaiting activation for C-mem1, while C-mem2 are more active
with higher activemitochondrial gene expression. Comparison of C-
mem with DN indicates that DN cells have higher levels of CD20
(MS4A1) and HLA genes (Figure 5A). Analysis of individual genes
and inferred PPINs (Figure 5B; Supplementary Figure S5B) shows
genes predominantly involved in protein translation are expressed
by the C-mem1, while actin networks involved in movement,
division and immune synapse formation, form the top networks
for C-mem2.

IgM memory cells display a number of genes of interest (Figure
6A) including CD44 involved in cell to cell interactions and
activation (37, 38) along with MARCKS involved in actin cross
linking (39), TCF4 (encoding E2-2) which recognized the E-box
binding site originally identified in immunoglobulin enhancement
(40) and SMARCB1 which relieves repressive chromatin structure
(41). Such a signature of expression would suggest an active group
of cells involved in cell-to-cell interaction. We also highlight very
strong expression of CD1C, a marginal zone B cell marker (42), in a
small but distinct number of IgM memory cells.

The two IgM memory subpopulations are predominately
defined by the quantity of transcript rather than expression of
any one set of genes, M-mem2 containing far fewer transcripts.
Taken together with the position of these two subsets relative to
one another in the pseudotime and velocity analysis, these
suggest an activation pathway from a quiescent population M-
Frontiers in Immunology | www.frontiersin.org 7
mem2 to the active M-mem1 population. Most of the gene
markers shown in Figure 6A are expressed in both the M-
mem1 and M-mem2 clusters (Supplementary Figure S5) except
CD1C and AP3B1 which are uniquely expressed in M-mem1
cells (Figure 6C). Both genes are involved in presentation of lipid
antigens (43). Very few other genes were differentially expressed
between M-mem1 and M-mem2 (Figure 6D). The inferred
protein interaction networks were more informative, showing
translational housekeeping networks dominating the M-mem2
population while M-mem1 networks include both cell adhesion
and structural networks suggestive of cell binding (Figure 6E).

In order to confirm these B cell populations PBMCs from two
additional people were also processed. We projected the
transcriptomes of cells from all three samples to the same
UMAP dimensionality-reduced space, and demonstrated that
all the same cell populations exist in all individuals (Figure 7A);
albeit in some cases at different ratios, as is the case with a lower
proportion of DN3 in the two additional individuals (Figure 7B).
Additionally, we find a greater overlap between DN1/4 and
classical memory highlighting the transcriptomic similarity
between these two class switched populations. We also
confirmed that cells clustered in the UMAP space show similar
expression patterns of marker genes (Supplementary Figure S6)
across three individuals.
DISCUSSION

The separation of B cells into functionally different populations is
useful in trying to understand immune responses to challenge.
A B

D E F

GC

FIGURE 3 | Heterogeneous single-cell expression landscape of double-negative memory B cells. (A) Dimensionality projection of DN1-4 clusters on a two-
dimensional UMAP space. (B) Expression of CD27 and IGH constant region genes across the four DN clusters. (C) Expression level of RHOB across the four DN
clusters. (D) Expression of typical markers of precursor antibody secreting cells (DN2) in our DN clusters. (E) Breakdown of cells positive for TBX21 transcripts
(which encodes Tbet) by the cell clusters defined in this dataset. (F) Differential expression analysis of Tbet+ and Tbet- DN cells. (G) Change in expression levels of
selected genes through the pseudotime order of M-mem1, DN3 and DN2 cells.
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Typically, this has been done using surface markers to separate cell
types and then ascribing functions to the subsets. However,
averaging effects over a heterogeneous population can quite often
mask important information. The advent of single-cell technologies
enables more precise differentiation between cell types and more
understanding of their possible functions based on the genes
transcribed. There is a wealth of immunological data based on
phenotypic subset separation and maximization of insight to be
gained from all available information requires the unification of
phenotype and transcriptome techniques. Here we used scRNAseq
on the major peripheral B cell populations of an individual, FACS
sorted by IgD, CD27 and CD10 (Transitional, Naive, IgMMemory,
Classical Memory, Double Negative), to consolidate the phenotype
with the transcriptome. Building upon conventional clustering,
pseudotime and RNA velocity analyses, we devised a geometry-
Frontiers in Immunology | www.frontiersin.org 8
inspired method to summarize information from individual RNA
velocity streams, and derived quantifications for the transitions
between cell clusters (Figures 2F, G). RNA velocity analysis has
been widely developed and applied since its conception (32, 44),
providing insights into the transcriptional dynamics of single cells.
Individual velocity streams could be difficult to interpret, especially
in systems where multi-way transitions amongst several cell clusters
are possible. It is worth noting that as a result of phenotypic
characterization, in order to ensure the clearest transcriptomes of
functionally relevant phenotypes, intermediates between states
might have been missed. Here we devised a method to build
upon these individual velocity streams and provide a summary
score, which allowed us to consider the dynamical relationships
between all the discovered cell clusters in an unbiased manner
(Figure 2G).
A
B

D E F

C

FIGURE 4 | DN1 and DN4 cells. (A) Expression level of DN1 markers illustrated with a dot plot. (B) Differential expression analysis of DN1 compared with other DN
clusters. (C) Gene ontologies of DN1 markers. The top 5 pathways in this GO overrepresentation analysis were illustrated. Top markers overlapping these pathways
are noted on the plot. (D) Expression levels of DN4 markers illustrated with a dot plot. (E) Differential expression analysis of DN4 compared with other DN clusters.
(F) Inferred protein-protein interaction network of IL4R and its direct neighbors. The expression levels of these genes in the DN4 cluster were mapped onto the
nodes of the network.
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We have found that the DN population (IgD-CD27-) clusters
into four different sub-populations. Our DN1/4 populations both
have increased levels of switched Ig genes and CD24 expression.
Sporadic expression of CD21 and CD11c in the DN1/4 makes
them hard to identify, however, CD24 and switched Ig
expressions suggests they are ‘precursor memory’ or ‘switched
memory’ cells (16, 45). This is highlighted by the RNA velocity
data which displays high flow between our precursor memory
(DN1/4) and classical memory populations whose development
is closely linked (46). The ‘closeness’ of this relationship and flow
between populations is further highlighted by HB34 and HB78
and the proximity of DN1/4 cells to the classical memory cells;
particularly when there is only partial coverage in the
transcriptome of the main marker (CD27) for differentiating
the two populations.

Our DN2 population differentially expressed more TBX21
and FCRL5 but no CD24, matching the descriptions of Age-
related B cells and extrafollicular ASCs (8, 14, 16, 34). The DN3
population shares no previously described gene expression
profile, but the RNA velocity data shows DN3 cells flow
predominantly into DN2 cells. It is possible the DN3
Frontiers in Immunology | www.frontiersin.org 9
population are activated naïve (aNAV) cells which develop
into precursor ASCs, but the only marker we find for the
aNAV population is high IgM expression with the other major
markers (e.g. increased TRL7, CD11C and decreased CXCR5,
CD21) lacking sufficient coverage in the transcriptome to make a
definitive conclusion. Additionally, our velocity flow from IgM
memory to DN3/2 suggests an alternative activation pathway
distinct from the activated naïve (aNAV) cell pathway previously
described in SLE patients (8).

Together the transcriptome, UMAP analysis and RNA
trajectories, all suggest that DN1/4 and DN2/3 are separate DN
memory compartments that contribute to two distinctly different
branches of development with hardly any crossover between
them (Figures 2F, G). T-independent B cells responses are
known to expand the IgM memory cell population and plasma
cell lineage commitment (47–50) which would appear, on the
evidence provided here, to be occurring through an IgM
memory/DN3/DN2 pathway. We therefore suggest that these
two pathways represent the T-independent (DN2/3) and T-
dependent (DN1/4) B cell developmental pathways. The end
points of both these pathways, DN2 and C-mem2, have RNA
A B

FIGURE 5 | Comparison between classical memory (C-mem) and double-negative (DN) memory B cells. (A) Differential expression analysis of C-mem and DN cells.
(B) Expression of differentially expressed genes between C-mem1/2 and DN2/3 visualized in a dot plot.
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velocity arrows continuing to point outwards which may indicate
further development, for example into ASCs.

IgM memory cells display several genes involved in actin
regulation and cell to cell interactions that might suggest
formation of B cell synapses. Expression of the gene MARCKS
has recently been found to increase lateral motility of the BCR by
modulating the cytoskeleton (39), CD44 is a known lymphocyte
activator (37, 38), TCF4 (E2-2) a developmental transcription
factor which regulates the IgG enhancer (24, 40), and SMARCB1
a chromatin re-modeler that relives repressive structures (51).
The presence of a distinct number of IgM cells strongly
expressing CD1C, a marginal zone B cell marker (52), is
supportive of the idea that these are circulating marginal zone
cells following a T-independent pathway of differentiation (42,
53, 54); this separation of IgMmemory into two clusters is clearly
visible in all three patients. In contrast to other clusters, which
have limitations as to their interactions with other groups, the
RNA velocity data seems to suggest that cells from the Mmem2
cluster could give rise to cells in many different groups in all
branches of the model (Figure 2F).

It is worth noting that the DN1 population is enriched in IgA,
particularly genes encoding IgA2 and J chain. This, despite
exclusion of immunoglobulin related genes from the clustering,
Frontiers in Immunology | www.frontiersin.org 10
indicates that IgA2-expressing cells are functionally different
from the IgG-expressing cells (Figure 3B). In a similar fashion,
we also found an IgE-expressing sub-population of DN cells,
DN4. This population is over represented in the data due to our
enrichment of the DN subset by FACS sorting and, in reality,
represents approximately 0.5% of total B cells in this volunteer;
DN making up 1.46% of this patients B cells (Supplementary
Figure S1) and 34.21% of cells in the DN clusters are DN4. Even
this level is unusually high and is assumed to be the result of
exposure to cat hair 3 days prior to sampling although no
symptoms were present at blood draw. CD27-IgE+ cells have
been seen previously (55), alongside CD27+IgE+ cells, but in
these data DN4 is the only cluster to show IgE expression
(Figures 1C, 3B). The study of IgE-expressing cells is usually
hampered by their scarcity, the poor polyadenylation of IgE
transcripts and the difficulties in distinguishing IgE-expressing
cells from those binding to IgE via FcϵRII (56, 57). Single cell
transcriptomics can circumvent the antibody staining issues and
shows here that this population seems to be activated, given the
evident RNA velocity stream into and out of DN4 from other
clusters (Figure 2G). The presence of CD24 transcripts and RNA
velocity flow into the classical memory population suggests these
are memory precursors, although this is difficult to reconcile with
A B

D

E

C

FIGURE 6 | IgM memory cells. (A) Transcriptional markers for IgM Memory cells in comparison to other FACS-defined populations. (B) Numbers of genes and
transcripts expressed per cell in M-mem1 and M-mem2 clusters. (C) Expression of CD1C and AP3B1 in M-mem1 and M-mem2 clusters. (D) Expression of
differentially expressed genes between M-mem1 and M-mem2 cells. (E) Gene set enrichment analysis of the inferred PPINs for the M-mem1 and M-mem2 cells. The
top 10 most significant pathways are shown here.
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the lack of IgE in the classical population. The tendency for some
DN4 velocity arrows to point away from the UMAP plot might
indicate that these cells are precursor to ASCs, as we have
suggested for DN2 and C-mem2.

We also briefly note that transitional and naive cell
populations are transcriptionally homogenous. The T1, T2 and
T3 transitional cells that have previously been distinguished by
gradations of surface markers such as CD10, or CD24+CD38+,
are not clustered separately in this data; potentially the result of
read depth issues inherent in single-cell approaches and
therefore requiring surface marker annotation (e.g. CITE-seq).
RNA velocity highlights the highly directional development of
transitional cells into naive cells, but only indicates small
velocities out of the naive pool into memory. This may look
different in an immune challenged volunteer where one would
expect active differentiation between naïve and memory.
However, the naïve to memory differentiation processes may
occur in tissue and not be apparent in the blood.

The occasional disparities between mRNA and protein level
gene expression means that markers in the transcriptome do not
always translate into the proteome and vice versa. Our atlas of
peripheral blood B cells can be used as a tool to identify the same cell
subsets in other single-cell transcriptome datasets, using referenced-
based bioinformatic approaches. It can also be used to identify new
markers for tractable methods of B cell sorting (Supplementary
Figure S6). It is worth noting that transcriptome data can suffer
from lack of sequencing depth, so previously well-known
phenotypic markers may not always be reliable at a single cell
Frontiers in Immunology | www.frontiersin.org 11
level. For example, CD27 suffers from incomplete transcript
coverage. When clustering data from B cells we strongly suggest
removal of variable genes and immunoglobulin constant regions as
these tend to skew UMAP results. For example, the kappa lambda
light chain distinction between cells is clear and the resulting skew
can mask important transcriptomic differences between other, more
functional, distinctions. We also note that in this dataset we only
find TBX21+ cells in the DN population and not in the naive
compartment as with SLE (8, 9, 58). Additionally, we did not find a
population of FCRL4+ DN cells typical of HIV patients (59),
highlighting the uniqueness of these populations to particular
immune disorders.

In summary, we show branching pathways of B cell
development that appear to separate into T dependent and T-
independent pathways. The subset of B cells previously known as
“Double negative” contains a variety of different cells belonging
to both pathways. DN3 and DN2 being in the T-independent
pathway closely related to IgMMemory cells, and DN1 and DN4
being more closely related to classical memory cells. In addition,
the serendipitous use of an allergic individual after allergen
contact has helped to show an IgE-expressing B cell subset
within the DN family (DN4), but clustering on its own
separate branch of the RNA velocity pathway. That said, it
seems to have strong links to the T-dependent development
pathway containing classical memory cells and the DN1 cluster
rather than the IgM memory/DN3/DN2 development pathway.
The data we have collated can be used to map these B cell subsets
in other single cell transcriptomic data.
A

B

FIGURE 7 | Validation in additional donor samples. (A) scRNAseq data of three individuals (HB6 [on whose cells all analyses above were based], HB34, and HB78)
were projected onto the same dimensionality-reduced space using UMAP. Cells were clustered separately in each sample and colored accordingly. (B) Breakdown
of each cell cluster in the HB34 and HB78 data in terms of their phenotypic identities.
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