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Immunotherapy has become an important treatment strategy for cancer patients
nowadays. Targeting cancer neoantigens presented by major histocompatibility
complex (MHC) molecules, which emerge as a result of non-synonymous somatic
mutations with high immunogenicity, is one of the most promising cancer
immunotherapy strategies. Currently, several therapeutic options based on the
personalized or shared neoantigens have been developed, including neoantigen
vaccine and adoptive T-cell therapy, both of which are now being tested in clinical trials
for various malignancies. The goal of this review is to outline the use of neoantigens as
cancer therapy targets, with an emphasis on neoantigen identification, clinical usage of
personalized neoantigen-based cancer therapy agents, and the development of off-the-
shelf products based on shared neoantigens. In addition, we introduce and discuss the
potential impact of the neoantigen–MHC complex on natural killer (NK) cell antitumor
function, which could be a novel way to boost immune response-induced cytotoxicity
against malignancies.
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INTRODUCTION

According to immune surveillance theory, the immune system’s job is to keep the bodily
environment stable and free of malignancies by detecting and destroying “non-self” tumor cells
(1, 2). These tumor cells, on the other hand, try to evade immune surveillance in several ways, such
as immunologic sculpting during tumor formation (1, 3, 4). The purpose of cancer immunotherapy
is to increase the activity of the patient’s immune system to fight against cancer cells by natural
mechanisms (5, 6). Checkpoint inhibitors, adoptive T cells, cancer vaccines, and antibody-based
therapies are among the most clinically investigated immunotherapies thus far. T cells and natural
org July 2022 | Volume 13 | Article 9318621

https://www.frontiersin.org/articles/10.3389/fimmu.2022.931862/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.931862/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:frenksun@126.com
https://doi.org/10.3389/fimmu.2022.931862
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.931862
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.931862&domain=pdf&date_stamp=2022-07-07


Lv et al. Neoantigens in Cancer Immunotherapy
killer (NK) cells are two of the most essential effector cells for
recognizing and destroying tumor cells. The positive signals
provided by precise identification of tumor antigens and the
negative signals presented by immunological checkpoints can
both be used to determine tumor-specific T-cell activation (7).
Similarly, the activation of NK cells also relies on the integration
of activating and inhibiting signals (8). As a result, tampering
with the balance by blocking negative signals and boosting
positive signals for T cells and NK cells may be advantageous
to patients with cancer. To date, there have been many reports on
therapies that block T- and NK-cell inhibitory receptors such as
the checkpoint molecules CTLA-4 or PD-1/PD-L1. However,
several pieces of evidence show that these strategies only bring
benefits to a limited number of tumor-bearing patients, and the
majority of patients still experience disease progression (9–12).
As a result, therapies that can safely and effectively enhance the
function of tumor-specific cytotoxic lymphocytes are required.
Cancer neoantigens, which emerge as a result of non-
synonymous somatic mutations in tumor cells and can be
displayed by the major histocompatibility complex (MHC)
molecules on the cell surface, may serve as a primary target for
tumor-specific immune cells (13, 14). Indeed, neoantigen-based
cancer vaccines and neoantigen-specific adoptive T-cell
treatment alone or combined with immune checkpoint
blockade (ICB) have had some progress (15–17). In this
review, we primarily discuss the possibility of using
neoantigens as cancer therapy targets by triggering the
antitumor function of T cells, mainly focusing on neoantigen
identification, clinical usage of personalized neoantigen-based
cancer therapy agents, and the development of off-the-shelf
products based on shared neoantigens. In addition, we
introduce and discuss the potential impact of the neoantigen–
MHC complex on the antitumor function of NK cells, which
could be a novel way to boost immune response-induced
cytotoxicity against malignancies.
CANCER NEOANTIGENS AND THEIR
ROLE IN CANCER IMMUNOTHERAPY

Cancer neoantigens are non-autologous antigens arising from
non-synonymous somatic mutations occurring in tumor cells
and that have the potential to be recognized in the context of
MHC by T cells (15). These mutations, mainly containing single-
nucleotide variants, splice variants, mutational frameshifts, and
gene fusions, can generate aberrant proteins as malignancies
grow (18–21). Varying people and cancer types have different
types and numbers of mutations, and more neoantigens are
expected to be formed in tumors having more mutations,
whereas fewer tend to be generated in tumors having fewer
mutations. The ability of T cells to identify mutant peptides in
human tumors has been demonstrated for more than 20 years
(22, 23). While CD4+ T cells recognize neoepitopes shown by
MHC II molecules, CD8+ T cells identify neoantigens in the
context of MHC I molecules expressed by tumor cells, which
Frontiers in Immunology | www.frontiersin.org 2
triggers T-cell cytotoxicity and tumor cell killing (24). Evidence
suggests that the frequency of neoepitope-specific CD8+ T cells
in tumor-infiltrating lymphocytes (TILs), as well as the
presentation of neoantigens by MHC I molecules and the load
of neoantigens on the surface of tumor cells, has a positive
relationship with prognosis in patients with solid tumors (20, 25,
26). Thus, approaches of boosting T-cell responses specifically
against neoantigens could be greatly beneficial to cancer patients
in terms of clinical outcomes.

As for taking advantage of neoantigens in cancer
immunotherapy, two main strategies have been employed in
clinical trials (Figure 1). The first is T-cell adoptive treatment,
which involves isolating immune cells from a patient’s tumor
tissue and then injecting them back into the patient following ex
vivomodification and amplification, primarily neoantigen-specific
T cells (27). Another option is to design and produce a tailored
vaccine against tumor cells that targets neoantigens to expand
preexisting T-cell responses or induce new antitumor T-cell clones
(28, 29). Some common mutations, such as TP53 and RAS family
mutations, have been found in patients with the same or different
types of malignancies (30–32). The possibility of off-the-shelf
products based on neoantigens from these common mutations
is being investigated, such as shared neoantigen-based vaccines
and bispecific diabodies (Figure 1) (33, 34).
IDENTIFICATION OF IMMUNOGENIC
NEOANTIGENS

The development of next-generation sequencing (NGS) combined
with in silico analysis in recent years has revolutionized the quick
detection of neoantigens in cancer patients. To discover
immunogenic neoantigens, the current framework often includes
the following steps (Figure 1): obtaining patient tumor specimens
and finding somatic mutations by NGS, predicting and selecting
the possible neoantigens that can be presented by an MHC
molecule of a given patient through in silico analysis or/and
protein mass spectrometry (MS) analysis, and lastly testing the
immunogenicity of the candidate neoantigens.

After NGS has revealed the mutations in clinical tumor
specimens, computational techniques can be used to identify
possible neoantigens. Whole-exome sequencing (WES) data of the
cancerous and non-cancerous DNA can be used to map tumor-
specific genetic abnormalities, and data from the RNA sequence can
be compared with WES data to evaluate whether the mutant genes
are expressed in tumors (35). To predict the binding affinity of the
HLA (human leukocyte antigen, the MHC molecules in human)
alleles with processed mutant peptides from cancer patients, several
computational techniques have been developed, the majority of
which rely on machine learning algorithms trained by extensive
experimental datasets of HLA-binding peptides (21). NetMHCpan
and NetMHCIIpan are two of the most often used algorithms for
predicting peptide binding with HLA I andHLA II, respectively (36,
37). Meanwhile, MS analysis has been employed to scan the peptide
repertoire shown onMHC I and II directly (38). In silico neoantigen
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FIGURE 1 | Identification of neoantigens and strategies to target them in cancer patients. (A) Identify potential neoantigens; (B) neoantigen-based cancer vaccine
therapy; (C) neoantigen-specific T cell adoptive transfer; (D) mechanism of action of shared neoantigen-based bispecific diabody.
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predictions can be complemented with MS analysis of MHC-
displayed peptide repertoire to limit possible neoantigens and
increase prediction efficiency. Finally, the immunogenicity of
predicted neoantigens should be determined experimentally, by
testing their ability to induce T-cell activation, as not every
mutant peptide displayed by MHC molecules can induce an
immune response (39). The potential neoantigens can be
employed in the development of immunotherapies. So far, several
TABLE 1 | Potential shared neoantigens from common mutations in solid tumors.

Gene AA mutation Neoantigen

TP53 p. R175H HMTEVVRHC
p. R248W SSCMGGMNWR
p. Y220C VVPCEPPEV

KRAS p. G12D VVVGADGVGK
p. G12V VVVGAVGVGK
p. G12D GADGVGKSA(L)
p. Q61L ILDTAGLEEY
p. G12V VVVGAVGVGK

EGFR p. L858R KITDFGRAK
p. T790M LTSTVQLIM

PIK3CA p. H1048R EALEYFMKQMNDARHGGW
IDH1 p. R132H GWVKPIIIGHHAYGDQYRA

Frontiers in Immunology | www.frontiersin.org 3
neoantigens have been discovered in preclinical and clinical
investigations, some of which are derived from shared mutations
in a range of malignancies (30, 31, 40–47) (Table 1).

Therapeutic Use of Personalized
Neoantigens in Cancer Immunotherapy
Neoantigens are largely patient-specific due to each patient’s
unique mutation repertoire. Autologous adoptive T-cell therapy
s HLA restriction Reference

HLA-A*02:01 (30, 44, 46)
HLA-A*68:01 (31)
HLA-A*02:01
HLA-A*11:01 (41)
HLA-A*11:01
HLA-C*08:02 (43)
HLA-A*01:01 (45)
HLA-A*03:01
HLA-A*11:01 (47)
HLA-C*15:02

TTKMDWIFH HLA-DRB1*04:05 (42)
T HLA-DRB1*01:01 (40)
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and cancer vaccines based on individualized neoantigens are the
two most common cancer immunotherapy methods studied in
clinical trials and have indicated clinical advantages for
solid tumors.

Adoptive T-Cell Therapy
Although tumor cells can be recognized and killed by TILs,
adoptive transfer of T cells specific for certain neoantigens
expressed by tumor cells may be more advantageous than an
infusion of randomly isolated TILs after ex vivo amplification. The
process of adoptive T-cell therapy (ACT) includes identifying
neoantigens, expanding antitumor TILs via neoantigens,
identifying or modifying neoantigen-reactive T cells, and lastly
infusing the T cells back into the patient. Infusion of autologous
neoantigen-reactive T cells in patients with a variety of solid
tumors resulted in long-term regressions (48–54).

A phase II trial showed that 40 days after infusion of ex vivo
amplified TILs that contained specific CD8+ T cells targeting
neoepitope derived from the KRAS mutation G12D, a patient
with metastatic colorectal cancer encountered regression of all
the metastatic lung lesions, suggesting an important role of
neoepitope-reactive CD8+ T cells in cancer therapy (51).
Further research shows that TIL adoptive treatment is linked
to an increase in neoepitope-specific CD8+ T cells (55). On the
other hand, TIL-based ACT responders retained a subset of
stem-like neoantigen-specific CD8+ T cells that show self-
renewal and superior growth capacity in vitro and in vivo,
highlighting the relevance of T-cell phenotypes in ACT
response (56). In another case, after treating a widely
metastatic cholangiocarcinoma patient with TILs containing
Th1 cells specifically targeting neoantigens derived from the
mutated erbb2 interacting protein (ERBB2IP), an obvious
tumor size reduction was observed. Moreover, the size
reduction of lesions in the lung and liver was shown again
after retreatment with a pure population of neoepitope-reactive
Th1 cells, suggesting the potential role of neoantigen-reactive
CD4+ T cells in cancer treatment (50). Meanwhile, two HPV+
metastatic cervical carcinoma patients achieved total tumor
regression that is ongoing for 44 months after adoptive
transfer of TILs including neoantigen-targeted T cells and a
relatively lower proportion of HPV-targeted T cells. This offered
a new paradigm for immunotherapy of virally associated cancers:
targeting neoantigens (52). Another clinical trial in a metastatic
breast cancer patient found that adoptive transfer of TILs
reactive against neoepitopes derived from four proteins
combined with interleukin-2 and ICB resulted in complete
durable regression for over 22 months (53), implying clinical
benefits of combining ACT with other immunomodulators such
as the checkpoint inhibitor. At the same, after adoptive transfer
of enriched neoantigen-specific TILs combined with anti-PD-1
antibody pembrolizumab in a phase II pilot trial, three of the six
patients with metastatic breast cancer showed objective tumor
regression, including one complete response that was ongoing
for more than 5.5 years (54).

In addition to ex vivo expanded antitumor T cells, ACT with
modified T-cell receptor (TCR) or chimeric antigen receptor
Frontiers in Immunology | www.frontiersin.org 4
(CAR) has been demonstrated effective for cancer patients (57–
59). One of the challenges for engineered T-cell therapies is to
target tumor-specific antigens without destroying normal tissues
(60, 61). Therefore, neoantigens may be a good target for
engineered T-cell therapies. Recently, the molecular signatures
of neoantigen-reactive antitumor T cells have been identified by
single-cell RNA sequencing and TCR sequencing in a variety of
solid tumors, and both neoepitope-targeted CD8+ and CD4+ T
cells harbor distinct transcriptomic signatures compared with
bystander T cells (62–66). This may provide new opportunities
for cancer treatment by harnessing reprogrammed autologous T
cells with enriched neoepitope specificities. In a recent report, a
patient with progressive metastatic pancreatic cancer was treated
with a single infusion of autologous T cells that had been
genetically engineered to clonally express two allogeneic HLA-
C*08:02-restricted TCRs targeting mutant KRAS G12D
expressed by the tumors. This patient had regression of
visceral metastases, and the response was ongoing at 6
months (67).

In general, using specific T cells to target neoantigens found
only in tumor cells is a promising way to stimulate the activity of
a patient’s immune system against cancer cells while minimizing
the risk of toxicity, and many clinical trials are currently
underway to investigate ACT as a monotherapy or in
combination with checkpoint inhibitors (68).

Personalized Cancer Vaccines
Cancer vaccines utilizing tumor antigens have long been thought
to be promising strategies for cancer treatment. Unlike
traditional cancer therapeutic vaccines, which mainly focus on
tumor-associated antigens (TAAs) that are abnormally expressed
in tumor cells but can also be detected in normal tissues,
neoantigen-based cancer vaccines have the capacity to amplify
endogenous repertoire of T-cell responses specifically targeting
neoantigen-expressed tumor cells, potentially reducing the risk
of vaccine-induced tolerance or autoimmune responses (69).
CD8+ T cells can be primed by antigen-presenting cells
(APCs) expressing the neoantigen-MHC I complex after
immunization, enhancing their cytotoxicity against neoantigen-
expressing cancer cells. Dendritic cells (DCs, which are
professional APCs), peptides, DNA, and RNA are the most
common vaccination platforms. It is conceivable that immune
responses induced by neoantigen-based vaccines could offer
immunological memory and establish long-term protection
against cancer recurrence. The viability and safety of tailored
neoantigen vaccines have been demonstrated in human patients
with solid tumors in clinical trials (70–76).

Three patients with stage III melanoma accepted an
autologous DC vaccine including seven projected customized
neoantigens as well as peptides from TAA-gp100 in a phase I
trial (70). The vaccine can produce de novo T-cell responses
while also increasing the response of preexisting neoantigen-
reactive CD8+ T cells, indicating a broadening and
diversification of T-cell responses (70). Similarly, 12 patients
with advanced lung cancer received a tailored neoantigen-pulsed
DC vaccine in another clinical trial. The disease control rate was
July 2022 | Volume 13 | Article 931862
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75%, and the median progression-free survival was 5.5 months.
All treatment-related adverse events were grades 1–2, and there
were no dose delays due to toxic effects (74). In another phase I
trial, patients with high-risk melanoma were vaccinated with a
lengthy peptide spanning 20 mutations each following the first
curative-intent surgery. Following vaccination, neoantigen-
reactive CD4+ and CD8+ T cells that had previously been
undetectable were activated, with CD4+ T cells accounting for
a larger frequency of the response. While four patients did not
show disease recurrence for a median of 25 months after
vaccination, two of the six patients who experienced recurrence
a few months after vaccination were then treated with the anti-
PD-1 antibody. Both of the patients showed complete clinical
responses, highlighting the potential of combining ICBs and
neoantigen therapeutic vaccines (69). Further research revealed
that these patients developed memory T-cell responses with
cytolytic capabilities in vivo that persist in the peripheral blood
for years (75). In a phase Ib glioblastoma trial using a similar
method with multi-epitope customized neoantigen peptide
immunization, patients generated circulating neoantigen-
specific T-cell responses, implying that neoantigen-targeting
vaccines may have benefits in glioblastoma patients, which
normally have a low mutation load (73). Meanwhile, the safety
and function of neoantigen-based mRNA vaccines were tested in
a study of patients with gastrointestinal cancer, although no
clinical responses were observed in three of four individuals (77),
while in another case, T-cell responses were elicited when
patients with stage III/IV melanoma were given RNA vaccines
that encoded neoantigens derived from specific mutations (10
per patient). Among the 13 patients, two had objective clinical
responses, and one showed a complete response after combined
with PD-1 blocking therapy (72).

According to these findings, tailored neoantigen vaccinations
can trigger specific T-cell responses, and neoantigen-based
vaccines in combination with ICBs could produce improved
clinical results. Thus, personalized neoantigen-based
Frontiers in Immunology | www.frontiersin.org 5
vaccinations are being investigated in several clinical trials as
monotherapy or in combination with checkpoint inhibitors (78).

Therapeutic Strategies Based on
Shared Neoantigens
Although personalized neoantigen discovery leads to attractive
personalized therapeutics, high prices and time delays limit their
use, and the challenges of predicting and identifying optimal
neoantigens for each patient still remain. Despite each patient’s
unique neoantigen repertoire, some neoepitopes can be found in
various patients with the same or even in distinct forms of
malignancy. Thus, ongoing research is being done to evaluate off-
the-shelf anticancer therapeutics based on shared neoantigens,
which could benefit multiple patients.

The mutation in isocitrate dehydrogenase 1 (IDH1) is common
in diffuse glioma, and the most prevalent IDH1mutation (R132H)
generates a neoepitope presented by MHC class II molecules (40).
In a phase I trial, 32 patients with IDH1 (R132H)+ astrocytomas
were given an IDH1(R132H)-specific peptide vaccination and the
vaccine-induced immune responses were observed in 93.3% of
individuals, with vaccine-related adverse effects limited to grade 1.
The progression-free rate after 2 years was 0.82 for patients who
had immune responses (33). Similarly, immunogenic frameshift
peptide (FSP) neoantigens resulting from mutations in coding
microsatellites are shared by the majority of mismatch repair
(MMR)-deficient malignancies, indicating that these FSP
neoantigens may be utilized as targets to induce or amplify
antitumor T-cell responses (79). Patients were subcutaneously
vaccinated with shared FSP neoantigens (derived from mutant
AIM2, HT001, and TAF1B genes) combined with montanide ISA-
51 VG in a clinical phase I/IIa trial. All immunized patients
showed immune responses to the vaccine. Three patients suffered
grade 2 local injection site responses, but no vaccine-related
serious adverse events happened (80). More preclinical and
clinical investigations are being conducted to determine the
effectiveness of shared neoantigen-based vaccines (Table 2).
TABLE 2 | List of clinical trials employing off-the-shelf neoantigen vaccines.

Strategy Tumor type Drugs Phase ClinicalTrials.
gov identifier

Vaccine Melanoma A vaccine made of 6MHP and NeoAg-mBRAF (a peptide
BRAF585-614-V600E)

Phase
I/II

NCT04364230

Vaccine KRAS-mutated pancreatic ductal adenocarcinoma and other
solid tumors

ELI-002 2P (Amph-modified KRAS peptides, Amph-
G12D and Amph-G12R admixed with admixed Amph-
CpG-7909)

Phase
I

NCT04853017

Vaccine with
checkpoint
inhibitor

Intrinsic pontine glioma, intrinsic midline glioma (H3 K27M-
mutant)

rHSC-DIPGVax vaccine
Balstilimab
Zalifrelimab

Phase
I

NCT04943848

Vaccine with
checkpoint
inhibitor

Lung cancer, colorectal cancer, pancreatic cancer, other shared
neoantigen-positive solid tumors

GRT-C903/GRT-R904 (shared neo antigen- based
vaccine)
Nivolumab
Ipilimumab

Phase
I/II

NCT03953235

Vaccine with
checkpoint
inhibitor

Malignant glioma IDH1R132H peptide vaccine
Avelumab

Phase
I

NCT03893903

Vaccine with
checkpoint
inhibitor

Unresectable or metastatic deficient mismatch repair (dMMR) or
MSI-H colorectal cancer, gastric or gastro-esophageal junction
tumors

GAd-209-FSP
MVA-209-FSP
Pembrolizumab

Phase
I/II

NCT04041310
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In addition to neoantigen-based off-the-shelf vaccines, other
strategies for the treatment of patients with common mutations
are being tested, such as TCR-mimic antibodies, a type of agents
that target the peptide–HLA complex in tumor cells (81, 82).

RAS oncogene mutations are found in different types of
malignancies, and neoepitopes from RAS mutations are shared
by several patients. Single-chain variable fragments specific for
KRAS G12V mutation and NRAS Q61L mutation-generated
peptide–HLA complexes were identified via phage display and
transformed to bispecific single-chain diabodies (scDbs). In vitro,
the scDbs were able to activate T cells to kill target cancer cells that
expressed low endogenous amounts of the KRAS G12V or NRAS
Q61L neoepitope–HLA complexes. In the mouse model, the scDbs
employed in vivo similarly demonstrated a capacity to decrease the
growth of tumors with KRAS G12V or NRASQ61Lmutation (45).
Similarly, a bispecific scDb targeting the neoantigen produced
from the R175H mutation of TP53, one of the most commonly
mutated cancer driver genes, was developed and demonstrated an
excellent affinity for the R175H mutant-derived neoepitope–HLA
complex. Despite the low expression of TP53 R175H-derived
neoantigen–HLA complex on the cancer cell surface, T cells
were successfully activated to kill the cancer cells by the scDb in
vitro as well as in mouse models (46). Recently, a TCR-mimic
monoclonal antibody that could target a range of phospho-
neoantigens displayed by HLA-A*02:01 in various tumor cells
has been generated and has shown the capacity to induce T cells to
Frontiers in Immunology | www.frontiersin.org 6
kill tumor cells. The phospho-peptides derived from dysregulated
protein phosphorylation in different types of tumor cells may serve
as shared tumor-specific neoantigens (83). Based on these findings,
a TCR-mimic antibody that can selectively target shared
neoantigens while boosting T-cell function may theoretically be
utilized to target malignancies with common mutations and could
work as an off-the-shelf agent in cancer immunotherapy, although
more research is required to testify this idea.

The Possible Transformation of NK Cells’
Antitumor Function Based on Neoantigens
Human NK cells are the first line of antitumor lymphocytes, and
lower NK-cell cytolytic activity has been linked to a higher tumor
incidence (84–86). NK cells are cytotoxic toward tumor cells
without prior activation and can regulate various immune
responses by secreting immune-regulatory cytokines as well as
chemokines (87–89). The combination of activating and
inhibiting signals modulates the antitumor action of NK cells.
Killer cell immunoglobulin-like receptors (KIRs) and natural
killer group 2 A (NKG2A) are the two primary inhibitory
receptors, both of which recognize HLA molecules (90). KIRs
are transmembrane receptors of type I that majorly detect
classical HLA I, which include HLA-A, HLA-B, and HLA-C
(91, 92). KIR genes have several alleles, and variability within
each gene allows the complex KIR repertoire to recognize
changes in HLA I expression, which is itself highly
A B C

FIGURE 2 | The possible influence of neoantigens on NK-cell function. (A) The interactions between inhibitory receptors and their specific MHC/self-peptide ligands
inactivate NK cells, thus preventing cytolytic activity against healthy cells; (B) decrease or even lose the expression of MHC I on the surface of tumors, resulting in the
“missing-self “recognition of NK cells to kill tumor cells; (C) the neoantigen presented by MHC I molecules on the surface of tumor cells may change the interaction
affinity of MHC I and inhibitory receptors (such as KIRs) and finally influence the activity of NK cells.
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polymorphic (93). KIRs with long intra-plasmatic tails and
immunoreceptor tyrosine-based inhibitory motifs (ITIMs),
such as KIR2DL1, KIR2DL2, and KIR2DL3, can interact with
HLA-C, while others, including KID3DL1 and KIR3DL2, engage
with HLA-A and -B (94). NKG2A, which forms a heterodimer
with CD94, is a type II transmembrane receptor that can interact
with a non-classic HLA molecule HLA-E (95).

Unlike T cells that detect the peptide in an MHC-restricted
manner, NK-cell receptors that can recognize MHC molecules
tend to bind to MHC itself and may be less specific for the
provided peptide. However, the peptide could modify the
interaction affinity of MHC with NK receptors (96). KIR3DL2
can interact with HLA-A3 and HLA-A11, and the interaction
affinity appears to be highly dependent on the peptide displayed
by HLA, with residue 8 playing a key role in recognition (97).
Similarly, the interaction of KIR2DL2/3 with HLA-C was peptide
selective. The bound peptide, particularly residues 7 and 8, can
increase or abrogate the binding specificity of KIR2DL2/3 to
HLA-C (98). Furthermore, peptides displayed by HLA I can
operate as changed peptide ligands and effectively diminish KIR-
mediated inhibition, indicating that alterations in the peptide
presented by HLA I can influence NK-cell function (99). A
peptide deriving from the core protein of hepatitis C virus
(HCV) presented on HLA-C*03:04 modulates the function of
NK cells by engaging the inhibitory receptor KIR2DL3 in a
sequence-dependent manner, further implying that the binding
of KIRs with HLA molecules and the function of NK cells can be
influenced by the peptide (100). This specific peptide-dependent
binding of KIR with HLA provides a potential mechanism for
pathogens and self-peptides to influence NK-cell activation by
varying inhibitory levels. The creation of wholly unique regions
of amino acid sequence that can bind to MHC molecules should
be conceivable as a result of the DNA changes accumulated in
tumor cells. Following the malignant transformation of cells, the
repertoire of peptides displayed byMHCmolecules changes (13).
Based on the fact that HLA–KIR interaction affinity is peptide-
dependent and can influence the effector function of NK cells
(97, 99–101), the altered peptide repertoire displayed by MHC
molecules in cancer cells may be considered to influence the
function of NK cells. As a result, it would be interesting to see if
the neoantigens displayed by MHC molecules on tumor cells,
especially for those that do not induce the downregulation of
MHC I, may change the binding affinity of KIR-MHC and finally
modify NK-cell activation (Figure 2).

The synergistic function of many NK-cell surface receptors
determines the status of NK cells. Tumor cells can be rendered
“invisible” to NK cells by upregulating inhibitory signals or/and
downregulating activating signals on NK cells. The function of
NK cells may even be modified by alteration in the affinity of the
KIR–MHC interaction through the diverse peptide repertoire
given by MHC molecules. Interfering with the activating and
inhibitory signals has been utilized in several therapeutic
techniques to boost NK-cell function (102–104). However, the
possibly changed interaction affinity of the KIR-peptide/MHC
complex resulting from the varied repertoire of a peptide given
by MHC molecules in tumor cells may require more research.
Frontiers in Immunology | www.frontiersin.org 7
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So far, strategies to boost the antitumor function of T and NK cells
have yielded encouraging results. As knowledge of the neoantigens
presented by MHC molecules expands, the research and clinical
implementation of neoantigen-based therapeutic methods,
including adoptive T-cell therapy and cancer vaccines, are full of
potential in the clinical applications. However, there are still many
questions required to be answered. For example, how may
neoantigens should be identified and therapeutic strategies
developed for cancers with modest mutation loads? Even though
the discovery of neoantigen has the potential to lead to such
appealing tailored treatments, high prices and time constraints
limit their use. Thus, how can neoantigen-based therapeutics be
developed faster and at a lower cost? Meanwhile, while
neoantigen-targeted therapy for cancer patients is based on each
patient’s unique neoantigen repertoire, the obstacles to predicting
and selecting the best neoantigens for each patient remain. Because
of that, can we better investigate some off-the-shelf cancer
therapies based on common neoantigens and HLA allotypes?
Furthermore, because neoantigen-based vaccines and adoptive
T-cell treatment may be limited in their ability to overcome
immune suppression caused by regulatory cells or tumor-derived
factors as a monotherapy, they might be combined with other
therapies to fully utilize their potential. Many studies indicated that
the immune response can be boosted by conventional
radiotherapies, chemotherapies, and targeted therapies (105–
107). It remains to be determined, however, how and when
combination therapy should be applied. Finally, now that
intriguing customized treatment options based on neoantigen-
reactive T cells have been brought, may new therapeutic
approaches also be developed in NK cells against malignancies
with a distinct peptide–MHC complex repertoire? All in all, a
better understanding of the mechanisms underlying the activation
of immune cells against cancer cells using neoantigens will
undoubtedly aid the development of effective new mono- or
combination cancer therapeutic strategies.
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