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Abstract

Excitatory synaptic signaling in cortical circuits is thought to be metabolically expensive. Two fundamental brain functions,
learning and memory, are associated with long-term synaptic plasticity, but we know very little about energetics of these
slow biophysical processes. This study investigates the energy requirement of information storing in plastic synapses for an
extended version of BCM plasticity with a decay term, stochastic noise, and nonlinear dependence of neuron’s firing rate on
synaptic current (adaptation). It is shown that synaptic weights in this model exhibit bistability. In order to analyze the system
analytically, it is reduced to a simple dynamic mean-field for a population averaged plastic synaptic current. Next, using the
concepts of nonequilibrium thermodynamics, we derive the energy rate (entropy production rate) for plastic synapses and a
corresponding Fisher information for coding presynaptic input. That energy, which is of chemical origin, is primarily used
for battling fluctuations in the synaptic weights and presynaptic firing rates, and it increases steeply with synaptic weights,
and more uniformly though nonlinearly with presynaptic firing. At the onset of synaptic bistability, Fisher information and
memory lifetime both increase sharply, by a few orders of magnitude, but the plasticity energy rate changes only mildly. This
implies that a huge gain in the precision of stored information does not have to cost large amounts of metabolic energy, which
suggests that synaptic information is not directly limited by energy consumption. Interestingly, for very weak synaptic noise,
such a limit on synaptic coding accuracy is imposed instead by a derivative of the plasticity energy rate with respect to the
mean presynaptic firing, and this relationship has a general character that is independent of the plasticity type. An estimate
for primate neocortex reveals that a relative metabolic cost of BCM type synaptic plasticity, as a fraction of neuronal cost
related to fast synaptic transmission and spiking, can vary from negligible to substantial, depending on the synaptic noise
level and presynaptic firing.

Keywords Energy cost of synaptic plasticity - Accurate storing of synaptic information - Bistability - Memory lifetime -
Metabolism - Thermodynamic limits on synaptic information

1 Introduction

Information and energy are intimately related for all physi-
cal systems because information has to be written on some
physical substrate which always comes at some energy
cost (Landauer 1961; Bennett 1982; Leff and Rex 1990;
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Berut et al. 2012; Parrondo et al. 2015). Brains are phys-
ical devices that process information and simultaneously
dissipate energy (Levy and Baxter 1996; Laughlin et al.
1998) in the form of heat (Karbowski 2009). This ener-
getic cost is relatively high (Laughlin et al. 1998; Aiello
and Wheeler 1995; Attwell and Laughlin 2001; Karbowski
2007), which is the likely cause for a sparse coding strat-
egy in neural circuits (Balasubramanian et al. 2001; Niven
and Laughlin 2008). Experimental studies (Shulman et al.
2004; Logothetis 2008; Alle et al. 2009), as well as theoreti-
cal calculations based on data (Harris et al. 2012; Karbowski
2012), indicate that fast synaptic signaling, i.e. synaptic
transmission, together with neuron’s action potentials are
the major consumers of metabolic energy. This type of
energy use is of electric origin, and is caused by flows of
electric charge due to voltage and concentration gradients
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and subsequent pumping ions out to maintain these gradi-
ents (Attwell and Laughlin 2001; Karbowski 2009). This
very pumping of electric charge requires large amounts of
energy.

Brains are also highly adapting objects, which learn
and remember by encoding and storing long-term informa-
tion in excitatory synapses (dendritic spines) (Kasai et al.
2003; Takeuchi et al. 2014). These important slow processes
are driven by correlated electric activities of pre- and post-
synaptic neurons (Markram et al. 1997; Bienenstock et al.
1982; Miller and MacKay 1994; Song et al. 2000; Van
Rossum et al. 2000) and cause plastic modifications in
spine’s intrinsic molecular machinery, leading to changes in
spine size, its conductance (weight) and postsynaptic den-
sity (PSD) (Kasai et al. 2003; Bonhoeffer and Yuste 2002;
Holtmaat et al. 2005; Meyer et al. 2014). Consequently
synaptic plasticity and associated information writing and
storing must cost energy, since spines require some energy
for inserting and maintaining AMPA and NMDA recep-
tors on spine membrane (Huganir and Nicoll 2013; Choquet
and Triller 2013), as well as for powering various molec-
ular processes associated with PSD (Lisman et al. 2012;
Miller et al. 2005). In contrast to fast synaptic transmis-
sion and neuron discharges, which are of electric nature,
the plastic slow synaptic processes are of chemical origin
(interactions between spine proteins), and thus require the
chemical energy (Karbowski 2019).

One of the empirical manifestations of the plasticity-
energy relationship is present for mammalian cortical
development, during which synaptic density can change
several fold and strongly correlates with changes in
glucose metabolic rate of cortical tissue (Karbowski 2012).
Unfortunately, despite a massive literature on modeling
synaptic plasticity (e.g. Bienenstock et al. 1982; Miller and
MacKay, 1994; Song et al. 2000; Van Rossum et al. 2000;
Billings and Van Rossum, 2009; Clopath et al. 2010; Pfister
and Gerstner 2006; Tetzlaff et al. 2011; Toyoizumi et al.
2014; Costa et al. 2015; Shouval et al. 2002; Graupner and
Brunel 2012; Ziegler et al., 2015; Fusi et al. 2005; Benna
and Fusi 2016; Gutig et al. 2003; Smolen et al. 2012),
our theoretical understanding of the energetic requirements
underlying synaptic plasticity and memory storing 1is
currently lacking. In particular, we do not know the answers
to the basic questions, such as how does energy consumed
by plastic synapses depend on key neurophysiological
parameters, and more importantly, whether energy restricts
the precision of synaptically encoded information and its
lifetime, and to what extent. Such a knowledge might lead
to a deeper understanding of two fundamental problems in
neuroscience: one related to the physical cost and control
of learning and memory in the brain (Kasai et al. 2003;
Takeuchi et al. 2014; Lisman et al. 2012; Costa et al.
2015; Kandel et al. 2014; Chaudhuri and Fiete 2016; Zenke
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and Gerstner 2017), and another more practical related to
dissecting the contribution of synaptic plasticity to signals
in brain imaging (Attwell and Laughlin 2001; Logothetis
2008; Engl et al. 2017; Magistretti et al. 1999; Shulman
et al. 2004). A recent study by the author (Karbowski 2019)
provided some answers to the above questions, by analyzing
molecular data in synaptic spines and by modeling energy
cost of learning and memory in a cascade model of synaptic
plasticity (mimicking molecular interactions in spines).
From that study it follows that the average cost of synaptic
plasticity constitutes a small fraction of the metabolic cost
used for fast excitatory synaptic transmission, about 4 —
11%, and that storing longer memory traces can be relatively
cheap (Karbowski 2019). However, this study left open
other questions, e.g., how does the energy cost of synaptic
plasticity depend on neuronal firing rates, synaptic noise,
and other neural characteristics, and what is the relationship
between such energy cost and a precise storing of synaptic
information?

The main goal of this study is to uncover a relation-
ship between synaptic plasticity, its energetics, and a precise
information storing at excitatory synapses for one of the
best known forms of synaptic plasticity due to Bienenstock,
Cooper, and Munro, the so-called BCM rule (Bienenstock
et al. 1982). This is a different (more macroscopic) but a
complementary level of modeling to the one (microscopic)
in Karbowski (2019). Specifically, we want to determine
the energy cost associated with the accuracy of information
encoded in a population of plastic synapses about the presy-
naptic input. Additionally, we want to find the relationship
between plastic energy rate and memory duration about a
single event at synapses. In other words, our goal is to find
the metabolic requirement of maintaining an accurate infor-
mation at synapses in the face of ongoing variable neural
activity and thermodynamic fluctuations inside spines asso-
ciated with variation in the number of membrane receptors.
The phenomenological BCM rule has been shown to explain
several key experimental observations (Cooper and Bear
2012), and it is equivalent to a more microscopic STDP rule
(Markram et al. 1997; Song et al. 2000; Van Rossum et al.
2000) under some very general conditions (Pfister and Ger-
stner 2006; Izhikevich and Desai 2003). Since, the BCM
rule is believed to describe initial phases of learning and
memory (Zenke and Gerstner 2017), the focus of this work
is on the energy cost and coding accuracy of the early synap-
tic plasticity, i.e. early long-term potentiation (e-LTP) and
depression (e-LTD), which lasts from minutes to several
hours. We do not consider explicitly the effects of mem-
ory consolidation that operate on much longer time scales
and which are associated with late phases of LTP and LTD
(I-LLTP and 1-LTD) (Ziegler et al. 2015; Benna and Fusi
2016; Redondo and Morris 2011). However, we do provide
a rough estimate of the energetics of these late processes,
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and they turn out to be much less energy demanding than
the early phase plasticity.

One can question whether the approach taken here,
with the macroscopic BCM type model, is reasonable for
modeling and calculating energy cost of synaptic plasticity?
Maybe a more microscopic approach should be used
with explicit molecular interactions between PSD proteins?
However, the basic problem with such a microscopic more
detailed approach is that we do not know most of the
molecular signaling pathways in a dendritic spine, we do
not know the rates of various reactions, and even the basic
mechanism of encoding information at synapses is unclear.
For example, for a long time it was thought that CaMKII
persistent autophosphorylation provides a basic mechanism
of information storage via bistability (Lisman et al. 2012;
Miller et al. 2005). However, experimental data indicate that
CaMKII enhanced activity after spine activation is transient
and lasts only about 2 min (Lee et al. 2009), which casts
doubts on its persistent enzymatic activity and its role as a
“memory molecule” (for a review see, Smolen et al. 2019).
Taking all these uncertainties into account, it seems that
more macroscopic approach might be more reliable, at least
partly.

Because synapses/spines are small, they are strongly
influenced by thermal fluctuations (Kasai et al. 2003; Cho-
quet and Triller 2013; Statman et al. 2014). For this reason,
this paper uses universal methods of stochastic dynamical
systems and non-equilibrium statistical mechanics (Nicolis
and Prigogine 1977; Van Kampen 2007; Risken 1996; Lan
et al. 2012; Mehta and Schwab 2012; Tome 2006; Tome
and de Oliveira 2010; Seifert 2012). The latter are generally
valid for all physical systems, including the brain, oper-
ating out of thermodynamic equilibrium. Regrettably, the
methods of non-equilibrium thermodynamics have virtually
not been used in neuroscience despite their large potential
in linking brain physicality with its information process-
ing capacity, with two recent exceptions (Goldt and Seifert
2017; Karbowski 2019). (This should not be confused with
equilibrium thermodynamics, whose methods have occa-
sionally been used in neuroscience, although in a different
context, e.g., Balasubramanian et al. 2001; Tkacik et al.
2015; Friston 2010.)

1.1 General outline of the problem considered

It is generally believed that long-term information in
excitatory synapses is encoded in the pattern of synaptic
strengths or weights (membrane electric conductance),
which is coupled to the molecular structure of postsynaptic
density within dendritic spines (Takeuchi et al. 2014;
Lisman et al. 2012; Miller et al. 2005; Kandel et al. 2014;
Zhu et al. 2016). This study considers the energy cost
associated with maintaining the pattern of synaptic weights.

In particular, we analyze the energetics and information
capacity of the fluctuations in the number of AMPA and
NMDA receptors on a spine membrane, or equivalently,
fluctuations in the synaptic conductance. Such a variability
in the receptor number tends to spread the range of synaptic
weights (affecting their structure and distribution) that has a
negative consequence on the encoded information and can
lead to its erasure. In terms of statistical mechanics, the
receptor fluctuations increase the entropy associated with
the distribution of synaptic weights, and that entropy has
to be reduced to preserve the information encoded in the
weights. This very process of reducing the synaptic entropy
production is a nonequilibrium phenomenon that costs some
energy, which has to be provided by various processes
involving ATP generation (Nicolis and Prigogine 1977).

The BCM type of synaptic plasticity used here is a
phenomenological model that does not relate in a straight-
forward way to the underlying synaptic molecular pro-
cesses. Empirically speaking, a change in synaptic weight
in e-LTP is caused by a sequence of molecular events, of
which the main are: activation of proteins in postsynaptic
density, which subsequently stimulates downstream actin
filaments elongation (responsible for a spine enlargement),
and AMPA and NMDA receptor trafficking (Huganir and
Nicoll 2013; Choquet and Triller 2013). Therefore, it is
assumed here that BCM-type rule used here macroscop-
ically reflects broadly these three microscopic processes,
especially the first and the last. (Spine volume related to
actin dynamics is not explicitly included in the model,
although it is known experimentally that spine volume and
conductance are positively correlated (Kasai et al. 2003).)
Thus, it is expected that the synaptic energy rate calcu-
lated here is related to ATP used mainly for postsynaptic
protein activation through phosphorylation process (Zhu
et al. 2016), and receptor insertion and movement along
spine membrane. Obviously, there are many more molec-
ular processes in a typical spine, but they are either not
directly involved in spine conductance variability or they are
much faster than the above processes (e.g. releasing Ca>+
from internal stores is fast). A detailed empirical estimation
based on molecular data suggests that protein activation via
enhanced phosphorylation is the dominant contribution to
the energy cost (ATP rate) of synaptic plasticity (Karbowski
2019). Therefore, the theoretical energy rate of synaptic
plasticity determined here should be viewed as a minimal
but a reasonable estimate of energetic requirement of LTP
and LTD, and it is strictly associated with the information
encoded in synaptic weights.

Experimental data show that excitatory synapses can
exist in two or more stable states, characterized by discrete
synaptic weights or sizes (Kasai et al. 2003; Montgomery
and Madison 2004; Petersen et al. 1998; O’Connor et al.
2005; Loewenstein et al. 2011; Bartol et al. 2015). Data on
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a single synapse level indicate that synapses can operate as
binary elements either with low or high electric conductance
(Petersen et al. 1998; O’Connor et al. 2005). On the
other hand, the data on a population level, more relevant
to this work, show that synapses can assume more than
two stable discrete states (Kasai et al. 2003; Loewenstein
et al. 2011; Bartol et al. 2015). In either case, the issue
of bistability vs. multistability is not yet resolved. In this
study, a minimal scenario is considered in which synapses
together with their postsynaptic neuron can effectively act
as a binary coupled system, characterized by a single
variable, which is the mean-field postsynaptic current with
one or two stable states. The bistability is produced here
from an extended BCM model, which in principle allows
for continuous changes in synaptic weights for individual
synapses. The important point is that these continuous
weights are correlated, due to plasticity constraints, and thus
converge on a mean-field population level either to one or
to a couple of stable values.

Synaptic plasticity processes are induced by a correlated
firing in pre- and post-synaptic neurons, and thus a model
of neuron activity is also needed. This study uses a firing
rate neuron model of the so-called class one nonlinear firing
rate curve, which is believed to be a good approximation to
biophysical neuronal models (Ermentrout 1998; Ermentrout
and Terman 2010), see the Methods for details.

The paper is organized as follows. First, we introduce
and solve an extended model of the classical BCM plasticity
rule. Then, we derive an effective equation for the mean-
field stochastic dynamics of the synaptic currents for that
extended plasticity model. Next, we translate this effective
equation into probabilistic Fokker-Planck formalism, and
derive an effective potential for the mean-field synaptic
current. With the help of the effective potential we
find entropy production and Fisher information associated
with the synaptic plasticity stochastic dynamics. Entropy
production is related to the energy cost of the extended
BCM plasticity, while the Fisher information is related to
the accuracy of encoded information in a population of
plastic synapses about the presynaptic input. Details of the
calculations are provided in the Methods (and some in
Supporting Information S1).

2 Results
2.1 Model of synaptic plasticity: stochastic BCM type

We consider a sensory neuron with N plastic excitatory
synapses (dendritic spines). We assume that synaptic
weights w; (i = 1, ..., N), corresponding to spine electric
conductances, change due to two factors: correlated activity
in presynaptic and postsynaptic firing rates (f; and r,
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respectively), and noise in spine conductance (~ oy).
The noise is caused by two basic factors: an internal
thermodynamic fluctuations in spines because of their small
size (< 1 pum) and relatively small number of molecular
components (Kasai et al. 2003; Statman et al. 2014), and
by presynaptic fluctuations in the firing rates that drive
the ionic and molecular fluxes in spines. The dynamics of
synaptic weights is given by a modified BCM plasticity rule
(Bienenstock et al. 1982):

dw; (w; — €a) \/Ecrw(l—i—rffi)

L Afr(r—0)— o
g = M=) == = (1)

Tg 7 = + ar”,

where A is the amplitude of synaptic plasticity controlling
the rate of change of synaptic conductance, t,, is the
weights time constant controlling their decay duration, 6
is the homeostatic variable the so-called sliding threshold
(adaptation for plasticity) related to an interplay of LTP
and LTD with time constant 79, and « is the coupling
intensity of 6 to the postsynaptic firing rate r. The noise
term in Eq. (1) is represented as Gaussian white noise
n; with zero mean and Delta function correlations, i.e.,
i)y = 0 and (5;(n;(¢))y = 8;8(t — ') (Van
Kampen 2007). The amplitude of the noise in weights
is proportional to the standard deviation oy, (in units of
conductance) due to basic thermodynamic fluctuations in
spines, and to the factor (1 + 77 f;) due to additional
fluctuations in the presynaptic activities. The latter factor
simply amplifies the basic thermodynamic fluctuations. The
time scale 7y of fluctuations in f; was added in the noise
term to maintain a unitless form of the amplifying factor.
Finally, the product €a is the minimal synaptic weight when
there is no presynaptic stimulation (f; = 0), where the
unitless parameter ¢ < 1. There are two modifications
to the conventional BCM rule: the stochastic term ~ o,
and the decay term of synaptic weights with the time
constant t,,, which is key for reproducing a binary nature of
synapses (Petersen et al. 1998; O’Connor et al. 2005) and
for determining energy used by synaptic plasticity.

The conventional BCM rule (i.e. for 7, — o0 and o, =
0) describes temporal changes in synaptic weights due to
correlated activity of pre- and post-synaptic neurons (both
fi and r are present on the right in Eq. (1)). These activity
changes can either increase the weight, if postsynaptic firing
r is greater than the sliding threshold 6 (this corresponds
to LTP), or they can decrease the weight if r < 6
(corresponding to LTD). The interesting aspect is that 0 is
also time dependent, and it responds quickly to changes
in the postsynaptic firing. In effect, when both dynamical
processes in Eqs. (1-2) are taken into account, the synapse is
potentiated for low r (LTP) and depressed for high r (LTD).
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We assume, in accordance with empirical data, that
presynaptic firing rates f; change on a much faster time
scale (ty ~ 0.1 — 1 sec) than the synaptic weights w;
(changes on time scale 7,, ~ 1 hr). We further assume
that each presynaptic firing rate f; fluctuates stochastically
around mean value f, with a standard deviation o, and
that these fluctuations are uncorrelated. This implies that
there is a time scale separation between neural activities and
synaptic plasticity activities.

2.2 Numerical solution of the stochastic extended
BCM plasticity model

In this section we solve numerically the model represented
by N + 1 Egs. (1-2).

We first consider the model without synaptic noise, i.e.,
oy = 0. This deterministic system can exhibit collective
bistability, regardless of whether oy is O or finite. The
critical factor in generating bistability is that the time
constant 76 for the homeostatic variable 6 is much smaller
than synaptic plasticity time constant 7,. That is, the
variable 6 must be much faster than the synaptic weights
w;. Typically, bistability is found for 76/t,, < 0.06,
and we work in this regime throughout the whole study
(for the neurobiological validity of this regime, see the
Discussion section). Collective bistability means that all
synaptic weights can converge to two different fixed points
depending on the initial conditions (Fig. 1). When all

synapses start from sufficiently small weights, then they
all converge into the same small synaptic weight €a. If the
initial weights are much larger than €a, then all synapses
become asymptotically strong. Thus, there is a strong
collective behavior of synapses in the deterministic case.

Two main parameters that control the shape of the
bifurcation diagram are the synaptic plasticity amplitude
A and the mean firing rate f, (Fig. 2). For a fixed f,,
synapses can be either in monostable or bistable phase,
depending on the value of A (Fig. 2a). Generally, for small
and sufficiently large A there is monostability, while for
intermediate A there is bistability. For a fixed A, the picture
is slightly more complex: bistability can emerge already for
fo = 0 (for intermediate 1), or for some finite f, (for small
A), or bistability can never appear (for large 1) (Fig. 2a).
The bifurcation diagram, i.e., the dependence of asymptotic
value of w; on f, is presented in Fig. 2b.

Inclusion of synaptic noise, ie. o, > 0, leads
to stochastic fluctuations of individual synapses. In the
monostable regime, fluctuations are around a given fixed
point (either weak or strong weight). In the bistable regime,
individual synapses fluctuate between weak and strong
weights (Fig. 3a). Despite synaptic noise, the collective
nature of synapses is statistically preserved, as all synapses
have similar weight distributions (Fig. 3b, c). These
distributions are much more spread in the bistable regime
than in the monostable, and they seem to be almost uniform
for bistability.

(nS)

10

I
l
0 0.5 ] 1.5

Time (sec)

Fig. 1 Asymptotic behavior of the deterministic extended BCM
model. Temporal dependence of deterministic synaptic weights w;
from Eqgs. (1-2). (Upper panel) When mean firing rate f, is smaller
than some threshold value, then all weights converge on the same
asymptotic value regardless of the initial values (red lines for strong
initial synapses, and blue lines for weak initial synapses). This case

2 2.5 3 3.5 4
x10%

corresponds to monostability. (Lower panel ) When f, is in the inter-
mediate interval, then synaptic weights can converge into two separate
values, depending on initial conditions. In this regime, there are two
different coexisting fixed points (bistability). Strong initial weights
lead to large final value (red lines), and weak initial weights lead to low
final value (blue lines). Parameters used: A = 9 - 10~7 and « = 0.001
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Fig.2 Phase and bifurcation

diagrams of w; for the
deterministic extended BCM
model. a Schematic phase
diagram A vs. f, for monostable
(mono) and bistable (bi)
behavior of synaptic weights w;.
Bistability is lost for sufficiently
large A. Note that the critical 0

mono

values of A and f,, for which 0 5
bistability emerges and
disappears, are inversely related. b

25 30

b Bifurcation diagram of an .
asymptotic synaptic weight vs.
fo for a typical synapse. The
bistable regime is indicated by
dotted lines. Parameters used:
A =9-10"7,and ¥ = 0.001 — 3

w. (nS)

Il Il Il Il Il Il

2.3 Dimensional reduction of the stochastic BCM
model: dynamic mean field

The stochastic system of N 4 1 equations described by Eqs.
(1-2) is not tractable analytically, because it is the coupled
nonlinear system. The coupling takes place via postsynaptic
firing rate r, which depends on all synaptic weights w; (in
Egs. 1-2). In this section an effective mean-field model
corresponding to the extended BCM model in Egs. (1-2)
is presented and discussed that is amenable to analytical
considerations. In this dynamical mean-field, we focus on
a single dynamic variable, which is a population averaged

Fig.3 Distributions of synaptic

20 25 30 35
f. (Hz)

40

synaptic current v defined by Eq. (25) in the Methods.
The single variable v is sufficient to describe the global
stochastic dynamics of the original model given by Egs.
(1-2), because together with postsynaptic firing r it forms
a closed mathematical system of just two equations; see
below. The practical reason behind introducing the dynamic
mean-field is that this approach enables us to obtain explicit
formulae for synaptic plasticity energy rate and coding
accuracy.

We can reduce the multidimensional system (1-2) into
a single effective equation, primary because of the time
scale separation between neural firing dynamics (changes

weights w; for the stochastic
extended BCM model. a
Temporal fluctuations of an ;
individual synapse in the

bistable regime. Note stochastic

jumps between weak and strong 4 4.5 5 5.5 6 6.5 7
weights. b Distribution of b Time (sec) <104
synaptic weights for an
individual synapse (the same as > _ 04 T T T T T T T
in a) in the bi- (f, = 10 Hz; 2 s TN o
blue solid line) and mono-stable g 'g 0.2 ~0 f 210 -
(fo = 1 Hz; red dashed line) 85 \\\J‘?_—\L\L
regimes. ¢ Cumulative L= o0 ! S— -
distribution of synaptic weights 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
for all N synapses in the bi- c Wi
(fo = 10 Hz; blue solid line)
and mono-stable (f, = 1 Hz; 39 0.4 - ! T T T T T T
red dashed line) regimes. Note 58 RN =1
that both distributions in (b) and 23 0.2 | ~9 f =10 i
(c) are very similar. Parameters o E M

d: A =910,k = 0.001 Lo o : PR .
use ’ ’ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
and o, = 0.1 nS W
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typically on the order of seconds or less) and between
synaptic plasticity (changes on the timescale of min-
utes/hours). Moreover, we assume that the two synaptic
plasticity processes, described by Egs. (1) and (2), have two
distinct time scales, and t,, dominates over 76 in dura-
tion. For the neurophysiological validity of this assumption,
see the Discussion. Consequently, for times of the order of
Ty, We have d0/dt =~ 0, which implies that 6 =~ ar?.
The details of the reduction procedure can be found in the
Methods, in which we obtain a single plasticity equation
for a population averaged excitatory postsynaptic current
v per synapse, which is related to w; and f; by v =
(B/N)Y_,; fiw;, where B depends on neurophysiological
parameters and is defined in Eq. (25). The result of the
reduction procedure is

\/EO'U_

d
0 7. 3)

2
i hre(1 —ar) — (v —ecfy)/Tw + N
This equation essentially couples slow synaptic activities
with fast neural activities, and gives a single equation
describing the mean-field dynamics of the coupled system:
synapses plus their postsynaptic neuron. In Eq. (3), the
symbol 4 is the driving-plasticity parameter given by

h=1B(f; + 7). (4)

with f, and oy denoting the mean and standard deviation
of presynaptic firing rates. Mathematically, the driving-
plasticity A is proportional to the product of plasticity
amplitude A and the presynaptic driving ( f02 + o}%), which
implies that i grows quickly with the presynaptic firing
rate. Physically, % is proportional to the electric charge that,
on average, can enter the spine due to a correlated activity
of pre- and post-synaptic neurons (% has a unit of electric
charge). This means that the magnitude of 4 is a major
determinant of the plasticity (driving force counteracting
the synaptic decay), since larger & can experimentally
correspond to more Cat? entering the spine and a higher
chance of invoking a change in synaptic strength, which
agrees qualitatively with the experimental data (Huganir and
Nicoll 2013; Lisman et al. 2012).

The rest of the parameters in Eq. (3) are ¢ = af,
and 7 = (Zi ni) /\/N , which denotes a new (population
averaged) Gaussian noise with zero mean and delta function
correlations. This population noise has the amplitude o,
which corresponds to a standard deviation of v when 4 = 0,
and it is given by
%z%%m+n(ﬁ+ﬁﬁ 5)
Note that o, scales as 1/+/N, and it is a product of the
intrinsic synaptic conductance noise and of the presynaptic
neural activity. The latter implies that a higher presynaptic
activity amplifies the current noise.

In Eq. (3), the postsynaptic firing rate r assumes its quasi-
stationary value (due to time scale separation), and is related
to v through (for details see the Methods):

1
r=s (—4% + V4% + 4a%), ©6)

where A is the postsynaptic firing rate amplitude, and « is
the intensity of firing rate r adaptation. Broadly speaking,
the magnitude of « reflects the strength of neuronal self-
inhibition due to adaptation to synaptic stimulation (see
Egs. (21) and (22) in the Methods). Generally, increasing
k leads to decreasing postsynaptic firing rate r (Fig. 4a).
For k = 0, we recover a nonlinear firing rate curve (square
root dependence on synaptic current v) that is characteristic
for class one neurons (Ermentrout 1998; Ermentrout and
Terman 2010), while for sufficiently large «, i.e. for x >
2,/v/A, we obtain a linear firing rate curve r(v) ~ v/k
(Fig. 4a). Equations (3) and (6) form a closed system for
determining the stochastic dynamics of the postsynaptic
current v.

2.4 Geometric steady state solution
of the deterministic mean-field: emergence
of bistability in v

We can use geometric considerations to gain some intuitive
understanding of the mean-field deterministic behavior
represented by Eqgs. (3) and (6). If we put dv/dt = 0 and
oy, = 01in Eq. (3), we can rearrange it to obtain

v=g(), )

where the right hand side of this equation, g(v) = ecf, +
Twhr?(1 — ar), and it depends on v only through r as in
Eq. (6) (see Fig. 4a). Moreover, the function g(v) has a
maximum with height proportional to #. When £ is very
small, Eq. (7) has only one solution v ~ O(e) (i.e. one
intersection point of the curves representing the functions on
the right and on the left; Fig. 4b). This solution corresponds
to weak synapses and monostable regime. Increasing /, by
increasing fp, causes an increase in the maximal value of
the right hand side in Eq. (7), such that more solutions
are possible (Fig. 4b). In particular, when # grows above
a certain critical value h.., Eq. (7) generates 3 solutions
(one ~ O(e) and two other ~ O(1)), of which the middle
one is unstable (Fig. 4b). This case corresponds to bistable
regime with two stable solutions, representing weak and
strong synaptic currents that can be called, respectively,
“down” and “up” synaptic states. These two states could
hypothetically be related to thin and mushroom dendritic
spines, with small and large number of AMPA receptors,
respectively (Bourne and Harris 2007). For very large
driving-plasticity / the two lower solutions disappear and

@ Springer



78

J Comput Neurosci (2021) 49:71-106

a
40 T T T
~ k=10 © -4
N k=10 " _
T 20 == ]
S— R -
= - k=10 2
-
0« = T 1
0 1 2 3 4
b 0 v (nA) %1073
T T T
6 T ]
o ., y=Vv
L o N, ]
’; 4 44""’ %
~ e Y
Ot »”’:’ / “\ 7
,.o""’ -'-— — - -—— == - - - ‘\“
0 2§_‘:"_'1(' 1 1 1 =% i
0 Vg4 1 2 Yy 3 4
v (nA) x1073

Fig. 4 Firing rates and emergence of bistability in the mean-field
model: theory. a Postsynaptic firing rates r as functions of the popu-
lation averaged synaptic current v for different neuronal adaptations
values « (in nA-sec). Increasing « causes decrease in r and makes the
functional form r(v) more linear. b Graphical solutions of Eq. (7) and
multiple roots for stationary v. For small driving-plasticity & there is
only one intersection of g(v) and the line y = v at v ~ O(€), cor-
responding to vy and monostability (dashed red line; fy = 0.3 Hz,

we have again a monostable regime with strong synapses
only (Fig. 4b).

A geometrical condition for the emergence of bistability
is when the function g(v) in Eq. (7) first touches
tangentially the line y = v, i.e. when dg/dv = 1 (Fig. 4b).
Solving this condition together with Eq. (6) yields for e < 1
the critical value of the driving-plasticity parameter /., as

(1 V1 (OlKA2)_1>2 + 0(e). (8)

hcr = %
Tw
Note that for very fast decay in Eq. (3), i.e. for 7, — 0, the
bistability is lost, since then A, +— 00, and there is only
one solution corresponding to weak synapses v ~ O (€).
Bistability is also lost in the opposite limit of extremely
slow decay, t,, +—> 00, but in this case the only stable
solution corresponds to strong synapses. Interestingly, for
very strong neural adaptation, k — 0o, the bistability also
disappears, since then h. +> oo. This case corresponds
to extremely small postsynaptic firing rates, r v/K
0 (Fig. 4a), and indicates the absence of a driving force
capable of pushing synapses to a higher conducting state.
On the other hand, when there is no adaptation, « +> 0, the
critical h. +— (rwAz)_l, i.e. it is finite. This means that
it is easier to produce synaptic bistability for neurons with
stronger nonlinearity in their firing rate curves (see Eq. 6;
Fig. 4a).

~

~ ~

~
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oy = 8 Hz). For higher h (h > h,,) there are three intersections, but
the middle one corresponds to an unstable solution, which in effect
yields two stable solutions, i.e. bistability (dashed-dotted yellow line;
fo = 5.0 Hz, oy = 10 Hz). When £k is very large, then there is only
one intersection, and it occurs for large v, corresponding to monosta-
bility with strong synapses v, only (dotted green line; fo = 30.0 Hz,
o = 10 Hz). In panel (b) > = 9- 1077 and « = 0.001

2.5 Analytic steady state solution
of the deterministic mean-field

The above geometric intuition can be supported by an
analytic approach. In the deterministic limit, o, = 0 (which
is obtained either for N — oo or for o, = 0), we can
solve the mean-field model of Eq. (3) in the stationary state,
i.e. we can find its fixed points by setting dv/dt = 0.
To achieve this, it is more convenient to work with the
postsynaptic firing rate r than with v variable, due to a
nonlinear dependence of » on v, which is given by Eq. (6).
Inverting Eq. (6), we find v = «r + (r/A)2, which can be
used in the condition dv/dt = 0. This generates an equation
for roots of the cubic polynomial in the r variable:

atwhr3 — (tph — A_2)r2 +kr —ecf, =0.

©))
The discriminant A of this equation is

A = k2 (tpyh — A™5? — datyih
—2€cfy(twh — A™H[2(twh — A7%)? — 9atykh]
—27(ecfatyh)?’. (10

The sign of A determines how many real roots Eq. (9) has.
Specifically, if A < 0, then Eq. (9) has one real root,
whereas if A > 0 then Eq. (9) has three distinct real roots.
The former case corresponds to monostability, while the
latter to bistability in the mean-field deterministic dynamics
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of Eq. (3). The transition between this two regimes takes
place for A 0. The existence of these regimes
obviously depends on the values of various parameters in
the discriminant A.

The phase diagram of mono- vs. bi-stability in the
parameter space of A, f, (plasticity amplitude vs. mean
presynaptic firing) is shown in Fig. 5. A specific bifurcation
diagram, computed numerically from Eq. (3) for o, = 0, in
which a stationary value of v is plotted as a function of f, is
presented in Fig. 6. The phase and bifurcation diagrams for
stationary v in Figs. 5 and 6 look qualitatively similar to the
phase and bifurcation diagrams of stationary w; in Fig. 2 for
the full N-synaptic system of Egs. (1-2).

Equation (9) can be solved analytically for small €, as a
series expansion in €. The detailed procedure is described
in the Suppl. Information S1. Depending on the sign of
A, = lim0 A /k?, there can be one or three fixed points,
which have the following values

cfo

K

2
va = cfp€ + ( ) hte? + 0(e)

vy = k1 + (rp /A + O(e)

Umax = KT— + (r—/A)* + O(e), (11)
where
hty — A 2+ JA
ra= 2. (12)

2oty h
The value vy is the fixed point for weak synapses (down
state), while v, is the fixed point for strong synapses
(up state). The intermediate value vy, corresponds to an
always unstable fixed point, which serves as a boundary
between the domains of attraction for down and up fixed

Fig.5 Phase diagram of mono-

points. Thus all initial values of v in the (0, v;,4y) interval
converge asymptotically into vy, and all initial values of v
in the (vyqy, 00) interval converge asymptotically into v,.
From Egs. (11) and (12) it can be seen that the value of the
intermediate point vy, decreases as f, (or h) increases,
from the value v, (at the onset of bistability for A, = 0)
to the value v;. This mean that the domain of attraction for
the v, fixed point increases at the expense of the domain
of attraction for the v, fixed point, which shrinks with
increasing f, in the bistable regime.

The critical value of the driving-plasticity parameter /.,
for the emergence of bistability in Eq. (9) can be also
obtained directly from the discriminant A in the limit € —
0. We obtain h. by setting Ag = 0, and solving this
equation for .

2.6 Stochastic mean-field: numerics and effective
potential for synaptic current

When the synaptic noise is present, o, > 0, the synaptic
current v fluctuates. The distribution of v is unimodal for
small mean firing rate f,, and bimodal for sufficiently large
fo (Fig. 7). The bimodal distribution reflects the bistability
found for the deterministic case, and it corresponds to
synapses changing weights from weak to strong.

Stationary average synaptic current (v), which is a
measure of synaptic weights, increases weakly with
presynaptic firing rate mean f, and its standard deviation
o (Figs. 8 and 9). Mean-field values of (v) (computed from
Eq. (41)) start to deviate from the exact numerical values
(computed from Egs. (1)-(2)) for larger levels of synaptic
noise oy, and for higher f, (Figs. 8 and 9).

vs. bi-stability in the
deterministic mean-field model. \
Numerical solution of Egs. (3)
and (6) for o, = 0. a« = 0.001,
b « = 0.012. The solid and
dashed lines are the boundaries
between mono- (mono) and
bistable (bi) regimes, and they

mono

correspond to the condition
A = 0in the (&, f,) space

0 10

60 70 80 90 100

@ Springer



80

J Comput Neurosci (2021) 49:71-106

Fig.6 Bifurcation diagram of v

in the deterministic mean-field a . . . . . . . . .
model. Numerical solution of
Egs. (3) and (6) foro, =0.a 103k i
Parameters used: A =9 - 10~/ &\
and k = 0.001. b Parameters L T —"
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Stochastic Eq. (3) for the dynamics of v can be mapped
into an equation for the dynamics of the probability
distribution of v conditioned on f,, i.e. P(v|f,), described
by a Fokker-Planck equation (see Eqgs. (31-34) in the
Methods). In the stochastic stationary state, characterized
by the stationary probability distribution Ps(v|f,), we can
define a new and important quantity called an effective
potential ®(v|f,), which is a function of the synaptic
current v. The effective potential @ is proportional to the
amount of energy associated with the synaptic plasticity
described by Eq. (3), and it is equal to the integral of the

Fig.7 Distribution of synaptic

[

right hand side of Eq. (3) with o, = 0 (Van Kampen:2007,
see Eq. (36) in the Methods). The explicit form of the
effective potential ® is

v (1
S| fo) =— <§v - ECfO)

Tw

3 (1 ar (1 2ar

Note that the second term in @ (with the large bracket) is
proportional to the plasticity amplitude A through A4. This
term depends on v through the firing rate r (see Eq. (6)).

current v in the stochastic
mean-field model. Numerical \
solution of Egs. (3) and (6) for \
o, > 0. In the monostable
regime (f, = 1 Hz) the
distribution is unimodal with a
sharp peak around vy =~ 0. In
the bistable regime (f, = 10
Hz) the distribution is bimodal
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Fig.8 Average synaptic current
(v) as a function of mean

presynaptic firing rate:
comparison of exact results with
mean-field. a Dependence of (v)
on f, for oy, = 0.02. b The

same for oy, = 0.1. ¢ The same
for o, = 0.5. For all panels
solid lines correspond to exact

result (from Egs. (1)—(2)), 0.04 T T T T T T T
dashed lines to mean-field (from —~
Eq. (44)). The results are for = 0.02 - =
A =9-10"" and ¥ = 0.001 N e T T LT Ty ——— = m— - —— -
0 10 20 30 40 50 60 70 80
c fo (Hz)
T T T T T T T
004 F .
2002 | a
0 g mm m o e e e e e e = = e | = = = = = |= = = = = |= = = = =
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In general, the functional form of the potential ®(v|f,)
determines the thermodynamics of synaptic memory, and
thus it is an important function.

The shape of the potential ®(v|f,) depends on the
relative magnitude of the driving-plasticity /# and the inverse
of the decay time constant 1/7,, (Fig. 10a). In fact, there are
two competing terms in @ that are controlled by 1/7,, and
h. The first term (~ 1/t,,) maintains monostability, while
the second (~ h) promotes bistability. For & greater than the
critical value &, (Eq. (8)), there is bistability and @ has two
minima at v, and vg, corresponding to up (strong) and down
(weak) synaptic states (Fig. 10a), similar to the result for

Fig.9 Average synaptic current

(o]

the deterministic limit. For very large A, there is again only
one minimum related to strong synapses (Fig. 10a). The
two minima are separated by a maximum corresponding to
a potential barrier at v,,,,. Metastable values of v, i.e. the
minima and maximum of the potential, can be found from
the condition d®/dv = 0, which is equivalent to finding the
fixed points of Eq. (3) in the deterministic limit.

If we use a mechanical analogy and treat v as a
spatial coordinate, then synaptic plasticity can be visualized
as a movement in v space (state transitions), which is
constrained by the energy related to ®. This means that
the shape of the function ®(v) determines what kind of

(v) as a function of standard 0.015 .
deviation of the presynaptic
firing rate: comparison of exact
results with mean-field. a o~ 0.01
Dependence of {(v) on o ¢ for \>/
fo = 1 Hz. b The same for 0.005 |-
fo = 10 Hz. For all panels solid
lines correspond to exact
numerical result (from 0 0
Egs. (1))—(2)), dashed lines to
mean-field (from Eq. (44)). The
results are for A =9 - 1077, 0.015 ‘
x = 0.001, and 0, = 0.1
0.01
—
Z
0.005
0 ==
0 5
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Fig. 10 Effective synaptic potential, metastability, and memory life-
time: theory. a The metastable synaptic states can be described in
probabilistic terms and correspond to minima of an effective poten-
tial ®(v|f,). For weak presynaptic driving input f, the potential ¢
has only one minimum at vg ~ O(¢€), related to weak synapses. If f,
is above a certain threshold, then the potential displays two minima,

motions in v-space (state space) are possible or more likely.
In particular, the binary nature of synaptic plasticity given
by Eq. (3) can be described as transitions between two
wells of the effective potential ® (v]| fy), corresponding to
weak and strong synapses, or down and up synaptic states
(e.g. Billings and Van Rossum 2009; Graupner and Brunel
2012). These transitions, caused by intrinsic synaptic noise
(ow) and fluctuations in the presynaptic input (o r), can be
thought as a “hill climbing” process in the v space, which
requires energy due to a barrier separating the two wells
(Fig. 10). The dwelling times in both states (7, Ty) can be
found from the classic Kramers “escape” formula (Eq. 47;
Van Kampen 2007), and they are generally much larger than
the time constant t,, (Fig. 10b).

We define the memory time 7}, of the synaptic system
as a characteristic time needed to relax synaptic weights
to their stationary values following a brief perturbation,
or single memory event. Mathematically, it is equivalent
to finding a relaxation time of the probability distribution
P(v| f,) toits steady state distribution Ps(v| f,) after a brief
perturbation; see Eq. (50) in the Methods. The characteristic
memory time 7, is strictly related to the dwelling times
T, and T; by Eq. (51), and they mutual relationship is
depicted in Fig. 10b. Generally, the memory lifetime 7,
is very small in the monostable regime (7, ~ Tty), i.e.
for small presynaptic firing. However, it jumps by several
orders of magnitude when synapses become bistable (i.e.
when h =~ h.,), but then 7,, monotonically decreases with
increasing f, (Fig. 10b).

@ Springer

corresponding to bistable coexistence of weak and strong synapses (vg
and v,). In the bistable regime, the synapses can jump between weak
and strong states due to fluctuations in the input and/or synaptic noise.
b Characteristic long times in the up (7},), down (7) synaptic states,
and memory lifetime 7, as functions of presynaptic firing f,. Curves
in (a) and (b) are for A = 9 - 10~7 and ¥ = 0.001

2.7 Energy rate of synaptic plasticity

In this section we determine the energy rate, or metabolic
rate, associated with stochastic BCM type synaptic plastic-
ity. In a nutshell, energy is provided to the synaptic system
to drive the plasticity related transitions between differ-
ent synaptic weights associated mainly with the increase of
synaptic weights. In the steady state this energy rate bal-
ances the energy dissipated due to the synaptic noise, which
tends to decrease synaptic weights.

The plasticity related energy rate is determined both
numerically, for the whole system of N synapses described
by Eqgs. (1-2), and analytically for the mean-field approx-
imation described by a single Eq. (3). The numerical pro-
cedure for the whole system is described in the Methods
(see section “Numerical simulations of the full synaptic
system”), and the analytical results are described below.

The power dissipated by synaptic plasticity E in the
mean-field approximation is proportional to the average
temporal rate of the effective potential decrease, i.e.
—(d®(v| fo)/dt), where (...) denotes averaging with respect
to the probability distribution P (v|f,). Since the potential
@ (v| fo) depends on time only through v, after rearranging
we get E ~ —((dv/dt)(d®/dv)). Thermodynamically,
this formula is equivalent to the entropy production rate
associated with the stochastic process described by Eq.
(3), and represented by the effective potential ®(v|f,)
(Nicolis and Prigogine 1977; Lan et al. 2012; Mehta and
Schwab 2012; Tome 2006; Tome and de Oliveira 2010). The
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synaptic plasticity energy rate per synapse E can be found
analytically using 1/N expansion, and in the steady state
takes the form (see Methods):

E = pdEa' + thEu (14)

where E; and E, are the energy rates dissipated,
respectively, in the down and up synaptic states, which have
the occupancies py and p,. The energy rates Ed and Eu are
given by

E,D

- T[3(c1>§3>)2 +20%0P 1+ 0(D?), (15
4P

4
where i = d (down state) or i = u (up state). The symbols
®; and @E”) denote values of the potential ®(v) and its n-
th derivative with respect to v for v = v;. The symbol E,
is the characteristic energy scale for variability in synaptic
(spine) conductance, and it provides a link with underlying
molecular processes (see the Methods). For convenience, we
defined a new noise related parameter D, which is

D =0/t (16)

D can be viewed as the effective noise amplitude, and D
relates to the number of synapses N as D ~ 1/N.

Note that in Eq. (15) the terms of the order O(1)
disappear, and the first nonzero contribution to E is of the
order O(1/N), since D ~ 1/N. Moreover, to have nonzero
power in this order, the potential ® (v) must contain at least
a cubic nonlinearity.

Equations (14) and (15) indicate that energy is needed
for plasticity processes associated with the potential &
“hill climbing”, which is in analogy to the energy needed
for a particle trapped in a potential well (of a certain
shape) to escape. The energetics of such a “motion” in
the v-space depends on the shape of the potential, which
is mathematically accounted for by various higher-order
derivatives of ®. Thus, a fraction of synapses that were
initially in the down state can move up the potential
gradient to the up state by overcoming a potential barrier,
but this requires the energy that is proportional to 03
and to the derivatives of the potential. By analogy, a
similar picture holds for synapses that were initially in the
up state. The prefactor D in Eq. (15) indicates that the
transitions up<>down, as well as local fluctuations near
these states, cost energy that is proportional to the intrinsic
synaptic noise (~ oy,) and presynaptic activity (including
its fluctuations f, and o). The important point is that
if there is no intrinsic spine noise (o, = 0), then there
are no transitions between the up and down states in the
steady state, and consequently there is no energy dissipation
(oy = 0), regardless of the fast presynaptic input magnitude.
Likewise for very long decay of synaptic weights, t,, +—
oo, corresponding to very slow synaptic plasticity (and

the lack of the decay term in Eq. 1), there is no energy
used. In such a noiseless stationary state, the plasticity
processes described by Eq. (3) are energetically costless,
since there are no net forces that can change synaptic
weight, or mathematically speaking, that can push synapses
in the v-space. (This is not true under non-stationary
conditions when there is some temporal variability in one
or more parameters in Eq. (3), leading to dissipation,
but the focus here is on the steady state). This situation
resembles the so-called “fluctuation-dissipation” theorem
known from statistical physics (Nicolis and Prigogine
1977; Van Kampen 2007; Risken 1996), where thermal
fluctuations always cause energy loss. In our case, this
fluctuation-dissipation relationship underlines a key role
of thermodynamic fluctuations for the metabolic load of
synaptic plasticity.

We can compare the energy rate coming from the mean-
field (Eq. (3)) to the energy rate computed numerically
for the full synaptic system described by Egs. (1-2). The
results are presented in Figs. 11 and 12. Generally, a better
agreement between mean-field and exact results is achieved
for intermediate synaptic noise o, and also for intermediate
values of mean presynaptic firing rate f,. For larger oy, in
the regions close to mono-bistability transitions, there are
peaks in the mean-field E that are absent in the numerical E
(Fig. 11). These peaks are the artifacts of the approximation
methods used in the mean-field. Moreover, Fig. 11 shows
that the energy rate E mostly increases steadily with f,, (the
exact result). The exception is a narrow interval near the
mono- to bi-stability regions, where E slightly decreases
(Fig. 11). The energy rate also steady increases with the
standard deviation in the presynaptic firing o ¢ (Fig. 12).

A next interesting question is how the plasticity energy
rate depends on the synaptic weights? In Fig. 13 we plot the
dependence of E on the average synaptic current (v), which
is proportional to the synaptic weights and spine size (Kasai
et al. 2003). It is clear that the synaptic energy rate related
to plasticity grows nonlinearly with (v). For small (v), the
energy rate E depends weakly on (v), whereas for large (v)
it increases strongly with (v) (Fig. 13).

Which dependence of E is stronger: on f, or on (v)?
In Fig. 14 it is shown that the energy rate E increases
nonlinearly both with f,, and with (v}, but the dependence
on the average synaptic current (v) is much steeper.

2.8 Energy cost of plastic synapses as a fraction
of neuronal electric energy cost: comparison
to experimental data

In order to assess the magnitude of the synaptic plasticity
energy rate, we compare it to the rate of energy consumption
by a typical cortical neuron for its electric activities
related to fast synaptic transmission, action potentials and
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Fig. 11 Energy rate E as a function of mean presynaptic firing rate:
comparison of exact results with mean-field. Results are for o, = 0.02
nS (upper panel), o, = 0.1 nS (middle panel), and o7, = 0.5 nS (lower
panel). Solid lines correspond to exact numerical results for the whole
system of N synapses obtained from Eq. (79). Dashed lines corre-
spond to the mean-field approach (Egs. (14)—(15)). The best agreement

maintenance of the resting potential (Attwell and Laughlin
2001). The neural spiking activity and synaptic transmission
are known to consume the majority of the neural energy
budget (Attwell and Laughlin 2001; Harris et al. 2012;
Karbowski 2012). The ratio of the total energy rate used
by plastic synapses NE to the neuron’s energy rate E,
(given by Eq. (63) in the Methods) is computed for different
presynaptic firing rates f,, various levels of synaptic noise
ow, and for different cortical regions. The results for
macaque and human cerebral cortex are shown in Figs. 15

Fig. 12 Energy rate E as a 100 .

between exact and mean-field results is for the intermediate o,, and
not too small f,,. Note two peaks in the mean-field result for E (corre-
sponding to mono <> bistability transitions) for larger noise o,, which
are absent in the exact results. These peaks are the artifacts of the
approximation method in the mean-field. All plots are for A = 9-1077,
k =0.001,and oy = 10 Hz

and 16. These plots indicate that the synaptic plasticity
contribution depends strongly on the level of synaptic noise
oy the higher the noise the larger the ratio N E / E,. Higher
firing rates f, also tend to increase that ratio but not that
strongly, and the dependence is nonmonotonic (Figs. 15 and
16). Generally, the value of N E/E,, ranges from negligible
(~ 10~* — 1073) for small/intermediate noise (o, = 0.1
nS), to substantial (~ 10~2—10°) for very large noise (oy, =
2 nS). The results are qualitatively similar across different
cortical regions within one species, as well as between

function of standard deviation of
the presynaptic firing rate:
comparison of exact results with
mean-field. Results are for

fo = 1 Hz (upper panel), and

fo = 10 Hz (lower panel). Solid

Energy rate
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Fig. 13 Energy rate E as a function of average synaptic current (v): exact numerical results. Note a sharp increase in E for larger (v). Energy rate
is calculated from Eq. (79), and (v) is calculated from Eqgs. (1-2). All plots are for A =9 - 1077, k = 0.001, and oy =10Hz

human and macaque cortex, despite large differences in
the cortical sizes of both species (Figs. 15 and 16). Small
quantitative differences are the result of small differences in
the synaptic densities between areas and species.

2.9 Information encoded by plastic synapses

In our model, information or memory about the mean input
fo 1s written in the population of synapses, represented by

Fig. 14 Nonlinear dependence

the synaptic current v. In the stochastic steady state, the
synaptic current v is characterized by probability distribu-
tion P (v| fo), which is related to the potential @ (v| fp). This
means that information encoded in synapses also depends
on the structure of the potential (Eq. (13)).

The accuracy of the encoded information can be charac-
terized by Fisher information /¢ (Cover and Thomas 2006).
In general, larger Ir implies a higher coding precision.
Fisher information, related to synaptic current v, can be
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Fig. 15 Energy cost of synaptic plasticity as a fraction of neuron’s
electric energy cost in the cerebral cortex of macaque monkey. The
ratio of the total energy rate used by plastic synapses N E (chemical
energy) to neuron’s energy rate E,, (electric energy used mainly for fast
synaptic transmission and neural spiking) as a function of presynaptic
firing rate f, for different levels of synaptic noise o, and different
regions of the macaque cortex (visual and frontal). Note that the energy

derived analytically (see the Methods). In the limit of small
effective noise amplitude D we obtain:

2
o, — 04\ 1] @7y (@)
Ir(fo) = pupd ((T) +§ [W—sz)

@ @y n1?

(Op 11(®)Y D

E : 2o i _ -
i=d,u i

where p; denote the fractions of synapses in the up (i = u)
and down (i = d) states, and the prime denotes a derivative
with respect to f,,. Note that the effective noise amplitude
D depends on f,, since o, depends on f, and D ~ crvz (see
Eq. (9)).

The first term in Eq. (17) proportional to pgp, is of
the order of ~ 1/D?> ~ N?, and it appears only in the
bistable regime (both p; and p, must be nonzero). This
term depends on the difference in the potentials between up
and down states. The second term in Eq. (17) proportional
to the weighted sums of p; and p, is of the order of
~ 1/D ~ N, and it is always present regardless of mono-
or bistability. Thus, the first term is much bigger than the
second for small D, which is the primary reason why Ir
(and coding accuracy) is several orders of magnitude larger
when synapses are bistable (see below). Because Fisher
information Ir(f,) is either proportional to 1/ D? ~ N2
(in the bistable regime) or to 1/D ~ N (in the monostable
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contribution of plastic synapses to the neuron’s energy budget depends
strongly on the synaptic noise level. For weak and intermediate noise
this contribution is mostly marginal. For very large noise (o, = 2
nS) it can be substantial, but only for very large firing rates. The neu-
ron’s energy rate £, was computed using Eq. (63), while the plasticity
energy rate of all synapses N E was computed from Egs. (14-15). All
plots are for A =9 - 1077, k = 0.001, and oy =10Hz

regime), it implies that many synapses are much better in
coding the presynaptic firing f,, than a single synapse.

Equation for Fisher information (Eq. (17)) indicates that
there is no simple relationship between /r and the synaptic
current v. Rather, /r depends in a nonlinear manner on the
derivatives of synaptic currents in up and down states v/, and
v/,. This follows form the fact that the potential ® depends
in a complicated way on v (see Fig. 10, and Eq. (13)).

2.10 Accuracy and lifetime of synaptically stored
information vs plasticity energy rate

How the long-term energy used by synapses relates to the
accuracy and persistence of stored information? The above
results indicate that £ and Ir depend inversely on the
synaptic noise oy, (or D), suggesting that its lowering should
be beneficial since gain in information is accompanied by a
decrease in synaptic energy rate.

A more complicated picture emerges if other parameters
are varied, notably driving presynaptic input f,, at differ-
ent regimes of mono- and bistability (Fig. 17). At the onset
of bistability, Fisher information /r and memory lifetime
T,,, both increase dramatically, whereas the plasticity energy
rate E increases mildly. Approximate mean-field calcula-
tions of E provide a small peak at the transition point,
but more exact numerical calculations of E based on Egs.
(1-2) indicate a smooth behavior (with a slight decrease),
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Fig. 16 Similar as in Fig. 15,
but for human cerebral cortex.

Human cortex

. S
Overall, the ratio of the energy ‘=
rate of plastic synapses to the ~
neuron’s electric energy rate for ‘K
human cortex is very similar to Z
the one for macaque cortex
S
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which suggest that the small peak in the mean-field
is an artifact of the approximation (Fig. 17). Taken together,
this implies that a high improvement in information coding
accuracy and its retention, in the initial region of bistability,
do not involve a huge amounts of energy. On the contrary,
the corresponding energy cost is rather small.

For higher f,, deeper in the bistability region, there is
a different trend. In this coexistence region, E increases

monotonically, while Ir and 7;, decrease, which in turn
indicates an inefficiency of information storing. However,
even here the huge values in Ir and 7, overcome the
growth in E. For even higher f,, in the monostable phase
with strong synapses only, E still increases monotonically,
whereas Ir and T,, further decrease to the levels similar
for very small f,. Consequently, the biggest gains in
synaptic information precision and lifetime per energy used
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Fig. 17 Comparison of synaptic plasticity energy rate with accuracy
and lifetime of stored information as a function of presynaptic firing
rate. Dependence of py, E , Ir, and T, on firing rate f,. Fisher infor-
mation /r and memory lifetime 7, have large peaks at the onset of
bistability, whereas the synaptic energy rate E increases only mildly.
Beyond the transition point to bistability, /r and 7, exhibit a different

dependence on f, than E. The former two quantities decrease while
the latter increases with f,. In the dependence of E on f,, the solid
line corresponds to the mean-field approximation, and the dashed line
to the exact numerical result. All plots are for A = 9- 1077,k = 0.001,
and o, = 0.1 nS
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(Ir/ E and Tn/ E) are achieved for the bistable phase
only (Fig. 18). Interestingly, the gains in the information
precision and lifetime depend nonmonotonically on the
plasticity amplitude A, and there are some optimal values of
A that are different for the gains I/E and T}, /E (Fig. 19).

Taken together, these results suggest that storing of
accurate information in synapses can be relatively cheap in
the bistable regime, and thus metabolically efficient.

2.11 Precision of coding memory is restricted
by sensitivity of synaptic plasticity energy rate
on the driving input

The above results suggest that synaptic energy utilization
does not limit directly the coding precision of a stimulus,
because there is no simple relationship between Fisher
information and power dissipated by synapses. However, a
careful inspection of the curves in Fig. 17 suggests that there
might be a link between I and the derivative of E with
respect to the driving input f,. In fact, it can be shown that
in the most interesting regime of synaptic bistability, in the
limit of very weak effective noise D +— 0, we have either
(see the Methods)

@p /8f)>
0 0
O p?

Ir(fo) = [1+ 0], (18)

or equivalently

(VE/f,)*
Ir(fy) = o
" Py p((j())(Eu — Eg)

5 [1+ 0(D)], 19)

where p[(lo) , pf,o) are the fractions of synapses in the down

and up states (weak and strong synapses) in the limit D +—
0. It is important to stress that simple formulas (18) and (19)
have a general character, since they do not depend explicitly
on the potential ®, and thus they are independent of the

plasticity type model. Equation (18) shows that synaptic
coding precision increases greatly for sharp transitions
from mono- to bistability, since then (apff’)/ af,)? is large.
Additionally, Eq. (19) makes an explicit connection between
precision of synaptic information and nonequilibrium
dissipation. Specifically, the latter formula implies that to
attain a high fidelity of stored information, the energy used
by synapses E does not have to be large, but instead it must
change sufficiently quickly in response to changes in the
presynaptic input.

We can also estimate a relative error ey in synaptic
coding of the average presynaptic firing f,. This error is
related to Fisher information by a Cramer-Rao inequality
er = ( for/Tr)~! (Cover and Thomas 2006). Using Eq.
(19), in our case this relation implies

oo
folE'/(Ey — E9)’
where the prime denotes the derivative with respect to f,.
The value of the product p, ps is in the range from 0 to
1/4. In the worst case scenario for coding precision, i.e.
for p,(,o) PK(IO) = 1/4, this implies that a 10% coding error
(ef = 0.1), corresponds to the relative sensitivity of the
plasticity energy rate on presynaptic firing fo|E’/ (E, —
E4| = 5. Generally, the larger the latter value, the higher
precision of synaptic coding. In our particular case, this high
level of synaptic coding fidelity is achieved right after the
appearance of bistability (Fig. 17).

ef = (20)

3 Discussion

3.1 Summary of the main results

In this study, the energy cost of long-term synaptic plasticity
was determined and compared to the accuracy and lifetime

Fig. 18 Gains in information
accuracy and lifetime per
synaptic energy used as
functions of presynaptic firing

rate. Fraction of synapses in the
down state pg (upper panel), the

ratio /r/E (middle panel) and
T/ E (lower panel) as functions
of f,. The biggest gains in
information and memory

Ir/E

lifetime are at the transition
point to the bistability. Solid
lines correspond to the energy

rate calculated in the mean-field,
and dashed lines to the energy
rate calculated numerically. All ~

m/E

~

plots are for A =9 - 1077,
x =0.001, and 0y, = 0.1 nS
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Fig. 19 Gains in information
accuracy and lifetime per
synaptic energy used as
functions of plasticity

amplitude. Fraction of synapses
in the down state p; (upper

panel), the ratio /5 / E (middle
panel) and T;,/E (lower panel)
as functions of A. Note the sharp
peaks for I /E at the transition

point from mono- to bi-stability,
and for T,/ E at the transition

point from bi- to mono-stability.
Solid lines correspond to the
energy rate calculated in the
mean-field approach. All plots

0
are for f, = 10 Hz, « = 0.001, 1077
and o, = 0.1 nS

of an information stored at excitatory synapses. The main
results of this study are:

(a) Formulation of the dynamic mean-field of the extended
BCM synaptic plasticity model (Egs. (3)—(5)).

(b) Energy rate of plastic synapses increases nonlinearly
both with the presynaptic firing rate (Figs. 11 and 14)
and with average synaptic current or weights (Figs. 13
and 14).

(¢) Coding of more accurate information in synapses
need not require a large energy cost (cheap long-
term information). The accuracy of stored information
about presynaptic input can increase by several orders
of magnitude with only a mild increase in the plasticity
energy rate at the onset of bistability (Figs. 17 and 18).

(d) The accuracy of information stored at synapses and its
lifetime are not limited by the available energy rate, but
by the sensitivity of the energy rate on the presynaptic
firing. For very weak synaptic noise the coding
accuracy at plastic synapses (Fisher information) is
proportional to the square of derivative of the plasticity
energy rate with respect to mean presynaptic firing
(Eq. (19)).

(e) Energy rate of synaptic plasticity, which is of chemical
origin, constitutes in most cases only a tiny fraction
of neuron’s energy rate associated with fast synaptic
transmission and action potentials, which are of
electric origin. That fraction can be substantial only for
very large synaptic noise and presynaptic firing rates
(Figs. 15 and 16).

3.2 Discussion of the main results

The dynamic mean-field for synaptic plasticity was derived
analytically by applying (i) the timescale separation
between neural and synaptic plasticity activities, and (ii)
dimensional reduction of the original synaptic system. The

1076 A 107 107

formulated mean-field of the synaptic current v seems to
work reasonably well for average (v) if intrinsic synaptic
noise oy, is small and presynaptic firing rates f, are not too
high (Fig. 8). For larger o, and f,,, the mean-field value (v)
diverges form the exact numerical average calculated from
Egs. (1-2).

The mean-field approximation to the synaptic energy
rate £ was additionally derived in the limit of small
effective noise D (either large N or small oy, or both).
Surprisingly, the mean-field approximation for E works
better for intermediate noise o,, than for its smaller values
(Fig. 11). For those intermediate values of oy, the energy
rate E calculated in the mean-field is close to that calculated
numerically in the whole neurophysiological interval of f,
variability (Fig. 11, middle panel). It seems that the primary
reason for the breakdown of the mean-field for (v) and
E is the way the integrals in Eqgs. (43) and (57) were
approximated. In those integrals, it was assumed that x4
(the lower limit of integration) tends to —oo for D +— O,
which however is not always true, since x41 ~ vg ~ €, and
vg can be very small for very small value of € (see Eq. 11),
especially if f, is small. As a consequence, the real value of
Xx41 can be in the range —(0.1 — 1), even for very small D.

Comparing the mean-field E to its numerical values
suggests that the peaks in the mean-field approximation of
E are artifacts (Fig. 11). They are the result of some (small)
differences in the exact location of the transitions points
mono/bistability between mean-field and the numerics. This
causes certain errors in the relative magnitudes of p; and
Ppu, Which leads to over- or under-estimates in the mean-
field values of E (Eq. (14)).

Nonlinear increase of plasticity energy rate with presy-
naptic firing rate f, and average synaptic current v (Figs.
11, 13, and 14) suggests that high presynaptic activities and
large synapses/spines are metabolically costly (there exists
a positive correlation between synaptic current and size; see
Kasai et al. 2003). Consequently, it seems that large firing
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rates and synaptic weights (proportional to average synaptic
current) should not be preferred in real neural circuits. This
simple conclusion is qualitatively in line with experimen-
tal data for cortical neurons, showing low mean firing rates
and weak mean synaptic weights, with skewed distributions
(Buzsaki and Mizuseki 2014).

The most striking result of this study is that precise
memory storing about presynaptic firing rate f, does not
have to be metabolically expensive. Strictly speaking, the
information encoded at synapses, i.e., its accuracy and
lifetime, do not have to correlate positively with the energy
used by synapses (Fig. 17). Such a correlation is only
present at the onset of synaptic bistability, where a large
increase in information precision (/r) and lifetime (7},) is
accompanied only by a mild increase in the energy rate. This
suggests an energetic efficiency of stored information in the
bistable synaptic regime, i.e., relatively high information
gain per energy used (Fig. 18). Moreover, the results in
Fig. 18 show that there exists an optimal value of the
presynaptic firing rate for which the information gain per
energy, as well as memory lifetime per energy, are maximal.
An additional support for the metabolic efficiency of
synaptic information comes from the fact that energy used
E and coding precision I depend the opposite way on the
effective noise amplitude D (compare Egs. (15) and (17)),
and thus, Iy increases, while E decreases with decreasing
D.Because D ~ 1/N, this also implies that /5 ~ N2 in the
bistable regime, i.e., that more synapses (large N) are much
better at precise coding of mean presynaptic firing than a
single synapse (N = 1). Taken together, these findings are
compatible with a study by Still et al. (2012) showing that
abstract stochastic systems with memory, operating far from
thermodynamic equilibrium, can be the most predictive
about an environment if they use minimal energy.

Estimating an external variable is never perfect, and it is
shown here that synaptic coding accuracy (/r) relates to the
derivative of the energy rate with respect to an average input.
The fundamental relationship linking memory precision and
synaptic metabolic sensitivity is present in Eq. (19), which
is valid regardless of the specific plasticity mechanism, as
long as synapses can exist in two metastable states, in the
limit of very small synaptic noise D. This binary synaptic
nature is a key feature enabling a high fidelity of long-
term synaptic information (Petersen et al. 1998), despite
ongoing neural activity, which is generally detrimental to
information storing (Fusi et al. 2005). Specifically, for
realistic neurophysiological parameters, it is seen from
Fig. 17 that the relative coding error in synapses ey ~
(fo~/TF)~! can be as small as 0.03 — 0.1 (or 3 — 10%) near
the onset of bistability. However, away from that point the
error gets larger. Thus, again it seems that there exist an
optimal firing rate f, for which coding accuracy is maximal
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and quite high, despite large fluctuations in presynaptic
neural activities (large oy in relation to f,).

Neural computation is thought to be metabolically
expensive (Aiello and Wheeler 1995; Laughlin et al. 1998;
Attwell and Laughlin 2001; Karbowski 2007, 2009; Niven
and Laughlin 2008; Harris et al. 2012), and it must
be supported by cerebral blood flow and constrained by
underlying microvasculature and neuroanatomy (Karbowski
2014, 2015). It is shown here that an important aspect
of this computation, namely long-term synaptic plasticity
involved in learning and memory, constitutes in most cases
only a small fraction of that neuronal energy cost associated
mostly with fast synaptic transmission and spiking (Figs. 15
and 16). Specifically, for intermediate/large synaptic noise
(opy = 0.1 and 0.5 nS), metabolic cost of synaptic
plasticity can maximally be on a level of 1 — 10% of the
electric neuronal cost, both for human and macaque monkey
(Figs. 15 and 16). Higher levels of synaptic plasticity cost
(maximally 100% of electric cost) are possible, but only
for very large synaptic noise, oy, = 2.0 nS (Figs. 15 and
16). The latter value is, however, unlikely because it is 20
times larger than the mean values of synaptic weights w;
(see Fig. 2b), and thus, it seems that higher costs of synaptic
plasticity are physiologically implausible. Taken together,
these results suggest that a precise memory storing can
be relatively cheap, which agrees with empirical estimates
presented in Karbowski (2019).

3.3 Discussion of other aspects of the plasticity
model

In this study, an extended BCM model of synaptic plasticity
is introduced and solved. There are 3 additional elements
in our model (Eq. (1)) that are absent in the classical
BCM plasticity rule: weight decay term (~ 1/t,,), Synaptic
noise (~ 0y/4/Tw), and the nonlinear dependence of
the postsynaptic firing rate on synaptic input (Eq. (6)).
Moreover, it is assumed here that presynaptic firing rates
fluctuate stochastically and fast around a common mean
fo with standard deviation o . These features make the
behavior of our model significantly different from the
behavior of the classical BCM model (Bienenstock et al.
1982). In particular, due to the stochasticity of synaptic
weights, our model does not exhibit an input selectivity,
in contrast to the classical BCM rule. Input selectivity in
the classical BCM means that the largest static presynaptic
firing rate “selects” its corresponding synapse by increasing
its weight, in such a way that the weights of all other
synapses decay to zero. In our model this never happens,
because all synapses are driven on average by the same
input, and more importantly, synaptic noise constantly
brings all synapses up and down in an unpredictable fashion.
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For these reasons, the mean-field approach proposed here,
although mathematically correct, does not make sense for
the classical BCM rule (no weights decay, no noise) if our
goal is studying input selectivity, because in that model only
one synapse is effectively present at the steady-state, and
there is no need for large N approach.

The main reasons for choosing the mean-field approach,
and constructing a single dynamical equation for the
population averaged synaptic current v are: (i) we wanted
to treat analytically the multidimensional stochastic model
given by Egs. (1-2), and (ii) the variable v emerges as a
natural choice, since r in Egs. (1-2) depends only on one
variable, precisely on v (see Eq. (6)). The feature (ii) makes
Egs. (3) and (6) a closed mathematical system of just two
equations that can be handled analytically. Another practical
reason behind introducing the dynamic mean-field is that it
enables us to obtain explicit formulae for synaptic plasticity
energy rate and Fisher information (coding accuracy).

In deriving the dynamic mean-field we assumed that
the time constant related to w; dynamics, i.e. Ty, is much
larger than the time constant related to the sliding threshold
0, which is T76. This is in agreement with empirical
observations and estimations, since 1, must be of the order
of 1 hr to be consistent with slice experiments, showing
wiping out synaptic potentiation after about 1 hr when
presynaptic firing becomes zero (Frey and Morris 1997;
Zenke et al. 2013). (Note that 1, refers to the decay of
synaptic weights to the baseline value €a, and it should
not be confused with a characteristic time of plasticity
induction, which is controlled by the product Af;r in Eq. (1)
and which can be much faster, ~ minutes (Petersen et al.
1998; O’Connor et al. 2005).) On the other hand, the time
constant tp must be smaller than about 3 min for stability
reasons (Zenke and Gerstner 2017; Zenke et al. 2013), and it
even has been estimated to be as small as ~ 12 sec (Jedlicka
et al. 2015).

Although individual synapses in the original model
Egs. (1-2) exhibit bistability (see Figs. 1 and 2), this
bistability has a collective character. That is, if most
synaptic weights are initially weak, then they all converge
into a lower fixed point. On the other hand, if a sufficient
fraction of synaptic weights is initially strong, then they
all converge into an upper fixed point (Fig. 1). This means
that the majority of synapses participate in a coordinated
switching between up and down states, due to effective
noise (internal and external). This mechanism is probably
different from the mechanism found in Petersen et al.
(1998) and O’Connor et al. (2005), where bistability was
reported on a level of a single synapse, independent of other
synapses. (However, from these papers it is difficult to judge
how long the potentiation lasts in the absence of presynaptic
stimulation). Our scenario for bistability is conceptually
closer to the model of synaptic bistability proposed by

Zenke et al. (2015), which also emerges on a population
level. Interestingly, both models, the one presented here and
the one in Zenke et al. (2015), exhibit the so-called anti-
Hebbian plasticity, in the sense that LTP (i.e. v > 0) appears
for low firing rates, instead of LTD as for classical BCM
rule. However, in the present model the initial LTP window
is very narrow, and appears for very small postsynaptic
firing rates r < (cfo/x)€e ~ O(€). This feature is necessary
for stable bistability, and does not contradict experimental
results on BCM rule verification (Kirkwood et al. 1996),
showing LTD for low firing rates. The reason is that these
experiments were performed for firing rates above 0.1 Hz,
leaving uncertainty about LTP vs. LTD for very low activity
levels (or very long times).

The cooperativity in synaptic bistable plasticity found
here is to some extent similar to the data showing that
neighboring dendritic spines interact and tend to cluster as
either strong or weak synapses (Govindarajan et al. 2006,
2011). These clusters can be as long as single dendritic
segments, which is called “clustered plasticity hypothesis”
(Govindarajan et al. 2006, 2011). However, the difference
is that in the present model there are no dendritic segments,
and spatial dependence is averaged over, which leads
effectively to one synaptic “cluster” either with up or down
states.

3.4 Metabolic cost of synaptic plasticity
in the mean-field: intuitive picture

The formula for the plasticity energy rate (Eq. (15)) contains
various derivatives of the effective potential @, which
encodes the plasticity rules for synaptic weights. In this
scenario, the synaptic plasticity corresponds to a driven
stochastic motion of the population averaged postsynaptic
current v in the space constrained by the potential ®, in
analogy to a ball moving on a rugged landscape with a
ball coordinate corresponding to v. Because our potential
can exhibit two minima separated by a potential barrier,
the plasticity considered here can be viewed as a stochastic
process of “hill climbing”, or transitions between the two
minima (the idea of “synaptic potential” was used also in
Van Rossum et al. (2000), Billings and Van Rossum (2009),
and Graupner and Brunel (2012)).

The energy rate of plastic synapses E (or power dis-
sipated by plasticity) is the energy used for climbing the
potential shape in v-space, and it is proportional to the aver-
age temporal rate of decrease in the potential, —(d®/dt),
due to variability in v. In terms of thermodynamics, the plas-
ticity energy rate E is equivalent to the entropy production
rate, because synapses like all biological systems operate
out of thermodynamic equilibrium with their environment
and act as dissipative structures (Nicolis and Prigogine
1977). Dissipation requires a permanent influx of energy
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from the outside (provided by blood flow, see e.g. Kar-
bowski 2014) to maintain synaptic structure, which in our
case is the distribution of synaptic weight. A physical rea-
son for the energy dissipation in synapses in the steady state
is the presence of noise (both internal synaptic ~ o,,, and
external presynaptic ~ o), causing fluctuations, that tend
to wipe out the pattern of synaptic weights. Thermodynam-
ically speaking, this means reducing the synaptic order and
thus increasing synaptic entropy. To preserve the order, this
increased entropy has to be “pumped out”, in the form of
heat, by investing some energy in the process, which relates
to ATP consumption.

3.5 Thermodynamics of memory storing
and bistability

The general lack of high energetic demands for sustaining
accurate synaptic memory may seem non-intuitive, given
an intimate relation between energy and information known
from classical physics (Leff and Rex 1990). For example,
transmitting 1 bit of information through synapses is rather
expensive and costs 10* ATP molecules (Laughlin et al.
1998), and a comparative number of glucose molecules
(Karbowski 2012), which energetically is much higher
(~ 10°kT) than a thermodynamic minimum set by the
Landauer limit (~ 1k7T) (Landauer 1961). Additionally,
there are classic and recent theoretical results that show
dissipation-error tradeoff for biomolecular processes, i.e.,
that higher coding accuracy needs more energy (Lan et al.
2012; Mehta and Schwab 2012; Barato and Seifert 2015;
Bennett 1979; Lang et al. 2014). How can we understand
our result in that light?

First, there is a difference between transmitting informa-
tion and storing it, primarily in their time scales, and faster
processes generally need more power (see also below).
Second, it is known from thermodynamics that erasing an
information can be more energy costly than storing infor-
mation (Landauer 1961; Bennett 1982), since the former
process is irreversible and is always associated with energy
dissipation, and the latter can in principle be performed very
slowly (i.e. in equilibrium with the environment) without
any heat released. In our system, the information is maximal
for intermediate presynaptic input generating metastability
with two synaptic states (Fig. 2). If we decrease the input
below a certain critical value, or increase it above a certain
high level, our system becomes monostable, which implies
that it does not store much information (entropy is close to
zero). Thus, the transition from bistability to monostability
is equivalent to erasing the information stored in synapses,
which according to the Landauer principle (Landauer 1961;
Berut et al. 2012) should cost energy.

Third, the papers showing energy-error tradeoff in
biomolecular systems (Lan et al. 2012; Mehta and Schwab
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2012; Lang et al. 2014; Bennett 1979; Barato and Seifert
2015) use fairly linear (or weakly nonlinear) models, while
in our model the plasticity dynamics is highly nonlinear
(see Egs. (1), (3), and (6)). Additionally, we consider the
prediction of an external variable (average input f,), in
contrast to some of the biomolecular models (Bennett 1979;
Barato and Seifert 2015), which dealt with estimating errors
in an internal variable.

3.6 Cost of synaptic plasticity in relation to other
neural costs

The energy cost of synaptic plasticity is a new and an
additional contribution to the overall neural energy budget
considered before and associated with fast signaling (action
potentials, synaptic transmission, maintenance of negative
resting potential), and slow nonsignaling factors (Attwell
and Laughlin 2001; Engl and Attwell 2015). The important
distinction between slow synaptic plasticity dynamics and
fast signaling is that the former is of chemical origin
(protein/receptor interactions), while the latter is of electric
origin (ionic movement against gradients of potential and
concentration). Consequently these two, although coupled
but to a large extent, separate phenomena have different
characteristic time and energy scales, which results in rather
small energy cost of synaptic plasticity in relation to the fast
electric cost (Figs. 15 and 16).

The earlier studies of the neuronal energy cost (Attwell
and Laughlin 2001; Engl and Attwell 2015) provided
important order of magnitude estimates based on ATP
turnover rates, but they had mainly a phenomenological
character and cannot be directly applied to nonlinear
dynamics underlying synaptic plasticity. Contrary, the
current approach and the complementary approach taken
in Karbowski (2019) are based on “first principles” taken
from non-equilibrium statistical physics and in combination
with neural modeling can serve as a basis for future
more sophisticated calculations of energy used in excitatory
synapses, possibly with inclusion of some molecular detail
(e.g. Lisman et al. 2012; Miller et al. 2005; Kandel et al.
2014).

The calculations performed here indicate that the energy
dissipated by synaptic plasticity increases nonlinearly with
presynaptic firing rate (Fig. 11). The dependence on presynap-
tic firing is consistent with a strong dependence of CaMKII
autophosphorylation level on Ca’>* influx frequency to a
dendritic spine (De Koninck and Schulman 1998), which
should translate to a similar dependence of ATP consump-
tion rate related to protein activation on presynaptic firing.
Moreover, these results raise the possibility of observing or
measuring the energetics of synaptic plasticity for high fir-
ing rates. It is hard to propose a specific imaging technique
for detecting enhanced synaptic plasticity, but nevertheless,
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it seems that techniques relying on spectroscopy, e.g., near-
infrared spectroscopy with its high spatial and temporal
resolution, could be of help.

Regardless of whether the energetics of synaptic plastic-
ity is observable or not, it could have some functional impli-
cations. For example, it was reported that small regional
decreases in glucose metabolic rate associated with age,
and presumably with synaptic decline, lead to significant
cognitive impairment associated with learning (Gage et al.
1984).

A relatively small cost of plasticity in relation to neuronal
cost of fast electric signaling (Figs. 15 and 16) is in some
part due to relatively slow dynamics of spine conductance
decay, quantified by 7, ~ 1 hr (Frey and Morris 1997,
Zenke et al. 2013), since E ~ 1/7y in Egs. (15) and
(16). The time scale t,, characterizes the duration of early
LTP on a single synapse level. On a synaptic population
level, characterized by synaptic current v, the duration of
early LTP is given by T, (memory maintenance of a brief
synaptic event), which can be of the order of several hours.

Late phases of LTP and LTD, during which memory is
consolidated, are much slower than t,, and they are gov-
erned by longer timescales of the orders of days/weeks
(Ziegler et al. 2015; Redondo and Morris 2011). Conse-
quently, one can expect that such plasticity processes, as
well as equally slow homeostatic synaptic scaling (Turri-
giano and Nelson 2004), should be energetically inexpen-
sive. Nevertheless, there are experimental studies related
to long-term memory cost in fruitfly that claim that mem-
ory in general is metabolically costly (Mery and Kawecki
2005; Placais and Preat 2013; Placais et al. 2017). However,
the problem with those papers is that they do not measure
directly the energy cost related to plasticity in synapses,
but instead they estimate the global fly metabolism, which
indeed affects long-term memory (Mery and Kawecki 2005;
Placais and Preat 2013). In a recent paper by Placais et al.
(2017) it was found that upregulated energy metabolism in
dopaminergic neurons is correlated with long-term mem-
ory formation. However, again, no measurement was made
directly in synapses, and thus it is difficult to say how much
of this enhanced neural metabolism can be attributed to
plasticity processes and how much to enhanced neural and
synaptic electric signaling (spiking and transmission). It is
important to stress that the energy cost of protein synthesis,
process believed to be associated with long-term memory
consolidation (Kandel et al. 2014), was estimated to be very
small, on a level of ~ 0.03 — 0.1% of the metabolic cost
of fast synaptic electric signaling related to synaptic trans-
mission (Karbowski 2019, see also below for an alternative
estimate). Consequently, it is possible that memory induc-
tion, maintenance, and consolidation involve a significant
increase in neural activity and hence metabolism, but it

seems that the majority of this energy enhancement goes
for upregulating neural electric activity, not for chemical
changes in plastic synapses.

The energetics of very slow processes associated with
memory consolidation were not included in the budget of
the energy scale E, (present in Eq. (15), and estimated in
the Methods), since we were concerned only with the early
phases of LTP and LTD, which are believed to be described
by BCM model (both standard and extended). Nevertheless,
for the sake of completeness, we can estimate the energy
cost of the late LTP and LTD, as well as energy requirement
of mechanical changing of spine volume (also not included
in the budget of E,).

Protein synthesis, which is associated with I-LTP and 1-
LTD, underlines synaptic consolidation and scaling (Kandel
et al. 2014). There are roughly 10* proteins in PSD
including their copies (Sheng and Hoogenraad 2007), on
average each with ~ 400 — 500 amino acids, which
are bound by peptide bonds. These bonds require 4 ATP
molecules to form (Engl and Attwell 2015), which is 4 -
20kT of energy (Phillips et al 2012). This means that
chemical energy associated with PSD proteins is about
(3.2 — 4.0) - 108T, i.e. (1.6 — 2.0) - 107 ATP molecules,
or equivalently (1.4 — 1.75) - 10~!2 J. Given that an average
lifetime of PSD proteins is 3.7 days (Cohen et al 2013),
we obtain the energy rate of protein turnover as ~ (4.6 —
5.8) - 10718 W, or 52 — 65 ATP/s per spine. For human
cerebral cortex with a volume of 680 cm? (Hofman 1988)
and average density of synapses 3-10'! cm™3 (Huttenlocher
and Dabholkar 1997), we have 2-10'% synapses. This means
that the global energy cost of protein turnover in spines of
the human cortex is (9.2 — 11.5) - 10~* W, or equivalently
(1 —1.3) - 10'® ATP/s, which is extremely small (~ 0.01%)
as human cortex uses about 5.7 Watts of energy (Karbowski
2009).

The changes in spine volume are related directly to the
underlying dynamics of actin cytoskeleton (Honkura et al.
2008; Cingolani and Goda 2008). We can estimate the
energy cost of spine size using a mechanistic argument.
Dendritic spine grows due to pressure exerted on the den-
drite membrane by actin molecules. The reported membrane
tension is in the range (10~% = 1) kKT/nm? (Phillips et al.
2009) with the upper bound being likely an overestimate,
given that it is close to the so-called rapture tension (1 — 2
kT/nm?), when the membrane breaks (Phillips et al. 2009).
A more reasonable value of the membrane tension seems to
be 0.02 kT/nm?, as it was measured directly (Stachowiak
et al. 2013). Taking this value, we get that to create a typ-
ical 1 um? of stable spine requires 2 - 10*kT or 10> ATP
molecules. Since the actin turnover rate in spine is 1/40
sec”! (Honkura et al. 2008), which is also the rate of spine
volume dynamics, we obtain that the cost of maintaining
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spine size is 25 ATP/s. This value is comparable but two-
fold smaller than the ATP rate used for PSD protein turnover
per spine (52 — 65 ATP/s) given above.

How do the costs of protein turnover and spine
mechanical stability relate to the energy cost of e-LTP and
e-LTD calculated in this paper using the extended BCM
model? From Fig. 11, we get that the latter type of synaptic
plasticity uses energy in the range (1073 — 10°)E, (solid
lines for exact numerical results) per second per spine,
depending mainly on firing rate and synaptic noise. Since
the energy scale £, = 2.3 - 10* ATP (see the Methods),
we obtain that the energy cost of the plasticity related to e-
LTP and e-LTD is 23 — 23000 ATP/s, i.e., its upper range
can be 400 times larger than the contributions from protein
turnover and spine volume changes. This result strongly
suggests that the calculations of the energetics of synaptic
plasticity based on the extended BCM model provide a large
portion of the total energy required for the induction and
maintenance of synaptic plasticity.

4 Methods
4.1 Neuron model

We consider a sensory neuron with a nonlinear firing
rate curve (so called class one, valid for most biophysical
models) and with activity adaptation given by (Ermentrout
1998; Ermentrout and Terman 2010)

dr -
rrgz—r—l—A,/Isyn—s 21

T“Z_j = —s+kr (22)
where r is the instantaneous neuron firing rate with mean
amplitude A, s is the adaptation current (or equivalently
self-inhibition) with the intensity k, 7, and t, are the time
constants for variability in neural firing and adaptation, and
Iy, is the total excitatory synaptic current to the neuron
provided by N excitatory synapses, i.e., Iy, ~ Y ; fiw;.
If I;y, < s in Eq. (21), then this equation simplifies and
becomes t,.dr/dt = —r. In order to ensure a saturation of
the firing rate r for very large number of synapses N, and
for s to be relevant in this limit, A and & must scale as
A = A/+/N and k = N«.Ina mature brain N can fluctuate
due to structural plasticity, but we assume in agreement with
the data (Sherwood et al. 2020; DeFelipe et al. 2002) that
there is some well defined average value of N.

We assume that the neuron is driven by stochastic
presynaptic firing rates f; (i = 1,..., N) that change on
a much faster time scale 7y than the synaptic weights
w;. Additionally, we assume that the fast variability in
presynaptic firing rates is stationary in a stochastic sense,
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i.e., the probability distribution of f; does not change in
time. Consequently, for each time step ¢, in the stationary
stochastic state we can write

fit) = fo+orxi(t) (23)

where f, is the mean firing rate of all presynaptic neurons
and oy denotes the standard deviation in the variability of
fi. The variable x; is the Gaussian random variable, which
reflects noise in the presynaptic neuronal activity. For the
noise x; we have the following averages (Van Kampen
2007): {x;)x = 0 and (x;x;)x = &;;, where the last equality
means that different x; are independent, which also implies
that fluctuations in different firing rates f; are statistically
independent. Equation (23) allows negative values of f;,
which is not realistic. However, in analytical calculations
this is not a problem, because we use only average of f;
and its standard deviation o . In numerical simulations,
we prevent the negative values of f; by setting f; = 0,
whenever f; becomes negative.

Given Eq. (23), one can easily verify the following aver-
age
(i) = £} + 07, (24)
Equation (24) indicates that presynaptic firing rates
fluctuate around average value f, with standard deviation
o r. The important point is that these fluctuations are fast, on

the order of 74 (~ 0.1 — 1 sec), which is much faster than
the timescale 7,,. Equation (24) is also used below.

4.2 Definition of synaptic current per spine v

The synaptic current Iy, has two additive components
related to AMPA and NMDA receptors, Iyyn = lampa +
Lymaa, with the receptor currents

ampa

N
Iampa = QQampa|Vr|Tampagampa Z fiM,' s

i=1
and

N
Inmda = qqnmdal Ve |Tumda&nmda Z fiMinmda,

i=1
where ¢ is the probability of neurotransmitter release, V,
is resting membrane potential of the neuron (we used the
fact that the reversal potential for AMPA/NMDA is close
to 0 mV; Ermentrout and Terman 2010), gumpa and gnmda
are single channel conductances of AMPA and NMDA
receptors, gumpa and gnmdq are probabilities of their opening
with characteristic times Tuup, and Tymgq. The symbols
Mia "P¢ and le"”d“ denote AMPA and NMDA receptor
numbers for spine i. Data indicate that during synaptic
plasticity the most profound changes are in the number
of AMPA receptors M%"P% and opening probability of
NMDA ¢nmaq (Kasai et al. 2003; Huganir and Nicoll 2013;
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Matsuzaki et al. 2004). We define the excitatory synaptic
weight w; as a weighted average of AMPA and NMDA
conductances, i.e.,

d
w; = (TnmdaQnmdaMnm “ gnmda
ampa
+TampaqgmpaM gampa)/(fnmda + Tampa)

This enables us to write the synaptic current per spine,
i.e. v = Iy, /N (which is more convenient to use than /sy, ),
as

ZI@

N
Z jwi, (25)

where [3 = q|Vy|(Tumda + Tampa)- The current per spine v
is the key dynamical variable in our dimensional reduction
procedure and subsequent analysis (see below).

4.3 Dependence of the postsynaptic firing rate r
on synaptic current v

The time scales related to neuronal firing rates and firing
adaptation 7, 7, and 7, are much faster than the time scale
Ty associated with synaptic plasticity. Therefore, for long
times of the order of 7, firing rate » and postsynaptic
current adaptation s are in quasi-stationary state, i.e.,

dr/dt =~ ds/dt ~ 0. This implies a set of coupled algebraic
equations:
r=Ayv—s/N

s = Nkr, (26)

which yields a quadratic equation for r, i.e., r> + A%kr —
A2y = 0. The solution for r, which depends on v, is given
by

1
r=s (_ A2+ /AR 4A2v) : 7)

Note that r depends nonlinearly on the synaptic current v.
Additionally, s/N is always smaller than v in the steady
state, which means that r in Eq. (26) is well defined.

4.4 Dimensional reduction of the extended BCM
model: Dynamic mean-field model

We focus on the population averaged synaptic current v
(Eq. (25)). Since v is proportional to weights w;, and
because r depends directly on v, it is possible to obtain
a closed form dynamic equation for plasticity of v. Thus,
instead of dealing with N dimensional dynamics of synaptic
weights, we can study a one dimensional dynamics of the
population average current v. This dimensional reduction
is analogous to observing the motion of a center of mass
of many particle system, which is easier than simultaneous
observation of the motions of all particles. Such an approach

is feasible for an analytical treatment where one can directly
apply the methods of stochastic dynamical systems and
thermodynamics (Van Kampen 2007).

The time derivative of v, given by Eq. (25), is denoted
with dot and reads

b= (B/N)Y_(fiwi + fiwii) = B/N) Y fivii,

i=1 i=1
where we used the fact that fluctuations in f; are much
faster than changes in weights w;, and hence f; are in
stochastic quasi-stationary states. Now, using Eq. (1) for w;

and quasi-stationarity of 6, we obtain the following equation
for v:

M, S

v—ﬁr (1_0"’);fi —a<v—
\/_Bo'w
N\/_

where ¢ = a.

The next step is to perform averaging over fast
fluctuations in presynaptic rate f;. We need to find the
following three averages with respect to the random variable

Xt (300 fides (20Cy fP)x and (500 f20i)
From Eq. (23) it follows that {f;), = f,, and thus the
first average is

N
<Z ﬁ> = Nf,. (29)
i=1 |y

The second average follows from Eq. (24), and we have

N
<Z f,-2> = N(f2+ 0. (30)
i=1 X

The third average can be decomposed as

E€C N
)

Z(ﬁ + s [, (28)

N

ni = l‘x’71 (fy +oni,
(3 s ) = ubn =Ygt +ap

y i=l i=1

where we used the fact that the noise 7 is independent of the
noise x, and again Eq. (24).

The final step is to insert the above averages into the
equation for v (Eq. (28)). As a result we obtain Eq. (3) in
the main text, which is a starting point for determining ener-
getics of synaptic plasticity and information characteristics.

4.5 Distribution of synaptic currents in the stochastic
mean-field model: weak and strong synapses

Stochastic Eq. (3) for the population averaged synaptic
current v can be written in short notation as

2_’; = F(v) + v2D7, (31)
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where the function F'(v) is defined as
F(v) = hr*(1 —ar) — (v — ecf,)/Tw, (32)

and D is the effective noise amplitude (it includes also
fluctuations in the presynaptic input) given by

D= sz /Tw. (33)
Equation (31) corresponds to the following Fokker-Planck

equation for the probability distribution of the synaptic
current P (v| f,; t) conditioned on f, (Van Kampen 2007):

IPW|fort) _ 2P| fo3 1)
3~ "5 (F)PWlfo; 1) + DT
) (34)
Jdv

The function J(v) in the last equality in Eq. (34) is the
probability current, which is J(v) = F(v) — DA P(v)/dv.

The stationary solution of the Fokker-Planck equation
(Eq. (34)) is obtained for a constant probability current
J (Gardiner 2004; Van Kampen 2007). For monostable
systems, which have a unique steady state (fixed point)
one usually sets J(v) = 0, which corresponds to a
detailed balance (Gardiner 2004; Tome 2006). Such a
unique steady state corresponds to thermal equilibrium with
the environment (Tome 2006) and the solution is of the form
(Van Kampen 2007)

Ps(v| fo) ~ exp (=P (v]fo)/D), (35)

where ® (v| f,) is the effective potential for synaptic current
v, and it is obtained by integration of F(v) in Eq. (31), i.e.,

Plfo) = —/vdx F(x). (36)
0

The potential can have either one (monostability) or two
(bistability) minima, depending on f, and other parameters.
The explicit form of ®(v| f,) is shown in Eq. (13).

@
Py(v) = Z~le=®a/D exp <—q2%(v — vd)z)

For bistable systems, for which there are two possible
steady states (fixed points), the situation is more compli-
cated. In the presence of nonzero, D > 0, effective synaptic
noise, there can be noise induced jumps between the two
fixed points. In this case the probability current J in the
steady state must be a nonzero constant, because of the
exchange of probabilities between the two fixed points, or
equivalently, because of the stochastic jumps of v between
two potential wells (Gardiner 2004). For small noise D,
such jumps between the two potential wells happen on very
long time scales. This long-time dynamics is the primary
reason that the stationary state of such “driven” systems
(by thermal and presynaptic fluctuations) is globally out of
thermal equilibrium with the environment and it is called
thermodynamic nonequilibrium steady state, in which the
detailed balance is broken (Tome 2006). However, locally,
close to each fixed point and for not too long times the sys-
tem is in local thermal equilibrium. Thus, we can locally
approximate the probability distribution of v by the form
given in Eq. (35), by expanding the potential ®;(v) around
vg and v,. Using a Gaussian approximation, which should
be valid for small D (either for large N or for small oy,

or both), we can write Pg(v) for v close to vy as Ps(v) ~
@
e~ ®a/D exp (—%(v - vd)2>, and for v close to v, we

@
have P;(v) ~ e ®u/D exp —%(v —v,)? ), where <I>§2)

is the second derivative of the potential with respect to v at
v;, where the subscript i is either d (down state) or u (up
state). For the sake of computations we have to extend these
local approximations to longer intervals of v, corresponding
to the domains of attraction for two fixed points vy and v,,.
Consequently, we assume that the first approximation works
for 0 < v < vy, and the second for v > vy,4,. In sum,
we approximate the stationary probability density Ps(v| f,)
as two Gaussian peaks centered at vy and v,,:

; for 0 < v < Upax

Py(vlf,) = o 37)
P,(v) = Z~le=®u/D exp <— qz)“D (v — vu)z) ; for v > vy
where Z is the normalization factor, which can be written as and
asum Z = Z4 + Z,, with
Viax e = »?
Zy = e_%/D/O dv exp —%(v — vd)2 Z, = e~ ®u/D /;max dv exp —%(U - Uu)2
~aoy/p | 7D _o,p | TD
=e o lerf(lxa1]) + erf(lxa2))] (38) = ¢ P [ —5 11 +erf(lx,])] (39)
29 200
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2

where erf(...) is the error function, x;1 = %(—vd),
o2 e

xa2 =1\ 55 (Wmax —va), and x, = \/%(vmax —uy). Note
that because the unstable fixed point v,,,, depends on f,,
the arguments of the error functions in Z; and Z, change
with changes in f,. This influences the determination of
Pd, Pu, as well as energy rate and Fisher information (see
below).

4.6 Fractions of weak and strong synapses

We define the fraction of synapses in the down state py
(fraction of weak synapses) as the probability that synaptic
current v is in the domain of attraction of the down fixed
point in the deterministic limit. This takes place for v in the
range 0 < v < vyqx, Where vy,4x 1S the unstable fixed point
separating the two stable fixed points v and v,,. By analogy,
the fraction of synapses in the up state p,, is the probability
that v is greater than v,,,,. We can write this mathematically
as

P = /0 v Pyl fy) = Za)Z (40)
and
m=/mdumwm52ﬂz @1)

where P;(v|f,) and P,(v| f,) are given by Eq. (37). Using
the expressions for Z; and Z,, we find an explicit form of
Pd as

—1
P 1+ erf(|x,))]
o [erf(|xa1]) + erf(|xa2))]

(Pg—Pu)/D

pa=|1+e

(42)
Note that py and p, sum to unity, since Z = Z; + Z,,.
4.7 Average values of v and r in the mean-field

Average value of the synaptic current v in the mean-field is
denoted as (v), and computed as

Umax o0
(v) = f dv P;(v) v +/ dv P,(v) v. 43)
0 Umax
Execution of these integrals yields

(V) = pava + puva + O(e™ 0, ™50, ™), (44)

2 2 2 .
where O(e a1, e a2, ™) denotes small exponential
terms in the limit of very small D.

Standard deviation of v can be found analogically, which
yields

\/T—\/v —v)?pupa + D(LL (2) (2) S0

The average value of the postsynaptic firing rate r,
denoted as (r), is computed in the limit of large A (see
Eq. (6)). In this limit » =~ (v/k) [1 — v/(A/c)z], and we find

1
<r> ~ Pd |:1de A2 3 (vd + D/(D(Z))]
vy 1
pu [7 23 (v +D/<I>(2>)] (46)

which means that the form of (r) is more complicated than

(v).

4.8 Transitions between weak and strong synaptic
states: Kramer escape rate

For cortical neurons the number of spines per neuron are
very large, i.e. N ~ 10° — 10* (Elston et al. 2001; DeFelipe
et al. 2002; Sherwood et al. 2020), and thus one can expect
that o is small and consequently the fluctuations around the
population average current v are rather weak. The results
described below are obtained in the limit of small o,.

Plastic synapses can jump between down and up states
due to effective synaptic noise o, or D. From a physical
point of view, this corresponds to a noise induced “escape”
of some synapses through a potential barrier. Average
dwelling times in the up (7,) and down (7y) states can
be determined from the Kramers’s formula (Van Kampen
2007):

2
I} = ———=cxp| 5 L AD; 47
| Pras %o

where the index i = d ori = u, CDIQ) and dDg()m are the
second derivatives of the potential at its minima (v = v;)
and maximum (v = vpgy), and the potential difference
AD; = P(vygx) — P(v;) > 0. Note that for large number
of synapses N, the exponential factor in Eq. (47) can be
large, which can lead to very long dwelling times that are
generally much longer than any time scale in the original
Egs. (1-2). The fact that the times 7,, and 7; are long but
finite is an indication of metastability of “locally” stable up
and down synaptic states.

There exist a relationship between fractions of
weak/strong synapses and the Kramer’s escape times Ty
and T;, in the limit of very weak noise D +— 0. Namely, it
can be easily verified that in this limit p(o) / p(o) = T4/T,,
and consequently, we can write

O = Ta
d T+ T,

(48)
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where pt(io) is the fraction of weak synapses for D +— 0
given by
-1
©) o
py = | 1+e@m PP G (49)
@,
4.9 Memory lifetime

Synaptic memory lifetime 7}, is defined as a characteristic
time the synapses remember a perturbation to their steady
state distribution. Mathematically, it means that we have
to consider a time-dependent solution of the probability
density P (v|fo; t) to the Fokker-Planck equation given by
Eq. (34). This solution can be written as (Van Kampen 2007;
Risken 1996)

P[fo;0) = Ps(vlfo)+ze_”"’1/fk(v|fo), (50)

k=0

where yx and ¥ (v|f,) are appropriate eigenvalues and
eigenvectors. The eigenvalues are inverses of characteristic
time scales, which describe a relaxation process to the
steady state. The smallest eigenvalue, denoted as yy,
determines the longest relaxation time 1/yp, and we
associate that time with the memory lifetime 7,,,. It has been
shown that yg = 1/Ty + 1/ T, (Van Kampen 2007; Risken
1996), which implies that

T,T,
T, = uld

= . 51

A similar approach, through eigenvalues, to estimating the
memory lifetime was adopted also in (Fusi and Abbott
2007).

4.10 Entropy production rate, entropy flux,
and power dissipated by plasticity

Processes underlying synaptic plasticity (e.g. AMPA
receptor trafficking, PSD protein phosphorylation, as well
as protein synthesis and degradation; see Huganir and
Nicoll 2013, Choquet and Triller 2013) operate out of
thermodynamic equilibrium, and therefore require energy
influx. At a stochastic steady state, this energy is dissipated
as heat, which roughly corresponds to a metabolic rate
of synaptic plasticity. The rate of dissipated energy is
proportional to the average rate of decrease in the effective
potential ®, or equivalently to the entropy production rate
(Nicolis and Prigogine 1977).

Given the above, we can write the energy rate for synaptic
plasticity E as E ~ —(d®(v| fo)/dt) = —(®WDv), where
®W s the first derivative of ® with respect to v, the
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symbol v is the temporal derivative of v, and the averaging
(...) is performed over the distribution P (v|fo). The second
equality follows from the fact that v is the only variable
in the potential that changes with time on the time scale
Ty. Next, we can use Eq. (3) or (31) in the equivalent
form, namely v = —® + /2/7,,0,7, and this equation
resembles the motion of an overdamped particle (with
negligible mass) in the potential ®, with v playing the role
of a spatial coordinate. After that step, we can write the
energy rate as E ~ ([®D12) — /2/1,0, (V7). The
final step is to use the Novikov theorem (Novikov 1965)
for the second average, i.e. (®(V7) = %ngv(d)(z)).
This leads to

2
E~ 2 (@) + (/o) (0.
Tw

We can obtain a similar result for E using a thermo-
dynamic reasoning. The dynamics of synaptic plasticity is
characterized by the distribution of synaptic currents per
synapse P (v|f,), which evolves in time according to Eq.
(34). With this distribution we can associate the entropy
S(t), defined as S(t) = — fooo dv P(v|f,)In P(v| f,), mea-
suring the level of order in a typical spine. It can be shown
(Nicolis and Prigogine 1977; Tome 2006; Tome and de
Oliveira 2010) that the temporal derivative of the entropy,
dS/dt, is composed of two competing terms, dS/dt =
IT — T, called entropy production rate (IT) and entropy flux
("), both per synapse. In the case of thermodynamic equi-
librium, which is not biologically realistic, one has dS/dt =
IT = ' = 0, and there is neither energy influx to a sys-
tem nor dissipated energy to the environment. However,
for processes out of thermodynamic equilibrium, relevant
for spine dynamics, we still can find a stationary regime
where entropy of the spine does not change, dS/dt = 0,
but entropy flux I and entropy production IT are nonzero
and balance each other (Nicolis and Prigogine 1977; Tome
2006). It is more convenient to determine the stationary dis-
sipated power by finding the entropy flux, which is given
by Tome (2006) and Tome and de Oliveira (2010) (see
Supplementary Information)

r=2(e"P) - (02 (52)
GU

Note that Eq. (52) is very similar in form to the energy
rate E derived above; the two expressions differ only by
the factor 01,2 /Tw, and none of them has the units of energy
(I" has the unit of the inverse of time). Thus, we need to
introduce the energy scale in the problem. Generally, the
stationary dissipated power per synapse E can be written
as E = E,T1 = E,I" (Nicolis and Prigogine 1977), where
E, is the characteristic energy scale associated with spine
conductance changes, and its value is estimated next.
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4.11 Estimation of the characteristic energy scale
for synaptic plasticity

As was said in the Introduction, the BCM model (either
classical or extended) is only a phenomenological model
of plasticity that does not relate directly to the underly-
ing molecular processes in synapses. Consequently, a small,
single, change of synaptic weight by Aw; in Eq. (1) is
accompanied in reality by many molecular transitions in
synapse i. This means that a single degree of freedom related
to w; is in fact associated with many, hidden, molecular
degrees of freedom. To be realistic in our energy cost esti-
mates, we have to include those hidden degrees of freedom.

If we dealt with a process representing a single degree
of freedom, then the energy scale E, relating entropy flux
' and energy rate E, would be E, = kT (Nicolis and
Prigogine 1977), where k is the Boltzmann constant and T
is the tissue absolute temperature (7 ~ 310 K). However,
a dendritic spine is a composite object with multiple
components and many degrees of freedom (Bonhoeffer
and Yuste 2002; Holtmaat et al. 2005; Meyer et al. 2014,
Choquet and Triller 2013), and hence the characteristic
energy scale E, is much bigger than k7. The changes in
spine conductance on time scale of ~ 1 hr, i.e. for e-LTP
and e-LTD, are induced by protein interactions in PSD
(Lisman et al. 2012; Kandel et al. 2014) and subsequent
membrane trafficking associated with AMPA and NMDA
receptors (Borgdorff and Choquet 2002; Huganir and
Nicoll 2013; Choquet and Triller 2013). Protein interactions
are powered by phosphorylation process, which is one
of the main biochemical mechanism of molecular signal
transduction in PSD relevant for synaptic plasticity (Bhalla
and Iyengar 1999; Zhu et al. 2016). Phosphorylation rates
in an active LTP phase can be very fast, e.g., for CaMKII
autophosphorylation they are in the range 60 — 600 min~!
(Bradshaw et al. 2002). Other processes in a spine, most
notably protein turnovers in PSD (likely involved in I-LTP
and I-LTD), are much slower ~ 3.7 days (Cohen et al.
2013), and therefore their contribution to the energetics of
the early phase of spine plasticity seems to be much less
important (see, however Discussion for an estimate of the
protein turnover energy rate).

The energy scale for protein interaction can be estimated
as follows. A typical dendritic spine contains about 10*
proteins (including their copies) (Sheng and Hoogenraad
2007). One cycle of protein phosphorylation requires the
hydrolysis of 1 ATP molecule (Hill 1989; Qian 2007), which
costs about 20k7T (Phillips et al. 2012). Each protein has
on average 4-6 phosphorylation sites (Collins et al. 2005;
Trinidad et al. 2012). If we assume conservatively that only
about 20% of all PSD proteins are phosphorylated, then
we obtain the energy scale for protein interactions roughly
2 10°kT, which is 8.6 - 10710 J,

Energy scale for receptor trafficking can be broadly
decomposed into two parts: energy required for insertion
of the receptors into the spine membrane, and energy
related to their horizontal movement along the membrane
to the top near a presynaptic terminal. The insertion energy
for a typical protein is either about 3 — 17 kcal/mol
(Gumbart et al. 2011) or 8 — 17kT (Grafmuller et al.
2009), with the range spanning 4 — 25kT, and is caused
by a deformation in the membrane structure (Gumbart
et al. 2011). Since an average spine contains about 100
AMPA (Matsuzaki et al. 2001; Smith et al. 2003) and
10 NMDA (Nimchinsky et al. 2004) receptors, we obtain
the total insertion energy in the rage 500 — 3200kT.
The second, movement contribution can be estimated by
noting that typical forces that overcome friction and push
macromolecules along membrane are about 10 pN, and they
are powered by ATP hydrolysis (Fisher and Kolomeisky
1999). AMPA and NMDA receptors have to travel a spine
distance of about 1 um (Benavides-Piccione et al. 2013),
which requires the work of 110 - 107! . 107® N-m= 1.1 -
10715 J or 2.5 - 10°kT. The latter figure is 100 times
larger than the insertion contribution, which indicates that
the energy scale for receptor trafficking is dominated by the
horizontal movement and is similar to the above for protein
phosphorylation.

To summarize, the total energy scale E, for spine
conductance is about E, = 2 - 10713 J, or equivalently
4.6 - 10°kT (or 2.3 - 10* ATP molecules).

4.12 Analytical approximation of the energy rate
related to synaptic plasticity

It is not possible to find analytically the entropy flux I' in
Eq. (52) for an arbitrary probability distribution. However,
[ can be determined approximately for the probability
distribution Pg(v| f,,) in Eq. (37), by the saddle point method
as a series expansion in the small noise amplitude D, which
is proportional to 1/N. We can write the entropy flux I" in
terms of the probability densities P; and P, appearing in
Eq. (37) as

(hy2 (1y2
r= <—(¢D * _ <1><2>> + <—(CDD L <I><2>> (53)
d u

where

(1) 2 VUmax (1) 2
@ ) — [ 4y Py (22— @) (s4)
D d 0 D

and

(1y2 00 (12
<%_<D(2)> =/ dv P,(v) (%_q;(%) (55)
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The essence of the saddle point method is in noting that
for very small D, the probability distributions in Eq. (37)
have two sharp maxima corresponding to two most likely
synaptic currents vy and v,. This implies that the values
of v that are the closest to vy and v, in (®1)2/D — @
provide the biggest contributions to the integrals in Egs. (54)
and (55), and hence to the entropy flux I". Consequently, we
have to expand the function (®WD ()2 /D — @@ (v) around
vg and vy,.

For v near vy, the expansion is simpler if we introduce
a unitless variable x, related to v such that (v — vy) =

\/2D/ <I>§2)x, where CDfiz) is the second derivative of ® (v) at
v = vg. Then to the order ~ D we have:

(CARC3)PNCN
D

2D
= oY~ 1)+ /gd>;3)(2x3 —x)
d

3)y2
2D @2 4 l 42 l(CD )
—I—— o (=x x*
+0(D3/2) (56)

A similar expression holds v near v,, with a substitution
(N2
Cbgl) > d),sn). Thus for (% — &), we have

L)
=7~ 2(D2 _CD“’/D/ dx e” -’
\/ @
2D
(CD(Z)(Zx D+ |5 @x —x)
qu

B3)\2
2D 1 1(®;)
2D <4>_ _ Loy T )
+ |:<I> ( 5 )+2 q>§}> x:|> (57)

2)

.. . . @
where the limits of integration are x;; = %(—vd), and

e

Xa2 = \/ 5% (Vmax — va). Execution the above integrals

yields

<w _ @(2)>
D
d
2D
=7 /q><2 *‘I’d/’)f[erfuxdn) + erf(jxa2)]

(( (2))2[3@6))2+2¢(2>¢<4)]

L0, eN0) + 0(D2)> , (58)
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where in the limit of small D, the exponential terms

2 2 .. .
(~ e7*da1, e a2) are small, and thus negligible. Next, it
is easy to note that the prefactor in front of the large

bracket simplifies, i.e, Z~! %e_q)d/D“/Tg[erf(lxdll) +
V ®u

erf(lxa2))] = 4 = pa/4.
Applying the same procedure for
us the total expression for the entropy flux I'

2
(@ — @), gives

r=>% P (2) ; 3(@7)? +20P0P ]+ 0(D?),
i=u,d )
(59)

where i = d (down state) or i = u (up state).

Having the entropy flux, we can determine analytically
the power dissipated per synapse E due to synaptic
plasticity. The result is

pdEd + Du Eu (60)

where E, and E,, are the energy rates dissipated in the down
and up states, respectively. They take the form:
E,D
2
402

E=E, =

3 2 4
;= B@M)? +20P0P1 4+ 0(D%.  (61)
Note that the first nonzero contribution to the energy rate is
of the order ~ D.

4.13 Neuron energy rate related to fast electric
signaling

We provide below an estimate of the energy used by
a sensory neuron for short-term signaling for the sake
of comparison with the energy requirement of synaptic
plasticity. It has been suggested that the majority of
neuronal energy goes to pumping out Na® ions (Na™-
K*-ATPase), which accumulates mostly due to neural
spiking activity, synaptic background activity, and passive
Na™ influx through sodium channels at rest (Attwell and
Laughlin 2001). It has been shown that this short-term
neuronal energy cost can be derived from a biophysical
neuronal model, compared across species, and represented
by a relatively simple equation (Karbowski 2009, 2012):

+ bps fo. (62)

where CMRgy,, is the glucose metabolic rate [in wmol/(cm?-
min)], ps is the synaptic density, (r) is the average
postsynaptic firing rate, and the parameters ag, ai, and b
characterize the magnitude of the above three contributions
to the neural metabolism, i.e. resting, firing rate, and
synaptic transmission, respectively (Karbowski 2012). The
average postsynaptic rate (r) is found from Eq. (46).
According to biochemical estimates, one oxidized
glucose molecule generates about 31 ATP molecules (Rolfe

CMRgy = ap + ai(r)
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and Brown 1997). In addition, 1 ATP molecule provides
about 20k T of energy (Phillips et al 2012). This means that
the short-term energy rate per neuron, denoted as E,, is
given by
NakT

Pn

E,=31-20 CMRgy,, (63)
where N4 is the Avogadro number, and p, is the
neuron density. We estimate the ratio of the synaptic
plasticity power to neural power, i.e. E /E,, across different
presynaptic firing rates for three areas of the adult human
cerebral cortex (frontal, temporal, and visual), and two areas
of macaque monkey cerebral cortex (frontal and visual).

The values of the parameters ap and a; in Eq. (62) are
species- and area-independent, and they read a9 = 2.1 -
10719 mol/(cm? s), and a; = 2.3-10~2 mol/cm? (Karbowski
2012). The rest of the parameters take different values for
human and macaque cortex. Most of them are taken from
empirical studies, and are given below. The parameter b,
present in Eq. (62), is proportional to the neurotransmitter
release probability and synaptic conductance, and it was
estimated based on fitting developmental data for glucose
metabolism CMRg;, and synaptic density po; (which vary
during the development) to the formula (62) (Karbowski
2012).

The following data are for an adult human cortex. The
adult CMRg,, is 0.27 wmol/(cm?-min) (frontal cortex), 0.27
pumol/(cm3-min) (visual cortex), and 0.24 pmol/(cm?-min)
(temporal cortex) (Chugani 1998). The parameter b reads:
1.16 - 1072° mol (frontal), 0.63 - 10720 mol (visual),
0.17 - 1072 mol (temporal) (Karbowski 2012). Note
that the value of b is 7 times larger for the frontal
cortex than for the temporal, which might suggest that
the product of neurotransmitter release probability and
synaptic conductance is also 7 fold larger in the frontal
cortex. This high difference may seem unlikely, however,
it is still plausible, given that the release probability is
highly variable and can assume values between 0.05-
0.7 (Bolshakov and Siegelbaum 1995; Frick et al. 2007,
Volgushev et al. 2004; Murthy et al. 2001), and synaptic
weights in the cortex are widely distributed (Loewenstein
et al 2011). Neuron density p, reads: 36.7 - 10 cm™3
(frontal), 66.9-10° cm™3 (visual), 59.8-10° cm 3 (temporal)
(Pakkenberg and Gundersen 1997). Synaptic density pg
reads: 3.4 - 1011 cm—3 (frontal), 3.1 - 10" ¢m—3 (visual),
29101 ¢m—3 (temporal) (Huttenlocher and Dabholkar
1997).

The following data are for an adult (6 years old) macaque
monkey cortex. The adult CMRgy,, is 0.34 ,umol/(cm3-min)
(frontal cortex), 0.40 umol/(cm?-min) (visual cortex) (Noda
et al. 2002). The parameter b reads: 0.4- 10720 mol (frontal),
and 3.8 - 10720 mol (visual) (Karbowski 2012). Neuron
density p, reads: 9 - 107 cm~3 (frontal), 31.9 - 107 cm™3

(visual) (Christensen et al. 2007). Synaptic density p reads:
5-10" ¢cm~3 (frontal) (Bourgeois et al. 1994), 6-10!! cm™3
(visual) (Bourgeois and Rakic 1993).

4.14 Fisher information and coding accuracy
in synapses

Fisher information Ir(f,) about the driving input f, is
a good approximation of the mutual information between
the driving presynaptic activity and postsynaptic current v
(Brunel and Nadal 1998). It is also a measure of the coding
accuracy and it is defined as (Cover and Thomas 2006)

d1n P(v] £,)\?
15 (fy) =<(%) > (64)

Taking into account the form of probability density, Eq.
(37), we can rewrite this equation as

3l Py (v £,)\> 3ln P, (v| £,)\>
Ir(f,) = <(%”'”) >d+<(%) »
(65)

where

d1n P;(v] f,)\2
("))

= [Z/Z+ @;/D)] pi

+2[Z//Z + (®i/D)] <(¢Ez)<v - v,->2/<21)>)/>

1

12
+<[(c1>§2)(v —w)?/CD)) } > (66)

l
Our first goal is to express the factor Z'/Z in terms of
the potential and its derivatives. To do it, we compute the
following average:

olnP dln Py dln P,
S>: d+ u)u'

fo 3fo 3fo

The left hand side of this equation is zero, since

((In Py)') = /oo dv(P;) = </Oovas(v)> =0,
0 0

where a prime denotes a derivative with respect to f,.
Additionally,

(n P))y =212~ (@1/D) ~{(® (0 = v)*/2D)) ).

Combining the last two equations we obtain a relation
between Z'/Z and the potentials:

2'/Z = =(®4/D) pa = (®u/ D) py
~((oP v = va?/2D))

~(®P - w/@D) . (©7)
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After insertion of this expression into Eq. (66) and after
some algebra, we arrive at the Fisher information

d,— D5\ D, — D\
Ir(fo) = [(T)] PdPu +2(T)

< [pat(2 0 = ren)),

- <( P (- vd>2/(2D))/>d]

2

< oPw - vd)z/(zD))’>

d

+< q><2>(v—v )2/(2D) > )
+< cb(2>(v vg) /(2D))/ >

+ (2)(11 —u,)?/2D) / > (68)

The averages in the above equation can be computed to
yield:

A1 Te®y p
<(®§2)(U - Ui)2/(2D)) > = 5P |:(q;T)) - Bi|

1

+0(e VP (69)

and

<[(<I>§2><v - ui)2/<2D>)’]2>'

@)

=2’
@y 2
3 (®,”) D -
+Zpl[ o? —3} +0@™ ) (70)

After insertion of these expressions into Eq. (68), and some
algebraic manipulations, we arrive at Eq. (17) for I in the
Results.

4.15 Relationship between synaptic energy rate
and Fisher information in the limit D — 0

Below we derive the relation given by Egs. (18) and (19) in
the limit of very weak synaptic noise, D +> 0. In this limit,
it can be noted that the product of the fractions of weak and
strong synapses is

e(q)d ®o,)/D cp(z)/q)(z)
v . 1)
(1 + e@=00/D [p? /cl>ff)>

0 0
PP =

@ Springer

This expression enables us to write in a compact form the
derivative of pflo) with respect to f, as

0
apg(z) _ p(O)p(()) D, — g\
af, d Tu D

5 [y e - (@3”)’/@?]] (72)

where the prime denotes differentiation with respect to f,.
On the other hand it can be noted that, in the bistable regime,
the Fisher information in Eq. (17) in the leading order 1/D?
can be written as

b, — b\
Ir(fo) = py Py [(—D d)

| 2
+§ [(q)g))//q):(;) _ (GI);”)//%”H
+0(1/D), (73)

which is similar in form to the expression for dp, 05 fo. This
suggests that we can combine the two equations, and arrive
at

(o0 s01)

Ir(fy) = *—G—5— 1+ 0D, (74)
Py DPu
which is Eq. (18) in the Results.
Next, we want to relate Eq. (74) for IF to the energy rate.
Energy rate E = p[(lo) Eq+ p,ﬁo) E, can be differentiated with

respect to f,, which yields

. (O) .
9E  dp IE, IE
— =By - E)+p{ S+ PO (9)
afo afo /o 9fo
where we used the relation ap\ /df, = —ap " /df,, which

©) ©0)

+ Pu
to note that the first term in dE/df,, i.e. 8pd )/Bfo, is of
the order 1/D, whereas the rest terms (~ pflo), Du o ) are of
the order of one. This implies that the first term dominates
in the limit D +— 0. Thus, we can write approximately the

expression for d pc(lo) /df,, involving the energy rate as

follows from the fact that p, = 1. Now it is crucial

Y 9E/df,
afa (Ed - Eu)
Finally, if we combine Eqgs. (74) and (76), we obtain Eq.
(19) in the Results for the bistable regime.

[1+ O(D)] (76)

4.16 Numerical simulations of the full synaptic
system

Numerical stochastic dynamics of the whole synaptic
system given by Egs. (1-2) were performed using a
stochastic version of Runge-Kutta scheme (Roberts 2001).

Energy dissipated for plasticity by the full synaptic
system (Egs. (1)-(2)) was computed numerically using the
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approach presented in (Tome 2006; Tome and de Oliveira
2010). We can rewrite Eq. (1) in a more compact form as

dw; V20,1 + 14 f;
— =F,i+ Mﬂi (77)
dt Tw
where
Fyi = afir(r — ) — Wi =€) (78)
Tw

This enables us to write the entropy flux in the steady state
(equivalent to entropy production rate) of the full synaptic
system in a compact form. Consequently, the numerical
entropy flux per synapse of the whole system I',;,;, 1S

N

1 Tw Fw,i 2 ’
Coum = N ; g((m) )+ (Fy.) (79)

I
where F w.i

= d0Fy ;/0w;, and it is given by

2 2
Fl =L MBATCr ) (80)
’ Tw NQr 4+ kA2)

The numerical energy rate Enum is Enum = E,Tum. The
brackets (...) in Eq. (79) denote averaging over fluctuations
in synaptic noise and presynaptic firing rates (averaging
over n and x stochastic variables). In numerical simulations,
these averages are computed as temporal averages over
long simulation time. This equivalence in averaging is
guaranteed due to ergodic theorem. The minimal number
of time steps for numerical convergence is of the order of
~10°.

4.17 Parameters used in computations

The following values of various parameters were used: V, =
—65 mV, g = 0.35 (Volgushev et al. 2004), g, = 150
msec (Nimchinsky et al. 2004), t4nps = 5 msec (Smith
et al. 2003), s = 1.0 sec, a = 1.0 nS, o = 0.3 sec (Zenke
etal. 2013), € = 3- 1074, A = 600 Hz/v/nA, 1,, = 3600
sec (Frey and Morris 1997; Zenke et al. 2013), oy = 10 Hz
(Buzsaki and Mizuseki 2014), N = 2 - 103 (average value
for many species of primates; see Sherwood et al. 2020;
Elston et al. 2001). The amplitude of synaptic weight noise
oy was taken in the range 0.02 < oy, < 0.5 nS, which is the
range suggested in experimental studies (Matsuzaki et al.
2001; Smith et al. 2003). The two undetermined parameters
are A and «, and two sets of values were used for them:
(i) k = 0.001 (nA-sec), A = 9 - 1077 (nS-sec?), and (ii)
k = 0.012 (nA-sec), . = 1073 (nS-sec?), in order to obtain
a transition to the bistable regime for f, ~ 1 — 5 Hz. The
value of A was chosen to have postsynaptic firing rate in the
range 0.1 — 10 Hz. The value of ¥ was chosen to obtain v,
in the neurophysiological range ~ 1 pA (O’Connor et al.
2005).
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