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Estrogen (E2) has multiple functions in breast cancers including stimulating cancer
growth and interfering with chemotherapeutic efficacy. Heteronemin, a marine
sesterterpenoid-type natural product, has cytotoxicity on cancer cells. Breast cancer
cell lines, MCF-7 and MDA-MB-231, were used for investigating mechanisms involved
in inhibitory effect of E2 on heteronemin-induced anti-proliferation in breast cancer
cells with different estrogen receptor (ER) status. Cytotoxicity was detected by
cell proliferation assay and flow cytometry, gene expressions were determined by
qPCR, mechanisms were investigated by Western blot and Mitochondrial ROS assay.
Heteronemin exhibited potent cytotoxic effects against both ER-positive and ER-
negative breast cancer cells. E2 stimulated cell growth in ER-positive breast cancer
cells. Heteronemin induced anti-proliferation via suppressing activation of ERK1/2 and
STAT3. Heteronemin suppressed E2-induced proliferation in both breast cancer cells
although some gene expressions and anti-proliferative effects were inhibited in the
presence of E2 in MCF-7 and MDA-MB-231 cells with a higher concentration of
heteronemin. Heteromenin decreased the Bcl-2/Bax ratio to inhibit proliferation in MDA-
MB-231 but not in MCF-7 cells. Both heteronemin and E2 increased mitochondrial
reactive oxygen species but combined treatment reversed superoxide dismutase
(SOD)s accumulation in MCF-7 cells. Heteronemin caused G0/G1 phase arrest and
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reduced the percentage of cells in the S phase to suppress cancer cell growth. In
conclusion, Heteronemin suppressed both ER-positive and ER-negative breast cancer
cell proliferation. Interactions between E2 and heteronemin in signal transduction, gene
expressions, and biological activities provide insights into the complex pathways by
which anti-proliferation is induced by heteronemin in E2-replete environments.
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INTRODUCTION

Although early detection methods and effective treatments
have been developed for breast cancer, it is still the most
common diagnosed cancer among women (Bray et al., 2018).
Despite advancements in diagnostics and systemic treatments,
up to one-third of patients with breast cancer undergo a
mastectomy as initial surgical treatment to achieve local control
(Anampa et al., 2015). Adjuvant systemic treatment, including
chemotherapy, reduces the risks of distant recurrence and breast
cancer mortality.

Generally, 17β-estradiol (E2) binds with estrogen receptor-α
(ER-α) as a transcription factor complex to regulate expression
of target genes and proteins that are important for biological
functions (Hofseth et al., 1999). However, estrogen can initiate
breast cancer development, and promotes breast cancer cell
growth. Recently, we showed that estrogen is able to bind αvβ3, a
cell surface integrin, to activate signal transduction and cancer
growth (Cody et al., 2007); however, the mechanisms are not
fully revealed. Although the ER-regulated signaling transduction
pathway plays a vital role in breast cancer growth, it does not
involve in breast cancer initiation (Cavalieri and Rogan, 2014).
On the other hand, strong evidence indicates that estrogen
oxidative metabolism may initiate breast cancer development
majorly (Cavalieri et al., 1997; Devanesan et al., 2001).

Reactive oxygen species (ROS) include hydroxyl radicals
(OH·), hydrogen peroxide H2O2, and superoxide (O2−) (Poillet-
Perez et al., 2015). Both aerobic glycolysis and mitochondrial
oxidative phosphorylation are cellular sources of ROS. During
oxidation, electrons leak from the electron transport chain,
transfer to oxygen, and convert approximately 1∼5% of the
oxygen into superoxide (Bhat et al., 2015). However, additional
electrons that prematurely leak from the respiratory chain
under stressful conditions exacerbate superoxide production,
thus causing detrimental effects (Poillet-Perez et al., 2015).
At low concentrations, they are essential signaling molecules.
On the other hand, high ROS quantities can cause damage
to DNA and other macromolecules to trigger senescence
(Cobbaut and Van Lint, 2018). High concentrations of ROS also
permeabilize mitochondria leading to the release of cytochrome
c which induces apoptosis (Cobbaut and Van Lint, 2018).
Breast cancer cells modify metabolic pathways to facilitate
increased proliferation and cell survival resulting in glucose
and glutamine (Gwangwa et al., 2019). Cancer cells increase
ROS production during cancer cell proliferation. Estrogen-
mediated high ROS accumulation plays a key role in driving
carcinogenesis (Tian et al., 2016). Excessive ROS serve as
important effectors to increase genomic instability and activate

redox-associated signaling pathways. Physiologically available
concentrations of estrogens or estrogen metabolites that directly
act on the mitochondria of mammary epithelial cells produce
ROS, which subsequently enhances the phosphorylation of
kinases to activate redox-sensitive transcription factors (Okoh
et al., 2013). Therefore, ROS are important mediators of
estrogen-induced cancer. Two metabolites of estrogen, 2-
OHE1E2, and 4-OHE1E2, are highly redox-active and generate
ROS in breast epithelial cells (Fussell et al., 2011). Long-
term exposure to estrogen induces ROS overproduction and
increases mitochondrial (mt)DNA mutations and mitochondrial
protein damage. A recent study indicated that 4-OHE1E2
induces ROS and causes malignant transformation of MCF-10A
cells. However, biological or chemical ROS scavengers prevent
4-OHE1E2-induced carcinogenesis in MCF-10A cells (Okoh
et al., 2013). Excess ROS generated by repeated exposure to 4-
OHE1(E2) caused malignancy of human mammary epithelial
cells in nude mice (Okoh et al., 2013).

Heteronemin, the most abundant secondary metabolite in the
sponge Hippospongia sp., exhibited potent cytotoxic activities
against several cancer cell lines. It induced apoptosis in different
types of cancer cells (Kollmann et al., 2015; Lee Y. S. et al.,
2018; Lin et al., 2018; Cheng et al., 2019; Huang et al.,
2020). It inhibited activation of extracellular signal-regulated
kinase 1/2 (ERK1/2) and signal transducer and activator of
transcription 3 (STAT3) (Huang et al., 2020). The role of nuclear
factor (NF)-κB in heteronemin-induced anti-proliferation is
controversial (Schumacher et al., 2010; Chen et al., 2018).
It upregulated talin expression and talin phosphorylation in
leukemia Molt4 cells (Chen et al., 2018). Heteronemin was
shown to modulate mitochondrial (mt)ROS and oxidative
phosphorylation (OXPHOS) (Cheng et al., 2019). Some studies
indicated that heteronemin induces apoptosis via inhibition of
the transforming growth factor (TGF)-β signal transduction
pathway in cholangiocarcinomas (Lin et al., 2018). In addition,
it inhibits p53 expression but does not affect apoptosis (Lin
et al., 2018). Altogether, results have shown that this compound
has potential as an anti-inflammatory and anti-cancer agent
(Schumacher et al., 2010). Mitochondria are major sites for
apoptosis, and they are highly regulated by the Bcl-2 family
of proteins comprising both anti-apoptotic (Bcl-2 and Bcl-xL)
and proapoptotic (Bax and Bak) members (el-Deiry et al., 1994;
Chipuk et al., 2004; Papi et al., 2008; Weng et al., 2009; Xu et al.,
2009; Gwangwa et al., 2019). Therefore, targeting mitochondria
is a novel strategy for cancer therapy. Heteronemin was shown
to target mitochondrial-mediated apoptosis (Wu et al., 2015;
Chen et al., 2018; Cheng et al., 2019); however, evidence
indicates there are other death pathways involved. Heteronemin
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induced a novel type of programmed cell death, "Ferroptosids"
(Chang et al., 2021).

In the present study, we investigated the inhibitory effect
of E2 on heteronemin-induced cytotoxic effects via suppressing
activation of ERK1/2 and STAT3 in breast cancer cells.
Heteronemin and E2 showed different effects on expressions
of proliferation, angiogenesis, and growth factor receptor
genes in breast cancer cells. E2 showed inhibitory effects on
heteronemin-induced signal transduction, gene expression, and
anti-proliferation in breast cancer cells. However, heteronemin
induced anti-proliferation via different patterns in ER-positive
and negative breast cancer cells. In the presence of E2,
heteronemin induced anti-proliferation via modulating ROS in
MCF-7 cells. On the other hand, it decreased Bcl-2/Bax ratio to
inhibit cancer growth in MDA-MB-231 cells.

MATERIALS AND METHODS

Cell Lines
Human ER-positive MCF-7 breast cancer cells (ATCC R© HTB-
22TM), ER-negative MDA-MB-231 cells (ATCC R© HTB-26TM)
and normal epithelial cell line Vero (ATCC R© CCL-81TM) was
established from kidney of normal adult African green monkey
were obtained from American Type Culture Collection (ATCC,
Manassas, VA, United States). These cell lines were tested
and authenticated by BCRC (isoenzyme analysis, Mycoplasma,
cytogenetics, tumorigenesis, and receptor expression testing).
Cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM, Life Technologies, Carlsbad, CA, United States),
supplemented with 10% fetal bovine serum (FBS). Incubation
conditions were 5% CO2 at 37◦C. Before the study, cells
were placed in a 0.25% hormone-depleted serum-supplemented
medium for 2 days.

Cell Viability Assay
MCF-7, MDA-MB-231, and Vero cells were plated at a density
of 4 × 103 cells/well in 96-well plates. Cell viability was
determined by using the Alamar Blue R© Assay Kit (Thermo
Fisher Scientific, Watertown, MA, United States) at 72 h after
treatment. Medium containing different drugs was replaced daily.

At the time of detection, medium was removed, and cells were
incubated with Alamar Blue R© reagent for 2 h at 37◦C according
to the manufacturer’s instructions. Plates were then analyzed
using a VersaMax Microplate reader (Molecular Devices, San
Jose, CA, United States) at a wavelength of 570 nm, with
600 nm as a reference.

Real-Time Quantitative Polymerase
Chain Reaction (qPCR)
Total RNA was extracted with genomic DNA removed with an
Illustra RNAspin Mini RNA Isolation Kit (GE Healthcare Life
Sciences, Buckinghamshire, United Kingdom). DNase I-treated
total RNA (1 µg) was reverse-transcribed using a RevertAid H
Minus First Strand cDNA Synthesis Kit (Life Technologies) into
complementary (c)DNA. cDNAs were used as the template for
the real-time PCR and analysis. Real-time PCRs were conducted
using a QuantiNovaTM SYBR R© Green PCR Kit (Qiagen, Hilden,
Germany) on a CFX ConnectTM Real-Time PCR Detection
System (Bio-Rad Laboratories, Hercules, CA, United States). The
reaction procedure involved initial denaturation at 95◦C for
5 min, followed by 40 cycles of denaturing at 95◦C for 5 s and
combined annealing/extension at 60◦C for 10 s, as shown in detail
in the manufacturer’s instructions. Primer sequences are listed in
Table 1. The relative gene expression (normalized to 18s reference
gene) was calculated according to the11CT method. The fidelity
of the PCR was determined by a melting temperature analysis.

Western Blot Analysis
To examine the effects of E2 and heteronemin on signaling
pathways, Western blot analyses were conducted to quantify
protein expression levels of phosphorylated (p)STAT3-S727,
p-protein kinase Cα (PKCα)-T497, and pERK1/2 in MCF-7
and MDA-MB-231 cells. For the Western blot analyses, cells
were lysed, and extracted protein samples were separated by
10% sodium dodecylsulfate-polyacrylamide gel electrophoresis
(SDS-PAGE). A 30-µg quantity of protein was loaded into
each well with 5 × sample buffer and samples were resolved
by electrophoresis at 100 V for 2 h. Resolved proteins were
transferred from the polyacrylamide gel to Millipore Immobilon-
PSQ Transfer polyvinylidene difluoride membranes (Millipore,

TABLE 1 | Primer sequences for the qPCR.

Name Forward Reverse

CCND1 5′-CAAGGCCTGAACCTGAGGAG-3′ 5′-GATCACTCTGGAGAGGAAGCG-3′

c-Myc 5′-TTCGGGTACTGGAAAACCAG-3′ 5′-CAGCAGCTCGAATTTCTTCC-3′

PD-L1 5′-GTTGAAGGACCAGCTCTCCC-3′ 5′-ACCCCTGCATCCTGCAATTT-3′

Bcl-2 5′-TTGCCAGCCGGAACCTATG-3′ 5′-CGAAGGCGACCAGCAATGATA-3′

p21 5′-CTGGGGATGTCCGTCAGAAC-3′ 5′-CATTAGCGCATCACAGTCGC-3′

Ki-67 5′-GAAAGAGTGGCAACCTGCCTTC-3′ 5′-GCACCAAGTTTTACTACATCTGCC-3′

EGFR 5′-AATTTACAGGAAATCCTGCATGGC-3′ 5′-GATGCTCTCCACGTTGCACA-3′

Bax 5′-CATATAACCCCGTCAACGCAG-3′ 5′-GCAGCCGCCACAAACATAC-3′

BAD 5′-CTTTAAGAAGGGACTTCCTCGCC-3′ 5′-AAGTTCCGATCCCACCAGGA-3′

TGF-β1 5′-GCCCTGGACACCAACTATTGC-3′ 5′-GCTGCACTTGCAGGAGCGCAC-3′

UCP2 5′-GGAGGTGGTCGGAGATACCAA-3′ 5′-ACAATGGCATTACGAGCAACAT-3′

18s 5′-GTAACCCGTTGAACCCCATT-3′ 5′-CCATCCAATCGGTAGTAGCG-3′
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Billerica, MA, United States) with Mini Trans-Blot R© Cells (Bio-
Rad, Hercules, CA, United States). Membranes were blocked with
a solution of 2% bovine serum albumin (BSA) in Tris-buffered
saline. Membranes were treated with primary antibodies from
Cell Signaling Technology: pSTAT3-S727 (catalog no. 9136),
pERK1/2 (catalog no. 4377), and GeneTex: pPKCα (catalog
no. 130433) and GAPDH (catalog no. 100118). All antibodies
were incubated at 4 ◦C overnight. Proteins were detected with
horseradish peroxidase (HRP)-conjugated secondary antibodies
and ImmobilonTM Western HRP Substrate Luminol Reagent
(Millipore, St. Charles, MO, United States). Western blots
were visualized and recorded with an Amersham Imager 600
(GE Healthcare Life Sciences, Pittsburgh, PA, United States).
Intensities of the protein bands representing expression levels
were quantitated using Image J 1.47 software (NIH, Bethesda,
MD, United States) according to the software instructions.

Mitochondrial ROS Assay
Changes in mitochondrial ROS that occurred during apoptosis
were detected with a fluorescence-based assay. Mitochondrial
ROS was detected with a Mitochondrial Superoxide Detection
Kit (ab219943, Abcam, Cambridge, United Kingdom). MCF-7
cells were cultured as previously described. After being starved
with 0.25% stripped FBS-containing medium for 2 days, cells
were re-fed using 5% stripped FBS-containing medium and
treated with E2 and heteronemin. Antimycin A at 50 µM was
used as a positive control. After 24 h, cells were processed
with the Mitochondrial Superoxide Detection Kit according
to the manufacturer’s instructions. Excitation at 540 nm and
emission at 590 nm was read with a spectral scanning multimode
reader (Thermo Fisher Scientific Varioskan Flash, Waltham,
MA, United States).

Cell Cycle Assay
MCF-7 and MDA-MB-231 cells were seeded at a density of
1.5× 105 cells/well in six-well plates. After starvation with 0.25%
stripped FBS-containing medium for 2 days, cells were re-fed
using 5% stripped FBS-containing medium and treated with
agents for 24 h. Cells were trypsinized and fixed with 70% ethanol
and stored at −20◦C for 2 weeks prior to propidium iodide (PI)
staining and a flow cytometric analysis. Cells were incubated with
1 ml of phosphate-buffered saline (PBS) containing 0.5% Triton
X-100 and 0.05% RNase A for 1 h, then stained with PI/RNase
Staining Buffer (BD, San Jose, CA, United States) in the dark at
room temperature for 30 min. Flow cytometry was carried out
on an Invitrogen AttuneTM NxT Acoustic Focusing Cytometer
(Thermo Fisher Scientific, MA, United States). Percentages of
DNA contents were analyzed using Attune NxT Flow Cytometer
software (ver. 4.2) to determine the fractions of each phase of the
cell cycle (sub G0/G1, G0/G1, S, and G2/M).

Statistical Analysis
All collected data for immunoblots, nucleotide densities, and
cell densities were analyzed by IBMS R©PSS R© Statistics software
vers. 19.0 (SPSS, Chicago, IL, United States). Student’s t-test was
conducted, and p-values of < 0.05 (∗,#, or $), 0.01 ∗∗, ##, or $$),
and 0.001 (∗∗∗, ###, or $$$) as thresholds of significance, were used

to evaluate the significance of effects of estrogen, heteronemin,
and their combined treatment.

RESULTS

Heteronemin Induces Anti-proliferation
and Reverses E2 –Induced Proliferation
in ER-Positive and ER-Negative Breast
Cancer Cells
Heteronemin inhibited cell proliferation in different kinds of
cancer cells (Lee Y. S. et al., 2018; Lin et al., 2018; Huang
et al., 2020). We examined the inhibitory effect of heteronemin
on human ER-positive and ER-negative breast cancer cells.
ER-positive MCF-7 cells and ER-negative breast cancer MDA-
MB-231 cells were treated with different concentrations of
heteronemin that were refreshed daily for 3 days, and a cell
viability assay was conducted.

Heteronemin significantly inhibited the viability of MCF-
7 cells at concentrations was higher than 0.625 µM and
IC50 = 0.8779 µM (Figure 1A). In MDA-MB-231 cells, there
was significant inhibition at concentrations higher than 0.3125
µM and IC50 = 0.8672 µM (Figure 1B). However, with less
toxicity in Vero cells that are the normal kidney epithelial cells
extracted from an African green monkey and IC50 = 3.5676 µM
(Figure 1C). These results suggest that both ER-positive and
ER-negative breast cancer cells were sensitive to heteronemin
treatment. Moreover, E2 induced cell proliferation and reversed
anti-proliferation partially induced by heteronemin in MCF-
7 cells (Figure 1D). On the other hand, E2 did not promote
proliferation in MDA-MB-231 cells. However, it slightly reversed
heteronemin-induced anti-proliferation at 1.25 µM in MBA-
MD-231 cells (Figure 1E). Although E2 affect cell proliferation
in breast cancer cells, the cell viability were suppressed in the co-
treatments. Additionally, combined E2 and heteronemin also do
not affect normal cell proliferation (Figure 1E).

Heteronemin Regulates Gene
Expressions Differently in ER-Positive
and ER-Negative Breast Cancer Cells
We further studied the effects of heteronemin on gene
expressions. Both MCF-7 and MDA-MB-231 cells were treated
with different concentrations of heteronemin for 24 h. Cells were
harvested and RNA was extracted. qPCR studies were conducted
for Ki-67, CCND1, c-Myc, Bcl-2, PD-L1, and p21. Heteronemin
significantly inhibited expressions of the proliferation genes,
Ki-67 and CCND-1, in concentration-dependent manners in
both MCF-7 and MDA-MB-231 cells. It decreased c-Myc
expression only in MDA-MB-231 cells, while in MCF-7 cells,
c-Myc expression significantly increased with heteronemin
treatment (Figure 2).

Additionally, Heteronemin inhibited programmed death-
ligand 1 (PD-L1) expression and stimulated expression of
the proapoptotic gene, p21 in dose-dependent manners in
both MCF-7 and MDA-MB-231 cells (Figure 2). Heteronemin
inhibited Bcl-2 expression only with a high concentration
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FIGURE 1 | Estrogen reverses heteronemin induces anti-proliferation in breast cancer cells. (A) MFC-7, (B) MDA-MB-231, and (C) Vero cells were treated with
various concentrations of heteronemin with medium containing reagents refreshed daily for 72 h. (D) MCF-7, (E) MDA-MB-231, and (F) Vero cells were co-treated
with various concentrations of heteronemin in the presence and absence of 1 nM E2 for 72 h. Cell viability was detected with an Alamar Blue R© Assay Kit. The
number of independent studies (n) = 4. Results were expressed as the mean ± SD. *p < 0.05, ***p < 0.001 compared to the untreated control. #p < 0.05,
##p < 0.01, ###p < 0.001, compared to the same dosage of heteronemin treatment only. Heter: Heteronemin.

treatment of 1.25 µM, while Bcl-2 expression increased at a
low concentration in MCF-7 cells. In MDA-MB-231 cells, Bcl-
2 expression was inhibited at all concentrations of heteronemin.
It is interesting that heteronemin inhibited expressions of c-Myc
and Bcl-2 in ER-negative breast cancer cells but stimulated their
expressions in ER-positive breast cancer cells (Figure 2).

Heteronemin Reverses E2 –Induced
Gene Expression in Breast Cancer Cells
We also studied the effect of E2 on genes regulated by
heteronemin in ER-positive and ER-negative breast cancer cells.
In co-treatment, we chose 0.625 and 0.3125 µM heteronemin,
respectively, in MCF-7 and MDA-MB-231 cells which exhibited
significant inhibition of cell viability (Figure 1). MCF-7 and
MDA-MB-231 cells were treated with E2, heteronemin, and
combined E2 and heteronemin for 24 h. E2 induced expression
of Ki-67, CCND1, EGFR, and PD-L1 significantly in MCF-
7 cells. Heteronemin suppressed expression of Ki-67, EGFR,
and PD-L1 significantly and inhibited E2’s stimulatory effect.
While 0.625 µM heteronemin treatment did not inhibit
CCND1 expression, it reversed the effect of E2 in combined
treatment (Figure 3A). In addition, E2 not only increased
Bax expression and the Bcl-2/Bax ratio but also inhibited
expression of BAD and p21, two important pro-apoptotic genes
in MCF-7 cells (Figure 3A). Heteronemin increased expression
of Bax, BAD, and p21. E2 reduced the effect and the Bcl-
2/Bax ratio increased with combined treatment in MCF-7
cells (Figure 3A).

In ER-negative MDA-MB-231 cells, E2 did not affect
gene expressions of Ki-67, CCND1, EGFR, and PD-L1

(Figure 3B). On the other hand, heteronemin alone or
co-treatment with E2 suppressed expression of Ki-67,
EGFR, and PD-L1 (Figure 3B). E2 did not affect Bax,
BAD, and p21 expressions. Heteronemin suppressed
expression of Bax but stimulated expression of BAD and
p21 significantly (Figure 3B). It also reduced Bcl-2/Bax
ratio. The combined treatment inhibited Bcl-2/Bax ratio
significantly, but increased expression of BAD and p21
significantly (Figure 3B). In ER-positive MCF-7 cells, E2
stimulated expressions of proliferation-related genes and
inhibited pro-apoptotic gene expression. Nevertheless,
heteronemin could rescue the effects of E2. E2 did not
affect those gene expressions in ER-negative MDA-MB-231
cells. Additionally, results also suggested that Bcl-2/Bax ratio
may play a vital role in cell fate in MDA-MB-231 cells but
not in MCF-7 cells.

Heteronemin Inhibits Signal Transduction
Pathways in Breast Cancer Cells
We investigated the mechanisms involved in the heteronemin-
induced anti-cancer ability in breast cancer cells. Previous studies
showed that activation of STAT3, ERK1/2, and PKC plays an
important role in proliferation in cancer cells (Lønne et al.,
2009; Nana et al., 2018; Chin et al., 2019; Huang et al., 2020).
Results shown E2 induced phosphorylation of ERK1/2, PKCα,
and STAT3. Alternatively, heteronemin inhibited activation of
ERK1/2 and STAT3, but it increased PKCα phosphorylation in
MCF-7 cancer cells (Figure 4). The increased phosphorylated
STAT3 and ERK1/2 induced by E2 was reversed by heteronemin.
In the presence of a PKC inhibitor, sotrastaurin (SOT), all
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FIGURE 2 | Heteronemin regulates expression of ki-67, CCND1, c-Myc, Bcl-2, PD-L1, and p21 in breast cancer cells. (A) MCF-7 and (B) MDA-MB-231 cells were
treated with various concentrations of heteronemin for 24 h. Total RNA was extracted. qPCR analyses were conducted for Ki-67, CCND1, c-Myc, Bcl-2, PD-L1, and
p21. The number of independent studies (n) = 3. *p < 0.05, **p < 0.01, ***p < 0.001, compared to the untreated control.

activities of ERK1/2, PKCα, and STAT3 were inhibited in MCF-
7 cells. Heteronemin enhanced the inhibitory effect of SOT on
activities of ERK1/2 and STAT3 (Figure 4).

In MDA-MB-231 cells, E2 did not affect STAT3 and
PKCα phosphorylation. Heteronemin treatment at 0.625 µM
suppressed the phosphorylation of STAT3 and ERK1/2 but
slightly increased PKCα activation. Interestingly, E2 reduced the
inhibition of pERK1/2 but did not reduce the inhibition of
pSTAT3 induced by heteronemin (Figure 4). The result of PKCα

was similar from MCF-7 cells, in which SOT just suppressed
PKCα activation.

Both E2 and Heteronemin Induce
Mitochondrial ROS Production in MCF-7
Cells
Activation of signal transduction is linked to ROS production.
To investigate whether E2 or heteronemin plays a direct role
in mitochondrial function, we performed a mitochondrial
ROS assay. MCF-7 cells were treated with E2 and different
concentrations of heteronemin for 24 h. E2 increased TGF-
β1 expression which has been shown to increase ROS
production (Joo et al., 2008) but downregulated UCP2
expression (Figures 5A, B). On the other hand, heteronemin

stimulated TGF-β1 expression at 0.625 µM but inhibited
its expression at 1.25 µM (Figure 5A). Expression of UCP2
was inhibited by heteronemin in a concentration-dependent
manner (Figure 5B). The stimulatory effect of E2 on TGF-
β1 was inhibited by heteronemin treatment (Figure 5A).
The inhibitory effect of E2 on UCP2 was further enhanced by
heteronemin treatment (Figure 5B). Not only did E2 significantly
increase mitochondrial ROS production, but heteronemin also
significantly increased mitochondrial ROS production in a dose-
dependent manner (Figure 5C). In the presence of E2, 0.3125
µM heteronemin increased mitochondrial ROS production
compared to heteronemin only (Figure 5C). Interestingly, both
E2 and heteronemin increased accumulation of superoxide
dismutase (SOD)s (Figure 5D). However, the combination
of E2 and heteronemin reversed the accumulation of SOD1
and, SOD2 was reversed only at the higher concentration
heteronemin (Figure 5D).

Heteronemin Induces Sub G0/G1
Increase and Arrests Cell Cycle at G0/G1
Phase to Block Cell Proliferation
To understand whether E2 or heteronemin is involved in
regulating cell death in breast cancer cells, we performed
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FIGURE 3 | Estrogen and heteronemin regulate expressions of Ki-67, CCND1, EGFR, PD-L1, Bax, Bcl/Bax, BAD, and p21 in breast cancer cells. (A) MCF-7 and
(B) MDA-MB-231 cells were treated with heteronemin (0.625 µM) in the presence and absence of 1 nM E2 for 24 h. RNA was extracted and qPCR analyses were
conducted for Ki-67, CCND1, EGFR, PD-L1, Bax, Bcl-2/Bax, BAD, and p21. The number of independent studies (n) = 3. *p < 0.05, **p < 0.01, ***p < 0.001,
compared to the untreated control. #p < 0.05, ##p < 0.01, ###p < 0.001, compared to the same dosage of heteronemin treatment only.

propidium iodide (PI) staining for further exploration.
Percentages of the various cell phases in MCF-7 cells are
shown in Figure 6. Cells were treated with E2 and 0.625
µM heteronemin in the presence and absence of SOT for
24 h. The results indicated that G0/G1 phase was reduced
and S phase and G2/M phase were increased with E2 treatment.
Heteronemin treatment not only increased sub G0/G1 and G0/G1
phase population but also decreased S phase. Compared with
heteronemin treatment, co-treatment of E2 and heteronemin
decreased sub G0/G1 and G0/G1 phase but increased S phase.
These data suggest that heteronemin caused cell apoptosis,
G0/G1 arrest, and then reduced cell proliferation. In addition,

heteronemin could reverse the effects induced by E2. SOT, an
inhibitor of PKC, enhanced the G0/G1 phase increasing and S
phase decreasing by heteronemin.

In summary, heteronemin inhibited activation of ERK1/2
and STAT3 via different pathways in MCF-7 cells and MDA-
MB-231 cells. The former was PKC-dependent. Heteronemin
also inhibited proliferation-related gene expressions, increased
proapoptotic gene expressions, and suppressed cell viability. Bcl-
2/Bax ratio was downgraded in MDA-MB-231 cells but no change
in MCF-7 cells after heteronemin treatment. Heteronemin was
able to increase mitochondrial ROS production and SODs
accumulation in MCF-7 cells. In the presence of E2, ROS
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FIGURE 4 | Estrogen, heteronemin, and sotrastaurin (SOT) affect the signal transduction pathway in breast cancer cells. (A) MCF-7 and (B) MDA-MB-231 cells were
treated with 1 nM E2, 0.625 µM heteronemin, and their combination in the presence and absence of the PKC inhibitor, SOT for 24 h. Cells were harvested and total
proteins were extracted. Western blot analyses were conducted for phosphorylated (p)STAT3, pPKCα, and pERK1/2. The number of independent studies (n) = 4.
*p < 0.05, **p < 0.01, ***p < 0.001, compared to the untreated control. #p < 0.05, ##p < 0.01, ###p < 0.001 compared to heteronemin. &p < 0.05, &&p < 0.01,
&&&p < 0.001, compared to E2.

production was increased but SODs were decreased to reverse
heteronemin-induced anti-proliferative effects. Thus, E2 rescued
heteronemin-induced anti-proliferative effects in both MCF-7
and MDA-MB-231 breast cancer cells via different mechanisms.

DISCUSSION

Heteronemin caused anti-proliferation via cell apoptosis and cell
cycle arrest in breast cancer cell lines are observed (Figures 1, 6).
Heteronemin inhibited expressions of Ki-67, CCND-1, and PD-
L1 in concentration-dependent manners and stimulated p21
expression in both MCF-7 and MDA-MB-231 cells (Figure 2).
These results confirmed our recent observations in oral cancer
cells (Huang et al., 2020) and another report (Kopf et al.,
2013). On the other hand, heteronemin inhibited expressions
of c-Myc and Bcl-2 in MDA-MB-231 cells but stimulated their
expression in MCF-7 cells (Figure 2). In addition, E2 stimulated
expression of those genes and reversed some inhibitory effects
of heteronemin (Figure 3). Heteronemin reduced Bcl-2/Bax
ratio in MDA-MB-231 cells but not in MCF-7 cells (Figure 3).

Heteronemin also affected the protein expressions of the Bcl-2
family (Supplementary Figure 1), In MCF-7 cells, heteronemin
increased Bcl-2, Bax, and Bid expression. However, Bcl-2
expression was suppressed by heteronemin in MDA-MB-231.
Thus, Bcl-2/Bax ratio was downgraded in MDA-MB-231 cells
but no change in MCF-7 cells after heteronemin treatment. E2
inhibited stimulatory effects of heteronemin and the Bcl-2/Bax
ratio increased with combined treatment (Figure 3A). In MDA-
MB-231 cells, E2 did not stimulate Bax expression although
suppressed BAD expression slightly (Figure 3B). These results
suggested that the ratio of Bcl-2/Bax should play a critical role in
determining fate in MDA-MB-231 cells but not in MCF-7 cells.
On the other hand, E2 activated ERK1/2, PKCα, and STAT3,
and reversed effects of heteronemin on activation of Bcl-2 and
reduction of BAD. Therefore, increased Bcl-2 expression in MCF-
7 cells but reduced Bcl-2 expression in MDA-MB-231 cells by
heteronemin may reflect different mechanisms in different types
of breast cancer cells.

E2 treatment can stimulate PKC activation through ERα

followed by the activation of PKCδ or via ERα directly
upregulating PKC (Ronda et al., 2010). Therefore, activated
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FIGURE 5 | Estrogen and heteronemin regulate expressions of TGF-β1 and UCP2 and induce mitochondrial reactive oxygen species (ROS) production in MCF-7
cancer cells. Cells were treated with different concentrations of heteronemin in the presence and absence of 1 nM E2 for 24 h. Cells were harvested and analyzed for
(A) TGF-β1 expression, (B) UCP2 expression, (C) mitochondrial ROS production, and (D) SODs accumulation. The number of independent studies (n) = 4.
*p < 0.05, **p < 0.01, ***p < 0.001, compared to the untreated control. ##p < 0.01, ###p < 0.001, compared to the same dosage of heteronemin treatment only.

PKC plays an important role in estrogen-stimulated breast
cancer cell proliferation. In addition, the PKC inhibitor,
AEB071 (sotrastaurin), was shown to be effective against triple-
negative breast cancer cells (Byerly et al., 2016). Heteronemin
repressed STAT3 (Wu et al., 2016). Heteronemin inhibited
activation of STAT3 and ERK1/2 (Figure 4). Sotrastaurin
inhibits Akt phosphorylation, NF-κB/STAT3 activation, and Mcl-
1 upregulation. It also renders cells sensitive to arsenic trioxide
(Amigo-Jiménez et al., 2015). Therefore, we used sotrastaurin to
block PKC to reduce the NF-κB/STAT3 signaling pathway and
investigated mechanisms in breast cancer cells.

Estrogen reversed the inhibitory effect of heteronemin against
activation of ERK1/2 and STAT3 (Figure 4) in MCF-7 cancer
cells and activation of PKC and STAT3 in MDA-MB-231
cancer cells (Figure 4) but diminished ERK1/2 in MDA-MB-
231 cancer cells. These results suggested that E2 activates
different signaling pathways in MCF-7 and MDA-MB-231
cancer cells. Activation of E2-induced PKC may mediate E2-
dependent biological activities including cell proliferation. The
PKC inhibitor, sotrastaurin, more completely inhibited STAT3
activation than did heteronemin in MCF-7 cells (Figure 4),
however, but not in MDA-MB-231 cells (Figure 4). Estradiol
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FIGURE 6 | Estrogen, heteronemin, and sotrastaurin (SOT) affect proliferation that induces apoptosis and cell cycle arrest in breast cancer cells. MCF-7 cells were
treated with 1 nM E2, 0.625 µM heteronemin in the presence and absence of 10 µM SOT for 24 h. Cells were harvested, and a flow cytometric assay was
conducted as described in section “Materials and Methods.” n = 3. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, compared to the untreated control. ##p < 0.01,
###p < 0.001, compared to heteronemin treatment only.

binds to the αvβ3 integrin (Cody et al., 2007), and this possibly
explains the result that cell viability of MDA-MB-231 triple-
negative breast cancer cells was affected by E2.

Heteronemin is a farnesyl transferase inhibitor (FTI) that
inhibits the cytarabine-induced, farnesyl transferase-mediated
Ras activation and inhibits Ras downstream signal transduction
pathways such as mitogen-activated protein kinases (MAPKs),
activator protein (AP)-1, nuclear factor (NF)-κB, and c-Myc
(Saikia et al., 2018). Overproduced ROS by conjugated estrogens
during estrogen metabolism activates IκB kinase (IKK)-α and -
β to increase the translocation of nuclear NF-κB (Kim et al.,
2000). Alterations of mitochondrial metabolism may induce ROS
overproduction to involve in estrogen-mediated carcinogenesis
via induction of oxidative DNA damage (Tian et al., 2016).
Additionally, blocking estrogen attenuates respiratory and
metabolic responses and superoxide accumulation in estrogen-
responsive breast cancer cells (Tan et al., 2002; Doan et al., 2004).
Oxidative stress was postulated to be one of the mechanisms

underlying E2’s carcinogenic effect in breast cancer. E2 increases
mitochondrial-derived ROS by an unknown mechanism (Sastre-
Serra et al., 2010). E2 significantly increased ROS production
in MCF-7 cells (Figure 5C). UCPs regulate energy efficiency
in mitochondria and production of ROS (Chouchani et al.,
2016; Pierelli et al., 2017; Cadenas, 2018). They function
as an adaptive anti-oxidant defense to protect against over-
productive oxidation (Pierelli et al., 2017). E2 downregulated
UCP expression and significantly increased mitochondrial ROS
production in ER-positive MCF-7 cells (Figure 5). Heteronemin
inhibited UCP2 expression in a dose-dependent manner
(Figure 5B). Heteronemin also significantly increased ROS
production at 0.625 and 1.25 µM (Figure 5C). Lu’s group
showed that heteronemin treatment (2.56 µM) increased ROS
levels in LNCaP cells (Lee Y. S. et al., 2018). These results
suggest that heteronemin may suppress UCP2 accumulation
to increase ROS production. UCP2 was shown to negatively
modulate intracellular ROS production (Pierelli et al., 2017).
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FIGURE 7 | The schematic of heteronemin reverses E2–induced mechanism in breast cancer cells. *Significantly different compare with the untreated control group.
Heteronemin: 0.625 µM, E2: 1nM.

In the presence of E2, 0.3125 µM heteronemin increased
ROS production compared to heteronemin only (Figure 5C).
Combined treatment with E2 and heteronemin consistently
suppressed UCP2 expression (Figure 5B), suggesting that
downregulation of UCP2 may play an important role in
heteronemin-induced anti-proliferation in ER-positive breast
cancer cells in the presence of estradiol. Overall, these results
suggest that through an ER-dependent mechanism, E2 may
increase mitochondrial ROS production by repressing UCPs,
which offers a new perspective on the understanding of why E2
is a risk factor for breast cancer. Heteronemin stimulated TGF-
β1 expression at 0.625 µM but inhibited its expression at 1.25
µM (Figure 5A). The stimulatory effect of E2 on TGF-β was
inhibited by heteronemin treatment (Figure 5A). The inhibitory
effect of E2 on UCP2 was further enhanced by heteronemin
treatment (Figure 5B). Downregulation of UCP2 expression by
TGF-β-SMAD4 signaling was shown to play a regulatory role
in mitochondrial ROS formation (Kim and Lee, 2018). Thus,
heteronemin stimulated TGF-β1 expression to downregulate
UCP expression and further increase ROS production in MCF-7
cells at 0.625 µM.

It is not surprising to observe that E2 increased SODs
accumulation (Figure 5D) as reported (Rao et al., 2008). On
the other hand, anti-oxidant also stimulates ROS production
in previous studies (Heo et al., 2018; Kim et al., 2019). Both
ceramide and resveratrol stimulate mitochondrial potential.
Thus, at certain concentrations, heteronemin may increase
SOD to activate mitochondrial potential (Figure 5). However,
the combination of heteronemin and E2 decreased SOD
accumulation to reach the balance between oxidation and anti-
oxidation.

The ROS scavenger, N-acetyl cysteine (NAC), inhibited
heteronemin-induced mitochondrial ROS production and cell
apoptosis (Lin et al., 2018). Heteronemin significantly increased

both cellular ROS and mtROS. It also induced the loss
of the mitochondrial membrane potential (MMP) in lung
cancer cells (Cheng et al., 2019). It increased the percentage
of apoptotic cells and ROS in Molt4 cells (Chen et al.,
2018). Heteronemin -treated lung cancer cells showed a
significant increase in both cellular ROS and mtROS, which
in turn caused the loss of the MMP. Heteronemin decreased
expressions of the anti-oxidant enzymes Cu/ZnSOD, MnSOD,
and catalase (Cheng et al., 2019). Pretreatment with the
mitochondrion-targeted anti-oxidant, MitoTEMPO, reduced
heteronemin-induced apoptosis through a mitochondrion-
dependent apoptotic pathway, which was accompanied by
increased cell viability, decreased mtROS, enhanced MMP,
and suppressed expressions of cleaved caspase-3 and caspase-
9 proteins (Cheng et al., 2019). Oxidative phosphorylation
performed in mitochondria and glycolysis in the cytoplasm
were inhibited, which subsequently reduced downstream ATP
production (Cheng et al., 2019). Additionally, Chang et al.,
2021 reported heteronemin may with high toxicity and causing
animal death (Chang et al., 2021). However, Lee M. G.
et al. (2018) also shown heteronemin can using safely
with a lower dosage.

These results suggest heteronemin inhibited activation of
ERK1/2 and STAT3 in both ER-positive and ER-negative
breast cancer cells. In addition, heteronemin downregulated
the expression of Ki-67, CCND1, EGFR, and PD-L1, but
upregulated p21 and BAD expression. However, Bcl-2/Bax ratio
was downgraded in MDA-MB-231 cells but no change in MCF-7
cells after heteronemin treatment. It restrained UCP2 expression,
extended ROS production, increased SODs accumulation,
induced G0/G1 arrest, and caused anti-proliferation in breast
cancer MCF-7 cells. On the other hand, E2 activated ERK1/2,
PKC, and STAT3, increased ROS production, and recued
heteronemin-induced biological activities.
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CONCLUSION

In conclusion, heteronemin inhibited ER-positive and ER-
negative breast cancer cell proliferation via different mechanisms
(Figure 7), but less effect on normal cells. Additionally,
heteronemin also could overcome E2 stimulated proliferation.
Those results suggest Heteronemin had a strong capacity to
inhibit proliferation in both MCF-7 and MDA-MB-231 breast
cancer cells. Thus, heteronemin has a potential as an anti-
cancer drug.
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