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Abstract: This study used an in silico metabolic engineering strategy for modifying the metabolic
capabilities of Spirulina under specific conditions as an approach to modifying culture conditions in
order to generate the intended outputs. In metabolic models, the basic metabolic fluxes in steady-state
metabolic networks have generally been controlled by stoichiometric reactions; however, this approach
does not consider the regulatory mechanism of the proteins responsible for the metabolic reactions.
The protein regulatory network plays a critical role in the response to stresses, including environmental
stress, encountered by an organism. Thus, the integration of the response mechanism of Spirulina
to growth temperature stresses was investigated via simulation of a proteome-based GSMM, in
which the boundaries were established by using protein expression levels obtained from quantitative
proteomic analysis. The proteome-based flux balance analysis (FBA) under an optimal growth
temperature (35 ◦C), a low growth temperature (22 ◦C) and a high growth temperature (40 ◦C) showed
biomass yields that closely fit the experimental data obtained in previous research. Moreover, the
response mechanism was analyzed by the integration of the proteome and protein–protein interaction
(PPI) network, and those data were used to support in silico knockout/overexpression of selected
proteins involved in the PPI network. The Spirulina, wild-type, proteome fluxes under different
growth temperatures and those of mutants were compared, and the proteins/enzymes catalyzing the
different flux levels were mapped onto their designated pathways for biological interpretation.

Keywords: genome-scale; flux balance analysis; proteome analysis; temperature response; histidine
kinase; in silico mutation

1. Introduction

Growth temperature stress causes biochemical changes in cells and reductions in biomass yield.
Proteome analysis in Spirulina (Arthrospira platensis), a cyanobacterium, was performed to explore the
changes at the protein level and the protein interaction cascade when the cells undergo many cellular
modifications under thermal stress conditions. In previous proteome-wide studies, the identification of
proteins regulated at both the translational and post-translational levels, that is, bi-level-regulated, could
ideally represent the key signaling proteins that played a significant role in low- and high-temperature
responses. The key two-component system (TCS) proteins SPLC1_S041070 (histidine kinase Hik28),
SPLC1_S082010 and SPLC1_S230960 were identified as bi-level-regulated proteins and were linked to
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SPLC1_S270380 or glutamate synthase, an important enzyme in nitrogen assimilation that synthesizes
glutamate from 2-oxoglutarate (2-OG), which is known as the signal compound that regulates the
carbon/nitrogen (C/N) balance of cells. Therefore, the signaling mechanism can link to the metabolite
2-oxoglutarate, which controls the C/N balance and the key enzyme in the N assimilation of the
cells [1,2]. Moreover, the integrated proteome- and protein–protein interaction data highlight the
linkage of signaling proteins and proteins involved in nitrogen and ammonia assimilation, fatty acid
desaturation, photosynthesis and oxidative stress.

Predictions of cell behavior under designated conditions can be achieved by integrating the
metabolic modeling approach. Apart from fluxome analysis, metabolic models can be used as the
backbone of the highly evolving field of integrative biology, extending from genome and transcriptome
to proteome and metabolome. Flux balance analysis (FBA) is a mathematical technique that is used to
simulate metabolism in the metabolic network of any organism using its genome-scale metabolic model.
FBA is a “constraint-based” technique, of which metabolic fluxes in the steady-state metabolic network
are controlled by stoichiometric reactions in the metabolic model. The possible answers obtained from
the calculation can be reduced further by changing the values of maximum and minimum fluxes of
each reaction, and the accuracy of possible answers can also be enhanced by adding more experimental
fluxes into the calculation or by elucidating the answers from the calculation performed by arbitrarily
entering the fluxes of some reactions into the simulation.

Regarding the metabolic model generated for Spirulina, first, Cogne et al. [3] proposed the
small-scale metabolic model of Spirulina with 121 reactions consisting of only the core metabolic
pathways. Then, a model of 22 reactions focusing on lumped reactions in central metabolic pathways
and GLA biosynthesis was reported [4]. In 2012, the first genome-scale metabolic model (GSMM) of
Spirulina was constructed by Klanchui et al. [5] containing 692 genes, 875 reactions and 753 metabolites
and covering all the central metabolic pathways and biosynthetic pathways for some of the vitamins and
cofactors. However, this GSMM treated all transport reactions as diffusion, and cellular compartments
were divided only into the cytosol, periplasmic space and extracellular space. In the present study, the
newly expanded GSMM of Spirulina, based on iAK692 [5], comprising 873 genes, 1444 reactions and
1151 metabolites was applied. The GSMM was improved by the incorporation of missing reactions
and pathways, e.g., those in photosynthesis, tricarboxylic acid (TCA) cycle, transporters, prosthetic
groups and coenzymes, as well as the deletion of the redundant ones. Moreover, in expanded
GSMM, the major improvements are (i) compartmentalization of cellular compartments into six
microcompartments [6] (ii) replacement of photosynthesis and oxidative phosphorylation pathways
to include the photosynthetic linear electron flow (LEF) pathway [7], including photosystem II and
I, alternate electron flow (AEF) pathways [8] and photorespiration [9], (iii) integration of novel TCA
cycle reactions [10,11], (iv) inclusion of transport reactions and (v) expansion of biosynthetic pathways
for vitamins and cofactors.

The application of proteomic data in genome-scale metabolic models is rarely employed, most
likely due to limited access to high-throughput data and GSMM. Thus, a few reports on this particular
integrated technique were carried out in model organisms, e.g., Arabidopsis thaliana and Saccharomyces
cerevisiae, to investigate stress response mechanisms [12,13]. By using the protein level as constraints
on a metabolic model, it should provide a more accurate/consistent snapshot of metabolism than
the transcript level [14–16]. Recent publications have identified the stress-core proteome, which
has contributed strongly to the accuracy of the prediction of combined temperature and light stress
conditions [12]. Moreover, there is evidence that a large training set size with noise in the data may be
detrimental to the flux predictions because the flux reaction bound may become too large due to data
outliers [16]. The presence of promiscuous enzymes, isoenzymes, enzyme complexes, unknown gene
associations and enzyme inactivation during regulatory interactions can also cause inconsistent and
conflicting proteome levels in adjusting boundaries during gene-per-reaction mapping.

In the present study, we explored the use of genome-scale metabolic models (GSMM), constructed
using proteomics data of significantly up- and downregulated proteins from A. platensis cultures grown
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under the stress conditions reported by our group [17–19], to understand the metabolic capabilities
of the cells, through computational simulations and prediction of the response of the cyanobacteria
to particular growth conditions. The proteome-based constraint method is applied to the newly
expanded GSMM of A. platensis C1 to predict the flux distribution under three different temperature
conditions to simulate the biological processes that occur under the temperature change. The model
was constructed to simulate the genome-scale metabolic fluxes at the optimal temperature (35 ◦C) and
under low- and high-temperature stress conditions (22 ◦C and 40 ◦C, respectively). The comparison of
simulated metabolic flux under the three growth temperatures was performed to explore the reactions
in metabolic pathways affected by the temperature changes. Moreover, the proof of concept was
carried out by in silico knockout of the proteins involved in the temperature response mechanism
regulated by the key signaling protein reported earlier, histidine kinase Hik28. The simulated fluxes
of the knockout mutants were analyzed. The cascade of temperature stress response mechanisms at
the metabolome-wide level was revealed. In the near future, the metabolic fluxes simulated from the
proteome-based GSMM may lead to flux-oriented manipulation for maximum biomass production
under environmental stress.

2. Materials and Methods

2.1. Proteome-Based Constraint Method

The protein expression level of A. platensis C1 was obtained from a proteomics analysis conducted
with the three growth temperatures: an optimal temperature of 35 ◦C (T35), a low temperature of 22
◦C (T22) and a high temperature of 40 ◦C (T40). After normalization of the quantitative proteome, the
log2-fold changes in protein between the experimental temperature condition and control groups were
computed. Then, a two-sample t-test was performed for statistical analysis. Proteins with a log-2-fold
change greater than 1.2 and p < 0.05 were considered differentially expressed (DE) proteins [17–19].
Three DE protein lists were prepared from the comparisons between the stress temperatures, 22
◦C and 40 ◦C, and the control temperature, 35 ◦C: the T22, T40 and T35 DE lists. The normalized
expression level of the identified significantly DE proteins (according to DE protein list) was then used
to determine the reaction flux constraints following the E-flux method. To determine the optimal flux
distribution, linear programming was used to maximize the biomass, which was the objective function.
A schematic of the proteome-based metabolic model construction is shown in Figure 1.
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To incorporate the proteomic data into the metabolic flux analysis, we followed the process of the
E-flux method, as described in Colijn et al. and Brandes et al. [20,21]. For each reaction, the reaction
bounds were approximated proportionally to the proteomic level of the genes associated with each
reaction. Proteomic data were mapped to corresponding reactions based on the gene–protein-reaction
(GPR) association. When a protein has a measured expression level of value p, the allowable flux value
through the respective reaction is set to [–p, +p] and [0, +p] for the reversible and irreversible reaction,
respectively. When either the proteome or GPR for a certain reaction was unavailable, then the upper
bounds were not constrained (a defined value was used in the model). If the reaction was catalyzed
by multiple genes in an enzyme complex, the Boolean expression formula corresponding to enzyme
complexes was utilized for that reaction. The mathematical operation for the Boolean operators “AND”
and “OR” relationships were calculated as follows:

X “AND” Y: the minimum value of the two values; Min (X, Y);
X “OR” Y: the maximum value of the two values; Max (X, Y).
After constraining the metabolic model using the experimental proteomic data, the flux distribution

of the model was predicted by solving the following linear optimization problem:

maximize(Biomass)Z = C′v (1)

subject to
{

Sv = 0
Li ≤ vi ≤ Ui

(2)

where Z, the objective function, is the biomass production; C’ is a row vector of the coefficient that
defines the weight of each flux in the objective function; S is the stoichiometric matrix; v is a flux
vector of n reactions, i.e., v = [vi; I = 1, 2, 3 . . . , n]; and Li and Ui are the lower and upper flux bounds,
respectively, for each reaction i, which is an approximation based on the normalized expression of the
gene catalyzed in that reaction.

Since there were multiple feasible solutions within the constraints, in this case, the method found
a unique metabolic flux distribution among the alternative optima by minimizing the total sum of
absolute flux. Based on the assumption that the cell attempts to achieve its objective function while
allocating the minimum amount of resources;

minimize
∑

|v(θ)i| (3)

where v(θ)i is a vector of reaction flux prediction given the proteome set (θ).

2.2. Metabolic Flux Simulation of the in Silico Knockout and Overexpression of Genes

According to the proteome-based genome-scale metabolic model (GSMM), the metabolic flux
of A. platensis C1 under various in silico gene knockouts and overexpression was simulated. The
gene knockout condition was simulated in the model by restricting the flux through the designated
reactions by setting the upper and lower bounds of the corresponding reaction to zero. in silico
overexpression was simulated by increasing or doubling the level of the upper and lower bounds of
the corresponding reaction.

2.3. Comparative Analysis of the Metabolic Fluxes and Pathway Mapping

The present study is the first to present a comparative analysis of the metabolic fluxes obtained
from proteome-based GSMM. Thus, the data normalization and the cut-off criteria for the significant
change of the flux level have not been determined to date. In the case of flux values equaling zero,
the original simulated values were used in the comparative analysis. Otherwise, the simulated fluxes
obtained from the model were subjected to a log2 function. The log2-flux values were normalized with
the standard deviation (SD) of each dataset. Second, the difference in the log2 of the simulated flux
obtained from Conditions 1 and 2 was calculated as the fold change value. Third, the cut-off values
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for the significant change of the simulated metabolic fluxes compared between the two conditions
were determined based on the proportion of the significant change reactions less than 30% of the
total reaction number. Accordingly, in the case of temperature stresses and in silico knockout or
overexpression, when the log2 values of simulated flux obtained from T35, T22 or T40 were used as the
basal level, the cut-off fold change for the comparative analysis was 1.206.

Based on the KEGG global metabolic pathway as a template, the simulated metabolic fluxes of
each condition were mapped on the designated reactions by using the KEGG Pathway Mapper tool. In
the result images, other reactions that were not involved with the fluxes were manually eliminated.

3. Results

3.1. Comparative Analysis of the Simulated Proteome-based Fluxes and Their Correlation with
Temperature Stress

The proteome-based constraint method is applied to the newly expanded GSMM as shown in
Figure 1 and the metabolic fluxes simulated from proteome-based GSMM are shown in Table S1.
The data clearly showed a decrease in the simulated biomass at 22 ◦C and 40 ◦C compared to that
at the optimal temperature, 35 ◦C, which was well correlated with the experimental data obtained
previously (Table S2). Regarding the overview of metabolic pathways, the simulated fluxes were
mapped with the corresponding KEGG reactions, and the changes in global metabolism under the two
stress temperatures are illustrated in Figure 2 and Figure S1.

To investigate the correlation of the temperature change and the simulated metabolic fluxes,
scatter plots of the flux distribution were plotted between flux distributions at various temperature
conditions. All the flux distribution profiles show a positive trend with a high correlation (Figure S2).

3.2. Simulated Flux Distribution Represented by Pathway Mapping

The simulated flux distribution was analyzed by pathway mapping using KEGG pathways as the
templates (Figure S3). The affected flux levels that significantly changed after the temperature shift
from 35 to 22 ◦C or from 35 to 40 ◦C were mapped onto the designated pathway. Then, the comparative
results are summarized in Figure 3.

More than 90% of the flux level in some central metabolic pathways, e.g., glycolysis, the Calvin cycle
and the pentose phosphate pathway, was decreased or unchanged when comparing the optimal- and
high-temperature conditions. In contrast, an increasing flux level was observed in the central metabolic
pathways after the low-temperature shift. However, the comparative analysis showed a decreasing
level of fluxes in the TCA cycle, and as a result, 2-OG biosynthesis was possibly reduced under
low-temperature stress. Moreover, the flux levels of the two glutamate (Glu)-synthesizing enzymes
glutamate synthase and aspartate transaminase, one using 2-OG and the other using oxaloacetate as
substrates, were upregulated at 22 ◦C.
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Figure 2. Central metabolic pathway mapping of the results obtained from the comparison of
simulated metabolic flux when the cells were grown at (A) low temperature (22 ◦C) and (B) high
temperature (40 ◦C), in comparison to that of the control (35 ◦C), on the template of KEGG -map01100,
https://www.kegg.jp/kegg/pathway.html#global, by using the KEGG Mapper tool. The key enzymes
(star-shaped nodes) are annotated with numbers, which are in the list of Figure 3. Major metabolites
(black-bordered white circles) are labeled in gray boxes, while the pathway names are labeled in
violet. The blue, red and light green lines represent upregulated, downregulated and unchanged or
insignificantly changed fluxes. The gray line represents the reaction with a simulated flux level of ≤0.
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Figure 3. Schematic diagram representing the analysis of simulated metabolic flux of (i) the cells were
grown at a low temperature (22 ◦C) and high temperature (40 ◦C), in comparison to that of the control,
and (ii) the in silico overexpression of isocitrate dehydrogenase (iCDHy) and GlsF, in comparison to
that of the control. The control is the simulated flux of the wild-type strain under optimal growth
temperature at 35 ◦C. The central metabolic pathways, including those at the interconnection of carbon
and nitrogen metabolism, were identified. The bar graphs illustrate the relative % of the affected
reactions over the total reactions (100%) of each condition/mutant in the designated pathway. Note:
Eight boxes in a row located over the reaction arrow represent the up and downregulated flux level
compared between the treated and the control. The legends to up and downregulated flux (i) under the
designated growth temperatures and (ii) of the in silico mutants are shown in the lower-left corner of
the figure.

3.3. In silico Knockout and Overexpression of Hik28 Client Proteins and the Proteins at the Interconnection of
C- and N- Metabolism

The fluxes of the reactions catalyzed by three enzymes, isocitrate dehydrogenase (ICDHy),
ferredoxin-dependent glutamate synthase (GLUS3) and glutamine synthetase (GLNS), which were
found in the group of client proteins of Hik28 in the PPI network (Figure S4), were subjected to in silico
knockout and overexpression. These three enzymes are directly involved with the 2-OG level. The
changes in the overall simulated flux levels are presented in Table S3.

For example, an overview of metabolic flux analysis after the in silico knockout and overexpression
of the reaction catalyzed by ICDHy, which presumably caused the reduction and enhancement of
2-OG, respectively, showed a decreasing flux of approximately 5% of the total metabolic reactions for
both ICDHy mutants. However, approximately 4% of the flux level in the ICDHy-knockout and 7% of
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the ICDHy-overexpressing models was increased, and among these reactions, the flux catalyzed by
GLUS3 was increased in the ICDHy-knockout model and vice versa in the ICDHy-overexpressing
model. It is worth noting that the fluxes involved in CO2 uptake and oxygen evolution in photosystem
II were induced in the ICDHy-overexpressing model, whereas an increase in citrate exchange flux was
observed in both mutant models. Moreover, the exchange of 2-OG was also significantly enhanced as a
result of the in silico overexpression of ICDHy. However, the biomass of these two mutant models was
not changed.

In the case of overexpression of the reaction catalyzed by GLUS3 and GLNS, the simulated biomass
was increased only in the GLUS3-overexpressing model. Similarly, the simulated fluxes involved
in chlorophyll biosynthesis, photosystem II and fatty acid metabolism were induced after in silico
knockout and overexpression (Table S3). It should be noted that the doubled level of GLUS3 flux has a
positive effect on the majority of metabolic pathways, including cell biomass.

4. Discussion

4.1. Proteome-Based GSMM

To the best of our knowledge, this study is the first to employ experimental fold change proteomic
datasets to represent relative change in Spirulina metabolism under an optimal growth temperature
and suboptimal stress temperatures. The expression levels of significantly DE proteins were used as
constraints for the new Spirulina metabolic flux model to provide an in silico-simulated snapshot of the
metabolic changes that occur under different temperature conditions. Whether proteomics data are
hard to obtain, and quantitative proteomic data is not widely available, the proteomics experiments are
more precise and more suitable for metabolic integration than transcriptomics approaches. As reaction
activities will correlate more strongly with protein abundance than with mRNA abundance, flux
bound should be more correlated with protein expression than with mRNA expression. The estimated
results from the integration of the proteomic dataset with the metabolic model enable more reliable
metabolic flux predictions. Moreover, the estimated flux from the integration of a statistically significant
differential expressed proteomic dataset into the metabolic model could refine our understanding of
biological changes in Spirulina under temperature stress.

Accordingly, by using our proteome selection strategy, the flux predictions were in good agreement
with experimental data obtained by our group and others, as described below. The simulated metabolic
fluxes under the optimal temperature and the suboptimal stress temperatures obtained from the
proteome-based GSMM correspond well to the experimental data obtained earlier. For example, the
highest biomass of A. platensis C1 was observed under the optimal temperature compared to that under
the stress conditions, and the biomass of the culture grown at 22 ◦C was higher than that at 40 ◦C
(Table S2). Moreover, the fluxes in fatty acid desaturation under the stress temperatures confirmed the
fatty acid composition obtained from the cultures under the designated growth temperatures [22,23].

4.2. Possible Biological Meaning Add Link Between Stories

Our previous proteome analysis of A. platensis C1 in response to temperature stress led to the
hypothesis that the low-temperature stress represented a stress response pattern similar to that of
nitrogen starvation due to changes in protein expression levels involved in nitrogen assimilation, e.g.,
GLUS3 [17–19]. According to the present proteome-based GSMM simulated using proteome data
obtained from T22, the flux of GLUS3, aspartate transaminase (AspTA) and nitrite exchange involved
in N assimilation were increased. Whereas the fluxes of the enzyme were reported to play a role under
carbon limitation, ribulose-bisphosphate oxygenase and -carboxylase were reduced [1]. Moreover,
under both temperature stresses, the simulated fluxes in chlorophyll biosynthesis and photosynthesis
were reduced (Table S1), which corresponded well to the biomass reduction found in silico and in
experiments. The data demonstrated that applying the proteome data obtained under stress to GSMM
led to the reliable biological meaning of the simulated fluxes.
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Proteome-based GSMM was then applied for in silico knockout and overexpression to mimic the
biological conditions of interest. Under nitrogen starvation, the 2-OG level synthesized by a reversible
enzyme, iCDHy, was reported to play a critical role as the signal molecule, which was reported to
control the C/N balance, resulting in the N assimilation of the cells [24]. Thus, the increasing level of
2-OG was mimicked by in silico overexpression of the reaction that synthesizes the 2-OG performed
by iCDHy, which presumably caused the accumulation of 2-OG (Table S3). The resulting fluxes of
GLUS3 and ribulose-bisphosphate oxygenase and ribulose-bis carboxylase were upregulated under
T22; however, the simulated fluxes of chlorophyll biosynthesis and photosynthesis were increased, and
the simulated biomass was not affected by the in silico mutation. Moreover, it is well-known that under
N depletion, arginine (Arg) biosynthesis is reduced, whereas fatty acid metabolism is induced [1].
The down- and upregulation of simulated fluxes in arginine biosynthesis and fatty acid metabolism,
respectively, including desaturases, were detected only in the model of in silico overexpressed GLUS3,
similar to that observed under nitrogen stress (Figure 3, Table S3). Li et al. reported that the control of
C/N balance under N depletion occurred through the activity of N-acetyl-L-glutamate kinase (NACGK),
which was regulated by the nitrogen regulatory protein PII. When the level of 2-OG was low, the PII
interacted with NAGK and abolished the inhibitory effect of Arg on NACGK, thereby promoting its
activity. In contrast, under N starvation, the increasing level of 2-OG, as a result of inhibited Arg
biosynthesis, led to nitrogen assimilation and facilitated lipid biosynthesis [1].

After a comparative analysis of the T22, T40, iCDHy-overexpression and GLUS3-overexpression
reactions, the results demonstrated that the reaction catalyzed by ribulose-bisphosphate carboxylase
(RBPC), a key enzyme in carbon dioxide fixation, was the only downregulated reaction, whereas
pyruvate kinases, PYK1, PYK5 and PYK6, and adenosylcobinamide kinase, ACBIKGTP, were the
upregulated reactions found in common among the four models (Figure S5). Notably, the four
upregulated metabolic fluxes, as mentioned above, were reported to be involved in the oxidative stress
response [25,26].

Moreover, it was previously reported that the uncoupling of catabolism and anabolism could
be an indicator of the delayed adaptation of bacterial cells to sudden unbalanced conditions [27,28].
In our proteome-based model, a reduction in biomass was found after temperature downshift and
upshift, whereas a higher percentage of anabolic and catabolic reactions was downregulated than
upregulated in the T40 model. This result showed the coupling of anabolism and catabolism and
thus indicated the immediate adaptation of the cells to high-temperature stress. In the T22 model, the
decrease in biomass was uncoupled, with a higher percentage of catabolic reactions being observed to
be upregulated than downregulated; therefore, this finding might indicate the delayed adaptation of
the cells to low-temperature stress. In the case of the in silico mutagenic model, biomass was increased
in the model of GLUS3 overexpression in combination with anabolic and catabolic reactions. The
results suggested immediate adaptation to the changing level of GLUS3 (Table S4).

An analysis of the ratio of the affected reactions in C- and N-metabolism after pathway mapping,
as shown in Table S5, clearly shows that both temperature stresses caused greater upregulation of
the reactions in nitrogen metabolism than that in carbon metabolism; thus, the C/N ratio was >1.
The simulated data were well correlated with the findings of our previous quantitative proteome
analysis [19]. It is worth noting that in silico overexpression of GLUS3 showed the highest number of
upregulated reactions in both C- and N-metabolism. However, the highest number of downregulated
reactions was observed in the in silico GLNS knockout. Moreover, the overexpression of iCDHy in the
TCA cycle at the interconnection of C- and N-metabolism caused a more negative effect on the reaction
fluxes in C-metabolism than in N-metabolism, resulting in a notably high C/N ratio.

4.3. Application to System Biology

The proteomic data obtained under growth temperature stress conditions were integrated to
develop the proteome-based model in the present study. The model was subjected to biological
applications in terms of gene manipulation and flux alteration in in silico knockout and overexpression.
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In cyanobacteria, there have been intensive studies on 2-OG, which is the intermediate in the TCA
cycle at the interconnection of C- and N-metabolism, as the signal molecule for nitrogen stress [24]. It
is well-known that under nitrogen limitation, the level of 2-OG is increased and leads to the nitrogen
assimilation of the cells via the control of nitrogen regulatory protein PII, and the reverse is observed
under nitrogen oversupply. Thus, the C/N balance of the cells is maintained. GlsF and GlnA are
enzymes that catalyze the following reactions of 2-OG biosynthesis. Moreover, these enzymes were
found to be the client proteins of Hik28 in A. platensis, as mentioned earlier (Figure S4). Therefore, the
proteome-based model was applied to simulate the fluxes in the cells where these two enzymes were
missing or overexpressed.

The in silico knockout and overexpression of the reactions of interest can be performed by using
proteome-based GSMM to simulate the systematic-scale fluxes that may have occurred after genetic
manipulation. According to our previous proteomic analysis, several differentially expressed proteins
under low-temperature stress were the same as those under nitrogen depletion, e.g., proteins involved
in N assimilation and fatty acid desaturation [24]. Moreover, we found that Hik28, which played a role
in the low-temperature stress response, showed a protein–protein association with several proteins
involved in N assimilation, as shown in its PPI network (Figure S4). Protein binding experiments,
yeast two-hybrid system, for Hik28 and its client proteins were performed by our group, and positive
results were revealed [29]. Therefore, the proteome-based model was applied in this study to mimic
the increasing level of the key signal molecule, 2-OG, under N-stress and the reaction fluxes that
catalyzed the compounds surrounding the key reaction located at the interconnection of C- and
N-metabolism. Metabolic changes associated with the in silico overexpression of iCDHy, GLUS3 and
GLNS were analyzed as described earlier. The data obtained from the in silico mutant models was well
corresponded to the effect of Hik28-deletion mutant to fatty acid analysis and photosynthetic activity
under temperature stress, examined by our group (Kurdrid et al. [29] and Figures S6 and S7).

5. Conclusions

The GSMM is a computational analysis through FBA, which is used to predict and explain
the performance and behavior of microorganisms. The mathematical approach is able to simulate
metabolism providing information difficult to obtain in laboratory or field cultivations to maximize the
production yield of microalgal biomass. In the present study, proteome analysis data obtained under
growth temperature stress conditions of A. platensis C1 were integrated into our existing GSMM by
using an optimization method. Taken together with the pathway mapping and analysis, the metabolic
fluxes simulated from the proteome-based model led to prospective biological interpretation and
enabled the prediction of genome-scale metabolic fluxes under the designated conditions, including
those generated from in silico knockout and overexpression. Therefore, by using the model, the
cultivated conditions for biomass production and production of the desired biochemical compounds, as
well as the strategy for genetic manipulation for biochemical production, can be anticipated. However,
the inability to directly integrate the cell regulatory mechanisms into the model remains a limitation
regarding whether the proteome data obtained from stress response studies can be integrated into the
GSMM. Moreover, the approach presented in this study is applicable to the in silico modification of a
metabolic flux catalyzed by an irreversible enzyme.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/9/2097/s1,
Figure S1: Global metabolic pathway mapping of the results obtained from the comparison of simulated metabolic
flux when the cells were grown at (A) low temperature (22 ◦C) and (B) high temperature (40 ◦C), Figure S2:
Scattering plot representing the correlation of the growth temperature and the simulated flux level, Figure S3: Bar
graph illustrating the relative % of the affected reaction fluxes compared to the total reactions (100%), simulated
at 22 ◦C and 40 ◦C in the designated pathway map, Figure S4: Protein-protein interaction network of Hik28
constructed by using STRING, Figure S5: Venn diagram showing the number of the affected reactions under/of
the simulated conditions/in silico mutants, Figure S6: Graph of the fatty acid composition and GC profiles of total
fatty acids, Figure S7: The amounts of chlorophyll a and photosynthetic oxygen-evolving activity in wild type and
mutant, Table S1: Metabolic reactions and their simulated flux of the Spirulina-GSMM under the optimal growth
temperature of 35 ◦C (T35), low temperature of 22 ◦C (T22) and high temperature of 40 ◦C (T40), Table S2: The
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effect of temperature on specific growth rate and biomass concentration of Arthrospira platensis strains, Table S3:
Metabolic reactions of Spirulina-GSMM and their simulated flux of the in silico knockout/overexpress mutants,
Table S4: Classification of reactions into catabolism and anabolism, Table S5: Ratio of the relative % of affected
reaction in the carbon and nitrogen metabolism under/of each condition/in silico mutant.
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