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Abstract

Vernal pools are unique in their isolation and the strong selection acting on their resident species. Vernal pool clam shrimp

(Eulimnadia texana) are a promising model due to ease of culturing, short generation time, small genomes, and obligate desiccated

diapausedeggs. Clamshrimparealsoandrodioecious (sexes includemales andhermaphrodites), andhereweusepopulation-scaled

recombination rates to support the hypothesis that the heterogametic sex is recombination free in these shrimp. We collected short-

read sequence data from pooled samples from different vernal pools to gain insights into local adaptation. We identify genomic

regions in which some populations have allele frequencies that differ significantly from the metapopulation. BayPass (Gautier M.

2015. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201(4):1555–

1579.) detected 19 such genomic regions showing an excess of population subdivision. These regions on average are 550 bp in

size and had 2.5 genes within 5 kb of them. Genes located near these regions are involved in Malpighian tubule function and

osmoregulation, anessential function in vernal pools. It is likely that salinity profiles vary between pools andover time, andvariants at

these genes are adapted to local salinity conditions.

Key words: adaptation, ecological genetics, genomics/proteomics, landscape genetics, natural selection and contemporary

evolution, population genetics: empirical.

Introduction

The clam shrimp Eulimnadia texana is known for its unique

sex-determining system (Sassaman and Weeks 1993), its rare

(in Metazoa) requirement to reproduce via desiccated dia-

paused eggs (Sassaman and Weeks 1993), and its unique

habitat. Eulimnadia texana is a rare androdioecious

(Sassaman and Weeks 1993) species with three common

arrangements of “proto-sex chromosomes” (Sassaman and

Weeks 1993; Weeks et al. 2010). The ability of eggs to remain

in diapause for years at a time (Brendonck 1996) is especially

valuable to geneticists because very few macroscopic animals

exist for which populations can be archived for long periods

without change in allele frequency and linkage disequilibrium

(LD) occurring. In a previous article, we carried out a highly

contiguous genome assembly of E. texana with a contig N50

of 18 Mb and a genome only 120 Mb in total size (Baldwin-

Brown et al. 2018). Eulimnadia texana shrimp live in isolated

vernal pools in the desert southwest of the United States. Prior

studies (Bohonak 1998) indicate naturally limited migration

from pool to pool, making E. texana well suited to the study

of populations evolving in relative genetic isolation, although

the data of this work suggest that migration rates are higher

than previously assumed.

Various methods (Weir and Cockerham 1984; Nielsen

et al. 2005; Voight et al. 2006; Frichot et al. 2013; Günther

and Coop 2013) have been proposed for identifying molecu-

lar markers important in local adaptation between popula-

tions. A high FST value at some locus relative to the

genome-wide background indicates that a force outside ge-

netic drift and migration is acting upon variation at that locus
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(Akey et al. 2002). The XTX statistic (Goodman 1999; Günther

and Coop 2013) employed by BayPass (Gautier 2015) is anal-

ogous to FST in that both test for differentiation between pop-

ulations larger than expected by chance in a manner agnostic

to environment covariates. BayPass-related Bayes factor statis-

tic can further suggest environmental variables that are impor-

tant drivers of adaptation by identifying covariation between

allele frequency and environmental covariates. These newer

approaches are believed to be more powerful than traditional

approaches based on FST (Lotterhos and Whitlock 2014).

Pooled population sequencing (Poolseq), where multiple

individuals from a population are pooled and short-read se-

quenced, allows for the inexpensive estimation of allele fre-

quencies for multiple populations (Burke et al. 2010; Futschik

and Schlötterer 2010). We used Poolseq to obtain such

genome-wide allele frequency estimate for several shrimp

populations. We used these data to identify single-

nucleotide polymorphisms (SNPs) and estimate classical pop-

ulation genetics parameters, such as Watterson’s theta (h)

(Watterson 1975) and the population-adjusted recombination

rate, rho (q) (Stumpf and McVean 2003). We further estimate

both FST (Hivert et al. 2018) and the XTX statistic using

BayPass, then use BayPass’ Bayes factor statistic to identify

genome regions potentially under local adaptation. Both FST

and BayPass gave qualitatively similar results. BayPass identi-

fies 19 regions showing significant population differentiation.

We argue that the regions identified by BayPass are more

likely to be true positives than those identified via traditional

FST-based approaches.

The Poolseq data are suitable for addressing other ques-

tions related to the genetics and biology of the clam shrimp.

Eulimnadia texana has a unique sex determination system in

which an individual can be male or hermaphroditic, with

males having the ZZ genotype and hermaphrodites being

either amphigenic (ZW) or monogenic (WW) genotypes.

The Z and W alleles are transmitted according to

Mendelian ratios, and only the amphigenic ZW-carrying her-

maphrodites are heterogametic. Numerous organisms do

not recombine chromosomes in the heterogametic sex, in-

cluding Drosophila melanogaster, but little is known about

heterogametic recombination in amphigenic animals, espe-

cially those that, like E. texana, have recently diverged sex

chromosomes. Some evidence exists that heterogametic

E. texana do not recombine (Baldwin-Brown et al. 2018).

We show that short-range population-based estimates of

recombination rate are consistent with loss of recombination

in heterogametic hermaphrodites.

Materials and Methods

Shrimp Collection and Rearing

Clam shrimp populations were sampled from New Mexico

and Arizona. Samples were collected in six separate summers

(1995, 1996, 1998, 2000, 2003, and 2004). Ecological meas-

urements were made on dry pools, and dry soil samples were

collected and hydrated in the laboratory to produce shrimp

for study. Although these samples are not very evenly distrib-

uted geographically, they have the advantage of having pre-

viously been used for estimation of inbreeding, and details on

collection and rearing are published (Weeks and Zucker

1999). We acquired 11 soil samples, each from a different

natural vernal pool, to grow clam shrimp for sequencing

(fig. 1 and supplementary tables 1 and 2, Supplementary

Material online). We also sequenced one laboratory popula-

tion (EE) that was derived from 265 WAL wild individuals

carried through six laboratory generations with a minimum

population size of 250. Populations were reared in 50X30X8

cm aluminum foil catering trays (Catering Essentials, full size

FIG. 1.—A map of the sampling locations for the 11 study populations and a maximum likelihood tree generated by TreeMix depicting the relatedness of

the populations based on genome-wide allele frequency estimates. All populations were taken as soil samples from field sites in New Mexico and Arizona.

The “EE_Ancestor” strain is a laboratory strain descended from WAL.
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steam table pan). In each tray, we mixed 500 ml of soil with 6 l

of water purified via reverse osmosis; 0.3 g of Aquarium salt

(API aquarium salt, Mars Fishcare North America, Inc.) was

added to each tray to ensure that necessary nutrients were

available to the shrimp. Trays were checked daily for nonclam

shrimp, which were immediately removed from trays. We

identified the following nonclam shrimp: Triops longicauda-

tus, Daphnia pulex, and an unknown species of Anostraca

fairy shrimp.

Illumina Library Preparation and Sequencing

We hydrated the soil samples and then collected 100 individ-

uals (males and females) from each population on day 10 of

their life cycle. We prepared barcoded (supplementary table

1, Supplementary Material online) gDNA libraries using the

Nextera Library Preparation Kit and DNA from the pool of 100

individuals. Thirteen cycles of polymerase chain reaction (PCR)

were used during the Nextera protocol, except in the case of

the LTER and Tank 011 populations, where 15 cycles of PCR

were used to increase yield. Libraries were pooled and size

selected on a Pippin (Sage Science, Beverly, MA) size selection

instrument. The pooled library was sequenced over four lanes

of paired-end 100-bp Illumina sequencing on an Illumina

HiSeq 2500 generating a total of 127 Gb of data, or 844�
of coverage (supplementary table 2, Supplementary Material

online), averaging 70� of coverage per pooled population.

SNP Calling

We explored four variant calling pipelines before choosing the

one described here (see Supplementary Material online for a

comparison of pipelines). Our chosen pipeline consisted of

calling SNPs using GATK’s (McKenna et al. 2010)

HaplotypeCaller with the default (diploid) settings. We filtered

on a minimum quality of 30 and removed all SNPs with

mapped coverages below 10 in any population. Command

line options for Picard tools, BWA (Li and Durbin 2009), and

GATK are included in the supplementary texts,

Supplementary Material online, and the full scripts are avail-

able at GitHub. This pipeline was not able to detect very rare

polymorphic sites in many cases (see site frequency spectrum,

supplementary figs. 1–5, Supplementary Material online). This

being said, rare polymorphic sites cannot be easily accommo-

dated using the BayPass software and are unlikely to show

allele frequency differences between populations at any rate.

Identification of Candidate Genomic Regions, Including
Using Correlations with Environmental Variables

We used FST and BayPass’ XTX to identify population differ-

entiation in the sequenced populations. FST is a classical pop-

ulation genetic statistic that may be interpreted as the fraction

of allele frequency variance due to differences among popu-

lations. XTX is a Bayesian measure of the deviation of

subpopulations’ allele frequencies from their expected fre-

quencies due to shared ancestry in the populations and is

calculated via a Markov chain Monte Carlo approximation.

XTX is high when the allele frequency differences between

populations are higher than expected at a site. In addition to

XTX, BayPass’ Bayes factors identify population differentiation

associated with ecological variables measured for each pop-

ulation. Bayes factors are similar to XTX in that they are a

Bayesian measure of allele frequency deviation from expect-

ations due to shared ancestry but differ in that they identify

deviations that correlate with an environmental variable mea-

sured on each population. The Bayes factor is a ratio of the

likelihood of a model including both ancestry and an environ-

mental variable divided by the likelihood of a model based on

ancestry alone.

All of the environmental variables that we associated with

allele frequency differences are derived from measurements

taken in the field during sample collection. Some environmen-

tal variables require special description. “Date” is the date of

collection of the soil. “Percent males” refers to the fraction of

individuals that were male in hydrated samples. The propor-

tion of males is a proxy for the level of self-fertilization in that

population. A fully self-fertilizing population will be 0% male,

whereas a fully outcrossing population will be 50% male,

with other self-fertilization proportions linearly related to

male proportion. Surface area and volume are calculated

based on measurements taken on-site at each vernal pool

during the dry season. Streptocephalus mackeni and

Thamnocephalus platyurus refer to the presence of these spe-

cies of Anostraca fairy shrimp, and “Fairy shrimp” refers to

fairy shrimp whose species was unknown.

BayPass was designed to operate on either separately se-

quenced individual data or pooled data. In the single-

individual-sequencing case, each counted allele represents

one of two alleles from a sequenced individual, so a hetero-

zygote would contribute one allele to each of the reference

and alternate counts. In the pooled sequencing case (used

here), each counted allele represents a single polymorphism

call from a single sequencing read, and BayPass correctly

accounts for the fact that some sequencing reads will repre-

sent sequencing from the same individual multiple times.

BayPass requires a set of putative neutral sites to calculate

the “omega” population distance matrix, which indicates the

degree of relatedness between populations. We used 4-fold

degenerate sites for this purpose. We generated a custom

Python script for identifying 4-fold degenerate sites based

on the annotation information produced by Augustus

(Stanke and Waack 2003) for the reference genome.

Candidate sites are only considered 4-fold degenerate if

they are 4-fold degenerate for all transcripts overlapping the

site. Fourfold degenerate sites are under selection less often

than any other class of genomic site (Yang and Bielawski

2000), making them ideal for BayPass’s null (omega) covari-

ance matrix estimation. We performed an additional run of
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BayPass covariance matrix generation using only 4-fold de-

generate sites separated by at least 100 kb to alleviate con-

cerns about LD influencing covariance matrix estimation but

found no substantial differences in the matrices (the correla-

tion between matrices was 0.9995), so the original non-LD-

adjusted calculations were used throughout.

We used poolfstat (Hivert et al. 2018) to calculate genome-

wide FST from the pooled samples, and npstat (Ferretti et al.

2013) with a 10-kb window size to calculate Watterson’s h.

We used LDx to calculate average LD at distances up to

400 bp, and then calculated population-adjusted recombina-

tion rate (q) based on decay of LD (Marroni et al. 2011). To

calculate isolation by distance, we performed a linear regres-

sion on population pair relating geographic distance to FST,

produced using either all of the data or all of the data except

the more distant WAL population, with the following R com-

mand: lm(formula ¼ “FST � distance”), where distance is the

distance between pairs of collection sites in kilometers. In

addition, we used the default settings of TreeMix (Pickrell

and Pritchard 2012) to build a tree describing the relationships

between populations based on allele frequency.

Identifying Peaks of Differentiation

For the FST and BayPass analyses, we used a hidden Markov

model to identify sites that appeared to be under selection.

Following the approach used by Hofer et al. (2012), we used

the R package HiddenMarkov to run a hidden Markov model

on the XTX scores produced by BayPass, thereby identifying

the sections of the genome that fit one of two models, one

representing the background polymorphisms and the other

representing the differentiated peaks. All transition probabil-

ities were set to 0.001, and the Viterbi algorithm was used to

estimate the states of the hidden Markov model. All regions

classified as belonging to the second state are referred to as

“differentiated regions.”

We tested the effect of reduced marker density by uni-

formly randomly downsampling the XTX values in our data

set. We then reran our hidden Markov model on the down-

sampled data to recall regions of differentiation to see how

effectively regions could be called with reduced markers.

Regions were tested for high coverage by calculating, on a

per-population basis, the average coverage in 550-bp tiled

windows across the genome (550 bp was the average size

of differentiated regions). We then using python’s quantile

function to identify the coverage quantile associated with

our Bonferroni-corrected alpha for each population. Finally,

we checked if average coverage in a region was above this

quantile. We assumed 209 tests (11 populations � 19

regions) and an overall false positive rate of 0.05, for an alpha

of 0.0003.

BLAST Annotation

The original annotation of E. texana consists of mutual best hit

BLAST against the D. melanogaster genome (Baldwin-Brown

et al. 2018). In the 19 differentiated regions described below,

some predicted genes were not successfully annotated via this

strategy. For these unannotated genes, we ran a BLAST

search against the NCBI nr protein database (NCBI Resource

Coordinators 2018) and took the most significant BLAST hit

for each gene that had an e-value below 1� 10�5 and

assigned that putative identity to the gene of interest.

Results

We generated Poolseq data from our 12 populations (fig. 1),

calculated allele frequencies at each SNP, and use the result-

ing allele frequency estimates for subsequent analyses. We

used these data for estimation of classical population genetics

parameters, for inference about recombination rates in natu-

ral populations, and for identification of genomic regions at

which populations are differentiated.

Migration among Pools

We generated a maximum likelihood tree using Treemix

(Pickrell and Pritchard 2012) to identify relationships among

the populations (fig. 1). The populations EE and WAL, being

separated by only six generations of laboratory maintenance,

show very little differentiation. Several of the natural popula-

tions appear to be as closely related to each other as EE and

WAL. This observation contradicts the conventional wisdom

that vernal pool clam shrimp populations rarely exchange

migrants (Bohonak 1998).

The inability of vernal pool shrimp to escape the pools in

which they are born seems to prohibit migration between

distinct pools. A few hundred meters of distance between

pools produces genetically distinct populations, as measured

by FST, in Anostraca fairy shrimp (Bohonak 1998). In fact,

modest levels of differentiation in allele frequencies between

populations (FST, as measured by poolfstat, is 0.251 across

these samples; fig. 1) suggest moderate levels of gene flow

between pools. The source of this ability to migrate, whether

by animal tracking, wind dispersal, periodic flooding, or some

other mechanism, is unknown, but a plot of pairwise FST ver-

sus distance is consistent with isolation by distance (fig. 2). The

WAL population, being much more distant than other pop-

ulations, accounts for a large portion of this IBD signal, but the

regression line’s slope is minimally changed when WAL is re-

moved (fig. 2).

The Heterogametic Sex May Not Recombine

We directly measured LD and genome-wide h from our se-

quencing data, then related those statistics using classical pop-

ulation genetics equations to identify the population-adjusted
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recombination rate (q). This demonstrated that the

population-wide recombination rate is extremely low in clam

shrimp. One plausible explanation for this low recombination

rate is lack of recombination in heterogametic individuals.

We used estimated h (Watterson 1975) for Chromosome 1

in the Forsling population using a method that controls for

sequencing errors in pooled data (Long et al. 2007) and con-

ditioned on the same set of SNPs as employed in the BayPass

analyses below. This estimate of h was 0.00347, much lower

than the estimate obtained using npstat of 0.0156 that uses

all SNPs identified via mpileup (Li et al. 2009; Ferretti et al.

2013). We further estimated pi (p) using the same set of SNPs

as 0.00329 (0.0140 with npstat). Under neutrality, p and h
have the same expectation, so a ratio of h/p significantly dif-

ferent from one indicates a departure from neutrality under

Wright–Fisher sampling (D; Tajima 1989). The D calculated

from our calls using ascertained SNPs was 1.05, as opposed

to 1.12 when using npstat’s estimates of h and p, suggesting

our custom estimate to be slightly more reliable in this case.

The expectation of h is 4Nel, where l is the mutation rate per

basepair per gamete per generation. Assuming l here is equal

to Drosophila at 2.8� 10�9 (Keightley et al. 2014), Ne ¼
h/4l¼ 2.97� 105. We further used LDx to calculate average

LD at distances up to 400 bp using our same set of SNPs, then

calculated recombination rate based on LD decay (Marroni

et al. 2011). We estimated the population-adjusted recombi-

nation rate (q) per basepair to be 0.00599. As the expected

value of q is 4Ner, where r is the recombination rate per ad-

jacent basepair per gamete per generation, we use the esti-

mate of Ne obtained above, and our estimated genome size

of 120 Mb to estimate a total recombination map for clam

shrimp to be 61 cM.

The total number of linkage groups in this species is un-

known, but the genome assembly consists of three large con-

tigs and numerous smaller contigs (Baldwin-Brown et al.

2018). Assuming that these large contigs each represent a

chromosome and the remaining contigs represent at least

one extra chromosome, and assuming an average of either

one or two crossovers per chromosome, our a priori expecta-

tion for the total map length for E. texana is between 200 cM

and perhaps 500 cM (if clam shrimp had as many as five total

chromosomes). This is in keeping with D. melanogaster,

which has a similarly sized genome consisting of three chro-

mosomes and a total map length of 279.2 cM (Griffiths et al.

1999). Our total estimated map length of 51 cM is well below

one recombination event per chromosome per generation per

individual. Some evidence (Baldwin-Brown et al. 2018) indi-

cates that heterogametic (those with ZW sex chromosomes)

clam shrimp do not recombine their chromosomes during

meiosis. Assuming amphigenic (heterogametic) hermaphro-

dites are free of recombination, and our estimate of 61 cM

is a sex-averaged map length, a typical population consisting

of 80% amphigenics (Weeks et al. 1999) would have a male

total map length of 305 cM, consistent with the estimated

number of chromosomes for this species. These population

genetics parameter estimates lend credence to the hypothesis

that only monogenic male individuals recombine.

A caveat is that our estimate of q, calculated from short-

range LD, could differ from an LD estimate based on long-

range LD (Hill and Weir 1988) and should be updated if

long-range LD information becomes available.

BayPass Identifies 19 Narrow Regions Exhibiting Excess
Population Differentiation

We used BayPass and FST to scan for differentiation in all 11

natural populations. We first generated Manhattan plots for

FST (fig. 3A). A hidden Markov model with two states, back-

ground (mean 0.24, standard deviation 0.36) versus differen-

tiated (mean 0.8, standard deviation 1.6), identified 21

differentiation regions (fig. 3B). These regions ranged in width

from 1 to 2,600 bp and were, on average, 323 bp in width.

FST is one of the most commonly used statistics for identi-

fying differentiated genomic regions, but it does not correct

for the genome-wide relatedness of populations, and it does

not take sequencing coverage into account. To remedy both

of these problems, we similarly analyzed these data using

BayPass. Figure 3C is a Manhattan plot for BayPass’ XTX. A

two-state hidden Markov model (background mean¼ 20 and

SD¼ 9, differentiated mean¼ 100 and SD¼ 200) identified

19 peaks of differentiation across the genome (fig. 3D).

Regions identified by the hidden Markov model as being in

the “differentiated” state within 100 bp one other were com-

bined into a single peak. Five of these peaks (2, 6, 7, 10, and

11) were within 10 kb of peaks identified by FST, indicating

some agreement between the two methods of differentiated
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region detection. The peaks identified by the hidden Markov

model have two general types of makeup: a subset of SNPs

with extremely high XTX values, scattered throughout a small

region (e.g., supplementary fig. 6, regions 2 and 8,

Supplementary Material online), or a larger sized region har-

boring many SNPs with above average XTX values. The hidden

Markov model identified peaks range in width from 1 to

2,600 bp, with an average width of 550 bp (table 1). These

peaks consist of one to�40 SNPs in regions small enough to

contain zero to five gene candidate genes. Figure 4 provides

detailed views of the polymorphism data for three regions

(6, 12, and 13), chosen because they overlap, respectively,

FIG. 3.—Manhattan plots comparing FST and XTX (A and C), demonstrating that peaks of differentiation are identified by both methods but are more

clearly resolved using XTX. Locations of peaks identified by a hidden Markov model tuned to identify outliers of population differentiation (B and D).

Horizontal lines indicate the threshold for the 0.01% most significant loci.
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the genes polycystin-1, Dh44, and nephrin, discussed below.

These three regions are quite narrow, whereas some others

(supplementary fig. 6, Supplementary Material online) are

much wider. As the top panels indicate, many of these

regions show differences in sequencing coverage between

populations that extend beyond the global differences in se-

quencing coverage, possibly indicating polymorphic repeti-

tive genome features that may influence local adaptation

at these sites (fig. 4 and supplementary fig. 6, “Cov” panels,

Supplementary Material online). The lower panels indicate

that regions 6 and 12 do not have a single outlier population

in terms of allele frequency, but in region 13, SWP4 is a single

outlier in terms of both allele frequency and sequencing cov-

erage. Both of these patterns are common in other detected

regions.

Several of the hidden Markov model identified regions are

within 5 kb of genes that have well documented functions,

including solute carrier family 35 member E2B (region 19;

hence E2B), ING4 (region 19), GADPH (region 1), bab1 (region

5), GAT1 (region 6), polycystin-1 (region 6), preneuropeptide F

II (region 9), a possible homolog of OmpA (region 10), IFRD1

(region 10), Cht11 (region 10), Dh44 (region 12), nephrin-like

isoform X2 (region 12), mucin 12Ea (region 14), and an

Acetyl-CoA hydrolase/transferase family protein (region 17).

Neuropeptide F influences behavior of Drosophila larvae.

Cht11 (chitinase) could relate to the strength of the

armored shell surrounding the shrimp; similarly, BAB is

involved in tarsus development in Drosophila and IFRD1 can

induce muscular regeneration in humans; all three could be

candidates for predator defense genes. Most striking,

however, is the strong prevalence of genes relating to

osmoregulation and Malpighian tubule and kidney function.

Dh44 (diuretic hormone), nephrin, and polycystin-1 (regions

12, 13, and 6) have functions related to the kidneys or

Malpighian tubules, suggesting the importance of osmoreg-

ulation or toxin removal to local adaptation. In addition, GAT1

(region 6) is a sodium- and chloride-dependent GABA trans-

porter. It is conceivable that one avenue for surviving osmotic

stress is to adjust ion-dependent transporters to be effective at

salinities that match the natural environment of the organism.

Osmotic stress is expected to be a common stressor in vernal

pools because these pools change volume, and therefore sa-

linity, over time. These genes may differ between populations

due to adaptation to local osmotic conditions.

Most of our detected peaks had at least one population in

which sequencing coverage was substantially higher than the

genome-wide expectation (fig. 4 and supplementary fig. 6,

Supplementary Material online). We identified regions with

higher-than-expected coverage by calculating, for each pop-

ulation, the genome-wide coverage quantile corresponding

to a Bonferroni-corrected percentile (0.9997) for a multi-

test-wide alpha of 0.05, then tested whether or not the av-

erage population-specific coverage in a region was above that

threshold. All 19 regions had at least one population over-

covered (fig. 4 and supplementary fig. 6, Supplementary

Material online). Only 0.188% of tiled 550 bp regions across

the genome had significantly high coverage from at least 1

population, and only 0.00869% of the genome is covered by

XTX-significant regions, indicating that the association be-

tween significance and high coverage is not due to chance.

Different populations are overrepresented in different peaks,

indicating that no one population or sequencing event

explains all high-coverage regions. Regions 1–3, 7–12, 17,

and 18 are at repeat locations identified by RepeatMasker

Table 1

Major Significant Regions According to the 11-Way XTX Population Differentiation Analysis

Locus Contig Range Polymorphic Sites in Region Genes within 5 kb

1 C0001 1,833,709–1,833,710 1 1

2 C0001 2,066,043–2,068,643 43 2

3 C0001 7,209,776–7,210,400 15 3

4 C0001 7,613,579–7,613,897 6 1

5 C0001 8,578,012–8,578,013 1 2

6 C0001 13,316,456–13,316,629 4 4

7 C0001 20,549,353–20,551,632 29 2

8 C0001 30,645,351–30,647,093 31 1

9 C0001 33,839,493–33,840,999 12 2

10 C0001 38,847,716–38,847,717 1 5

11 C0002 4,630,901–4,631,128 7 3

12 C0002 10,105,632–10,105,832 8 1

13 C0002 10,557,700–10,557,735 2 1

14 C0002 17,201,441–17,201,442 1 2

15 C0003 4,598,755–4,598,756 1 2

16 C0003 7,468,748–7,469,069 4 2

17 C0020 27,501–27,502 1 2

18 C0025 29,631–29,634 2 0

19 C0028 32,005–32,415 31 2

Local Adaptation in Clam Shrimp GBE
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(Chen 2004), whereas regions 4–6, 13–16, and 19 are not.

This suggests that regions showing differentiation between

populations may often be associated with transposable ele-

ments (or other repeats) and/or copy number changes, al-

though additional work would have to be carried out to

confirm this suggestion.

Environmental Variables Sometimes Correlate with

Differentiated Regions but Do Not Allow Inference of the

Trait under Selection

Up to 24 environmental variables (supplementary table 3,

Supplementary Material online) were recorded for each

population at the time of collection. These include geographic

data (latitude, longitude, and elevation), abiotic ecological

variables (pond size, pH, etc.), and biotic ecological variables

(presence of other species and percentage of males). We used

BayPass’ Bayes factors to associate these environmental fac-

tors with allele frequency differences. To simplify this analysis,

we collapsed together environmental variables that were

highly correlated across the populations (supplementary fig.

7, Supplementary Material online). We also generated a

“dummy” environmental variable for each population (i.e.,

dummy-LTER has a 1 for LTER, 0 elsewhere; supplementary

table 4, Supplementary Material online). Figure 5 depicts

Manhattan plots of the Bayes factors for all collapsed
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FIG. 4.—Manhattan plots of single SNP XTX values indicating excess differentiation among the 11 populations for the regions 6, 12, and 13. The plots

indicate that the signal is highly localized, often suggesting a single gene (polycystin-1 for locus 6, Dh44 for locus 12, and nephrin for locus 13). The red

rectangle in each plot indicates the region identified as significant by the hidden Markov model. The “R” indicators in the titles indicate the region number.

“Freq” refers to the per-population allele frequency at each locus. “Cov” indicates the sequencing depth per population, after normalizing each population-

specific coverage to the genome-wide average coverage calculated from 550-bp tiled windows. A coverage of 1 here indicates average coverage, 2 indicates

double, etc. The lower plot is a zoomed figure indicating just the region identified as differentiated by the hidden Markov model.
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variables. Although we attempted to use the same hidden

Markov model method that we used for XTX to instead iden-

tify Bayes factor peaks, we found that the large number of

near-zero Bayes factor calls, the large degree of variation in

genome-wide average Bayes factor between environmental

variables, the highly skewed Bayes factor distribution (supple-

mentary table 5, Supplementary Material online), and the ob-

servation that many Bayes factor scores are the exact same

very small number prevented accurate calling of regions using

a hidden Markov model. We ultimately called regions using a

cutoff where any Bayes factor above 1020 (a highly

conservative cutoff—the alternative hypothesis is 1020 times

more likely than the null hypothesis) was considered

significant.

The above complexities make interpretation of the Bayes

factor values difficult. Analyses of different environmental

variables varied dramatically in their genome-wide average

Bayes factor value, with some environmental variables, such

as latitude, showing close to no Bayes factors above the low-

est level that can be output by the program, whereas other

environmental variables, such as the population dummy var-

iables associated with JT4 and JD1, show high Bayes factors

across the entire genome. Because so many different,

FIG. 5.—Manhattan plots of single SNP Bayes factors for different environmental variables. All plots show the 11-population Bayes factor associated with

the given environmental variable, with environmental variables indicated. Horizontal lines indicate the threshold for the 0.01% most significant loci.

Local Adaptation in Clam Shrimp GBE
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correlated environmental variables were measured, some var-

iables have missing data (e.g., pH, which was only measured

in three populations), and populations differed in terms of

relatedness to other populations and sequencing coverage,

there is likely no single explanation for why a particular envi-

ronmental variable has a high or low background. That said,

some environmental variables are very suggestive outliers. JT4

and JD1, for instance, have by far the largest amount of back-

ground, with much of the genome appearing significant.

They also are the two most closely related populations

(fig. 1). We propose that the variance in allele frequency in

a population is at least somewhat higher than BayPass’ expec-

tation, and that when two populations are very similar such

that BayPass’ omega matrix indicates that they should mini-

mally vary in allele frequency, even small deviations between

the two populations will produce Bayes factors indicating dif-

ferentiation between the populations. Several other environ-

mental variables with highly elevated background, including f,

He, and the surface area:volume ratio, are correlated with

either the JT4 or JD1 dummy variables. It is also possible

that the model is essentially overparameterized given the

modest total number of populations being compared.

The population dummy variables for SWP4 and Hayden

stand out as having moderate background, and a few regions

that have Bayes factor values well above the background.

SWP4 has 11 differentiated regions associated with it, 3 of

which correspond to differentiated regions found via the XTX

statistic (regions 2, 4, and 13). Hayden has 10 differentiated

regions, 7 of which are associated with XTX-identified regions

(regions 1, 8, 9, 14–16, and 19, supplementary table 6,

Supplementary Material online). Close inspection of these

sites shows that all of these intersecting regions show signif-

icantly above-average coverage of the sequence data corre-

sponding to the population (fig. 4 and supplementary fig. 6,

Supplementary Material online) as with the XTX results.

Discussion

Natural Populations and Selection

FST analogs are commonly used for detecting local adaptation

in model systems. Studies in humans (Mackinnon et al. 2016),

Drosophila (Reinhardt et al. 2014), and other model organ-

isms (McGaughran et al. 2016) commonly use either whole-

genome sequence data (Drosophila, other models) or carefully

ascertained SNPs from genotyping chips (human and live-

stock). Given a high-quality genome and large population

sample, FST-like outliers can detect local adaptation

(Savolainen et al. 2013). An increasing number of studies in

nonmodel systems have employed a high-quality reference

and genotyping data set (e.g., Lamichhaney et al. 2015;

McGaughran et al. 2016; Fustier et al. 2017; Leroy et al.

2020). Lamichhaney et al. (2015) sequenced 120 finches

across the Galapagos using whole-genome sequencing and

a high-quality (5.2 Mb scaffold N50) assembly for alignment.

In spite of their restriction to normalized FST, which does not

account for relationships between populations, they detected

several peaks over genes that influence beak morphology.

Even so, many of these peaks were as large as the scaffolds

they were on, implying poor localization ability. In another

example of a study using whole-genome sequencing,

McGaughran et al. (2016) sequenced 264 strains of

Pristionchus pacificus nematodes and performed an FST anal-

ysis, identifying locally adapted regions. They went further

and demonstrated the functional importance of an NHX

ortholog in one region. These two studies required the se-

quencing of a large number of individuals from a broad geo-

graphic area, and the construction of a high qualify reference

genome. Both identified regions important in local adaptation

using FST.

Still, scans for local adaptation in nonmodel systems are

often performed with fragmented references and sparse gen-

otyping data sets. A low contiguity genome assembly can

prevent researchers from identifying peaks of significance. If

a peak is larger than the contig that contains it, multiple

sections of the peak may be identified as separate peaks.

With a high-quality assembly (e.g., Lamichhaney et al.

2015), this problem can still occur in smaller contigs. With

no reference at all, as in Lal et al. (2016), SNPs must be ana-

lyzed independently, and true local adaptation cannot be dis-

tinguished from hitchhiking. In our work, 3 of the 19 XTX

differentiated regions (17–19) are likely artifacts as they are

associated with contigs of dubious quality. It is likely that a

fragmented assembly would magnify this source of false

positives.

If a small number of markers are assayed using a diversity

reduction method for genotyping it is possible to completely

miss a differentiated peak. Many of our peaks were tagged by

between one and a few dozen SNPs despite deep sequencing.

This is likely to also be the case in other systems in which LD

only extends over short physical distances. Many nonmodel

systems have had populations sequenced using candidate

gene sequencing (Keller et al. 2012), RADseq (Lal et al.

2016), targeted genomic sequencing (Holliday et al. 2016;

Roulin et al. 2016; Yeaman et al. 2016), and other methods

(Riginos et al. 2016; Wenzel et al. 2016). Although these

techniques are reliable and affordable, they achieve cost effi-

ciency by randomly sampling a subset of SNPs in the genome.

We queried a total of 1.4 million SNPs for our XTX scan, giving

us an average resolution of one marker every 85 basepairs. To

test if diversity reduction sequencing would result in lower

power to identify regions showing population differentiation,

we downsampled our empirical data, then applied the same

differentiation detecting hidden Markov model to the XTX

values from the downsampled data. In total, 100% of peaks

were detected with 1 million markers, 55% with 250 thou-

sand markers (1/4 diversity reduction), and 12% with 100

thousand markers (1/10 diversity reduction; fig. 6). This lends
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some support to the idea that genotyping without deep se-

quencing is likely to miss sites that show a signal of population

differentiation. Still, it is difficult to generalize because power

will depend on levels of LD in the study system. Naturally,

coverage should also affect the rate of differentiated region

detection (cf., Ferretti et al 2013).

In most studies, FST-like statistics are computed using

population-wide allele frequency data. Most use FST or a de-

rivative (Lamichhaney et al. 2015; McGaughran et al. 2016),

but others use more complex statistics such as those of

BayEnv (Keller et al. 2012), Bayescan (Foll and Gaggiotti

2008; Keller et al. 2012; Lal et al. 2016), LOSITAN (Antao

et al. 2008; Lal et al. 2016), or others. We used FST and

BayPass here and found that they identified several of the

same genomic regions as being differentiated between the

populations, but where they disagree, we believe BayPass

should be more trustworthy due to its awareness of global

population relatedness and incorporation of sequencing

depth into significance calculations.

Local Adaptation Can Be Detected, but Not Characterized,
without Ecological Data; Some Questions Remain

Historical studies have successfully correlated allele frequency

differences with environmental variables when a general test

for elevated FST among all population samples failed to be

significant (cf., Berry and Kreitman 1993). In contrast, we

identified a set of differentiated regions using only an

environment-agnostic measure of population differentiation

(XTX). This demonstrates that modern statistical techniques,

combined with whole-genome SNP discovery and analysis,

can detect differentially selected sites without knowledge of

an organism’s ecology. We also performed environment-

aware analyses of allele frequency differentiation (BayPass’

Bayes factors) but were unable to distinguish particular envi-

ronmental variables as being the drivers of population differ-

entiation here. Our results suggest that if the number of

populations examined is not considerably larger than the

number of ecological variables measured on each population,

it is difficult to identify potential ecological causes of

adaptation.

One caveat here is the presence of high sequencing cover-

age in our detected peaks. Because the XTX statistic is elevated

when coverage is high, regions with especially high coverage

may have increased power to detect population differentiation

with allele count based methods such as BayPass. All else be-

ing equal, a region with high coverage is more likely to appear

as a highly differentiated region using the XTX statistic, so it is

unsurprising that our differentiated regions have higher-than-

average coverage. High coverage may be due to PCR duplica-

tion, though our use of picard-tools’ deduplication pipeline

makes this unlikely. More intriguing is the possibility that the

high coverage may be due to repetitive sequences, and in-

deed, several of the called regions are at locations identified

as repeats by RepeatMasker. There are numerous examples of

copy number polymorphisms, which appear in Illumina data as

sites with variable coverage, having real phenotypic effects

(Chakraborty et al. 2019), so we do not discount the loci iden-

tified here based on this signal of high coverage.

Suggested Future Investigations

We identified a small number of candidate genes associated

with population differentiation. A candidate gene approach

to understanding the effects of GAT1, polycystin-1, Dh44,

and nephrin on salt tolerance in E. texana or a model organ-

ism could be pursued. Flies may or may not be a suitable

model for salinity tolerance, but Daphnia water fleas are a

deeply studied model organism that use osmoregulatory

neck organs similar to those in E. texana to manage the sa-

linity of their bodies (Potts and Durning 1980). A Crispr knock-

out of the ortholog of one of these candidate genes in

Daphnia (Nakanishi et al. 2014; Kumagai et al. 2017; Hiruta

et al. 2018) is an attractive approach to understanding their

effect in vernal pool shrimp. Future reductions in the cost of

sequencing will allow studies like the one here to be carried

out with more populations, allowing the effects of specific

populations versus environmental characteristics to be statis-

tically disentangled. A promising approach may be to deeply

sample populations that span a large range of salinities to

further pin down the effect of candidate genes on salinity

tolerance. Additionally, experimental evolution toward salinity

tolerance followed by population sequencing could shed fur-

ther light on this phenotype. The methodology of this article

provides an outline for characterizing the genetics of local

adaptation in never-before-sequenced species: generate a

high-quality draft assembly, Poolseq several populations,

and identify population differentiation with population struc-

ture corrected statistics.
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FIG. 6.—Downsampling of SNPs demonstrates that reduced marker

density dramatically reduces power to detect differentiated regions.

Local Adaptation in Clam Shrimp GBE

Genome Biol. Evol. 12(7):1194–1206 doi:10.1093/gbe/evaa120 Advance Access publication 25 June 2020 1204



Data Availability

Additional files are available at the following URL: wfitch.bio.

uci.edu/~tdlong/PapersRawData/BaldwinShrimpPopula-

tion.tar.gz. Additionally, all scripts used for analysis will be

made available at the following GitHub page: https://

github.com/jgbaldwinbrown/jgbutils. The file “E. texana lo-

cal adaptation supplementary information” contains code

fragments, tables, and supplementary figure descriptions

and supplementary figures, Supplementary Material online.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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