
Unifying Time to Contact Estimation and Collision
Avoidance across Species
Matthias S. Keil1,2*, Joan López-Moliner1,2
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Abstract

The t-function and the g-function are phenomenological models that are widely used in the context of timing interceptive
actions and collision avoidance, respectively. Both models were previously considered to be unrelated to each other: t is a
decreasing function that provides an estimation of time-to-contact (ttc) in the early phase of an object approach; in contrast,
g has a maximum before ttc. Furthermore, it is not clear how both functions could be implemented at the neuronal level in a
biophysically plausible fashion. Here we propose a new framework – the corrected modified Tau function – capable of
predicting both t-type (‘‘tcm’’) and g-type (‘‘tmod’’) responses. The outstanding property of our new framework is its
resilience to noise. We show that tmod can be derived from a firing rate equation, and, as g, serves to describe the response
curves of collision sensitive neurons. Furthermore, we show that tcm predicts the psychophysical performance of subjects
determining ttc. Our new framework is thus validated successfully against published and novel experimental data. Within
the framework, links between t-type and g-type neurons are established. Therefore, it could possibly serve as a model for
explaining the co-occurrence of such neurons in the brain.

Citation: Keil MS, López-Moliner J (2012) Unifying Time to Contact Estimation and Collision Avoidance across Species. PLoS Comput Biol 8(8): e1002625.
doi:10.1371/journal.pcbi.1002625
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Introduction

Monocular presentation of a looming object elicits escape or

avoidance reactions in many species, including humans [1–4].

When a planar object travels perpendicular to a surface toward an

observer (i.e. the object approaches the observer on a direct

collision course), it projects a symmetrically expanding image on

the retina. Notice that in the present paper we only focus on a

subset of approaches where the approaching object eventually

collides with the observer. We assume that collision happens at

time tc (time to contact, ‘‘ttc’’). At time t§0 before tc, the image

subtends an angle H(t), and its outer contours expand with

angular velocity _HH(t). Both angular variables grow nearly

exponentially with decreasing distance x(t):v:(tc{t) between

object and eye (assuming a constant velocity v§0). With

knowledge of a predator’s or object’s typical size [5], it is therefore

possible to trigger a behavioral response as soon as H or _HH,

respectively, crosses a threshold [1,6,7].

The visual systems of various species are also known to

‘‘compute’’ functions of H(t) and _HH(t) (see e.g. [8] for a recent

review). The Tau-function (‘‘t’’) is defined by t:H(t)= _HH(t). Under

the assumption that the object is a rigid sphere that approaches

with v~const:, t has several interesting properties [9,10]: First, t
provides a running estimation of ttc during the approach. Second,

the ttc estimation is largely independent of physical object size,

provided that H(t) and _HH(t) are noise-free. Third, t(t) decreases

approximately linearly with time with a constant slope of {1, but

eventually linearity is compromised, as t has a minimum shortly

before ttc. It therefore would be comparatively easy to track the

remaining time tc{t until impact, and to precisely time avoidance

reactions, for example as soon as t(t) is below a certain threshold

value.

These three properties, however, are valid only for ‘‘sufficiently

small’’ angular sizes H(t). Any quantitative criterion for ‘‘suffi-

ciently small’’ implicates an error threshold for the deviation of t
from linearity, that is Dtc{t{t(t)D. For example, according to Text

S6 a corresponding threshold for the visual angle can be defined as

Hthresh~2:arctan(1=c) with some constant cv
ffiffiffiffiffiffiffiffi
1=3

p
. Notice that

the Hthresh-criterion is independent from stimulus parameters such

as object diameter or approach velocity.

Because t is well suited for the estimation of tc, it could in

principal serve as a universal mechanism for guiding motor actions

during object approaches or during self-motion towards static

objects. Indeed, several studies related t to behavioral responses in

this context, thus asserting that many organisms, including

humans, rely on t for their timing of motor actions (e.g. [10–

12]). But a critical re-evaluation of the t-hypothesis arrived at the

conclusion that t does not necessarily play a unique role for ttc

estimation [13,14]. For example, humans also rely on the rate of

change of relative disparity, particularly in the late phase of an

approach, for small object sizes [15–18], for low speeds [19,20], or

if knowledge of object size is available [7]. In addition, the task at
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hand (e.g. catching a ball or eluding a meteorite) seems to dictate

the information that will eventually be used for action timing

[14,18,21]. Further inconsistencies with respect to t were reported

with psychophysical results, where tc tended to be underestimated

[16]. In addition, ttc -estimation reveals a certain dependence on

object size [22], which is also not predicted by t at ‘‘sufficiently

small’’ angular sizes.

The Tau-function is often studied in the context of ttc -estimation.

It appears, however, that in order to describe the responses of

collision-sensitive neurons in certain species t is inadequate. For

example, the Lobula Giant Movement Detector (LGMD) neuron in

locusts responds with increasing activity to a stimulation with a

symmetrically expanding image, if the expansion pattern is

consistent with an approaching object [23,24]. The response

curve of the LGMD neuron gradually increases to a maximum

and then abruptly ceases (often to a nonzero baseline response).

Because t does not have a maximum, a different function has been

proposed for modeling LGMD responses: The Eta-function (‘‘g’’). It

is defined as g! _HH=exp(aH), with a constant a [25]. Theoretically,

the time when the activity peak occurs depends linearly on the

ratio k of object half-size l to object velocity v. The peak will shift

closer to tc for smaller or faster objects, and always occurs at

angular size 2 arctan(1=a), independent of k [26]. The LGMD

activity peak could in principle signal a critical angular size for

escaping. Indeed, a recent study with freely behaving locust

suggests that the time of peak firing rate of the Descending

Contralateral Movement Detector (DCMD) predicts that of jump [27]

(each LGMD spike triggers a spike in the postsynaptic DCMD as

well, because the LGMD is strongly coupled to the DCMD by a

combined electrical and chemical synapse [28,29]).

It has nevertheless been argued that – in some ecologically

meaningful situations (small k) – there is no guarantee for the peak

to occur before tc [2,5]. This statement may be true to the extent

that in freely behaving locusts, a reliable escape jump is triggered

before collision only in the range of k~40ms to k~120ms [30]. For

kv40ms, the jump would occur after projected collision, and this

value thus may reflect the typical sizes and speeds of predators.

Apart from the locust, other species have collision-sensitive

neurons with g-like properties, for instance fruitflies [31] and

bullfrogs [32]. In pigeons, the response properties of one of three

classes of neurons in the dorsal posterior zone of the nucleus rotundus

also seems to be compatible with the g-function [1]. (The two

remaining classes seem to compute _HH and t, respectively). In the

goldfish, responses of the M-cell to looming stimuli also appear to

follow a version of the g-function, in which H replaces _HH, such

that the new function does only depend on H [33].

The Tau-function and the Eta-function are the two prevailing

models for studying ttc -perception and (interceptive) action timing

on the one hand, and escape behavior and collision avoidance on

the other. In other words, we have two different models for two

seemingly separated contexts. Each model brings about some

hitherto unresolved issues, which are subsequently described.

From a computational point of view, t is numerically unstable:

In the presence of noise, we have to reckon with the fact that _HH
can get very small – or even reach zero – at certain instants during

the initial phase of the approach (cf. [17]). As a consequence,

fluctuations of t with large amplitudes may occur. If, however,

noise levels are constant in time, and noise is not multiplicative, the

signal to noise ratio continuously improves as tc is approached. It is

furthermore not entirely clear how t could be biophysically

implemented in a neuron.

As for the g-function, the LGMD neuron seems to

bypass a direct multiplication or division by computing

log g(t)~log _HH{(aH) with subsequent exponentiation of the

result [34]. From a mathematical viewpoint, however, taking the

logarithm introduces an instability for _HH%1, although neuronal

circuits with divisive inhibition can be adjusted such that no

stability problems occur [35]. Moreover, Gabbiani et al. [34] found

that a third-order power law fitted the mean instantaneous firing

rate of the LGMD better than an exponential or a linear function

(see also reference [36]).

Our original motivation was to improve the stability of t with a

simple modification. This modification led us to the modified Tau

function tmod. Similar to the g-function, the tmod-function also

reveals a maximum before ttc. We were able to fit the response

curves of g-type neurons with tmod (Text S4). Our tmod-function

represents the equilibrium solution of an equation for describing

neuronal firing rate. Because of this, tmod is based on a

biophysically plausible mechanism.

But tmod comes with a disadvantage: Unlike t, it no longer

provides a running value of ttc. In order to recover the ttc prediction,

we needed to add a correction term to tmod. This so-defined corrected

modified Tau function (tcm) recovers the ttc prediction of the original

t-function, but suppresses noise better than t. Most importantly, the

corrected m-Tau function predicts the results of a psychophysical

experiment, requiring subjects to estimate ttc.

Theoretically, we therefore can explain t-type and g-type

responses within the tcm framework, which contains tmod (but also

t!) as a special case. Until now, t and g did not have any obvious

relationship with each other (although we show in Text S6 how g
could formally be related to 1=t). The tcm-function could thus

serve to explain why t-type and g-type neurons could be found

alongside each other in the pigeon brain [1].

Results

The corrected modified Tau function ‘‘tcm’’ (equation 5) contains

the modified Tau function ‘‘tmod’’ (equation 1) as a special case. We

nevertheless first introduce the tmod model, as this makes its

relation to the original t-function much easier understood.

The modified t model (‘‘tmod’’)
Behavioral and neural responses to optical variables (e.g., H, _HH,

t, g) in the initial part of a trajectory are very noisy signals. Signal

Author Summary

In 1957, Sir Fred Hoyle published a science fiction novel in
which he described humanity’s encounter with an extra-
terrestrial life form. It came in the shape of a huge black
cloud which approached the earth. Hoyle proposed a
formula (‘‘t’’) for computing the remaining time until
contact (‘‘ttc’’) of the cloud with the earth. Nowadays in
real science, t serves as a model for ttc -perception for
animals and humans, although it is not entirely undisput-
ed. For instance, t seems to be incompatible with a
collision-sensitive neuron in locusts (the Lobula Giant
Movement Detector or LGMD neuron). LGMD neurons are
instead better described by the g-function, which differs
from t. Here we propose a generic model (‘‘tcm’’) that
contains t and g as special cases. The validity of the tcm

model was confirmed with a psychophysical experiment.
Also, we fitted many published response curves of LGMD
neurons with our new model and with the g-function. Both
models fit these response curves well, and we thus can
conclude that t and g possibly result from a generic
neuronal circuit template such as it is described by tcm.

TTC Estimation and Collision Avoidance
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fluctuations may occur as a consequence of the discrete structure

of the retinal photoreceptor array and its limited spatial resolution.

The signal-to-noise ratio continuously improves as ttc is ap-

proached (Text S3).

Our first step adds computational stability to the t model. Let

b1w0 be a constant (in units of 1=s). The modified Tau model is

defined as:

tmod~
H

_HHzb1

~
_HH

_HHzb1

:t(t):c(t):t(t) ð1Þ

Biophysically, b1 can be interpreted as leakage conductance

(equation S2 in Text S1). According to equation (1), tmod can

formally be expressed in terms of t(t) multiplied with a gain

control factor c(t), which depends only on angular velocity.

Notice, however, that the multiplicative version ‘‘c:t’’ would again

compromise stability, because t appears as one of the factors in the

product. Figure 1 a juxtaposes tmod and the factors c(t) and t(t),
respectively.

Let the initial distance between the eye and a circular object

(diameter 2l) be denoted by x0~v:tc. Then, choosing

0vb1v
_HH(t~tc) will create a maximum of tmod at time

tmaxvtc (i.e., a maximum before tc):

tmax&
1

v
x0{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lv

b1

zl2

s !
ð2Þ

(the previous equation is derived in the Methods Section). The

time tmax when tmod assumes its maximum can thus be controlled

by specifying b1, where bigger values will place the maximum

closer to tc. The maximum depends as follows on approach

velocity and object diameter, respectively.

Assume fixed values for b1 and tc. Then, tmod will have an

activity maximum at tmax (default case). Now increase approach

velocity and initial distance, such that tc remains constant. As a

consequence, the peak will shift closer to tc with respect to the

default case (triangle symbols in Figure 1a; further figures in Text

S2). This is the velocity effect.

Now increase the object diameter. The maximum of tmod will

then occur earlier compared to the default case (circle symbols in

Figure 1). This is the size effect.

Assuming that the peak signals an imminent collision, this

shifting behavior is consistent with larger objects being perceived

to have an earlier ttc than smaller ones [22]. Note that the original

t-function (i.e. b1~0 and noise-free angular variables) does not

show a strong dependence on object size where t&tc{t holds (but

see Text S6).

The g-function is the prevailing model for describing responses

from collision sensitive neurons to object approaches with constant

velocity. Its characteristic feature is its maximum. Because tmod

also has a maximum, we fit 36 previously published neuronal

response curves with the g-function and tmod (Text S4). Figure 2

summarizes these fits by comparing the response maxima of the

experimental curves (‘‘̂ttmax’’) with the maxima predicted by the

best fits achieved with the two functions (‘‘tmax’’). Predictions of

t̂tmax are slightly better with tmod-fits, both in terms of mean and

median of absolute differences (~D̂ttmax{tmaxD). With respect to

goodness of fit measures (root-mean-square-errors, R2, F-statistics),

both functions perform again on par with each other. Therefore,

Figure 1. The modified Tau function (‘‘m-Tau’’). (a) The figure shows two m-Tau functions which are distinguished by b1 (with values 1 and 0:1,
see legend). The horizontal bars denote their respective maxima for the default stimulus values (tc~1:2s, x0~1:3m, v~1:08m=s, l~2:5cm). The
maxima shift to the left (circles) upon doubling the object radius l to 5cm (‘‘size effect’’). They shift in the opposite direction (triangles) upon doubling
both the approach velocity v and the initial distance x0 (‘‘velocity effect’’), such that tc remains unchanged (tc~2x0=2v~1:08m=s). The thin dotted
lines (not identified in the legend) show the m-Tau functions with correspondingly doubled values. For the m-Tau function with b1~1, the two
factors c(t) and t(t) are furthermore plotted, see equation (1). The shift directions of the maxima are identical with the corresponding shifts observed
with the g-function, see Text S1. (b) Here it is shown how the maxima of seven m-Tau functions shift when the object diameter is halved or doubled
with respect to its default value 2:5cm. Each point indicates tmax (time of maximum) along with its corresponding amplitude tmod(tmax). Circular
symbols represent the default case with tmax[f0:12,0:24,0:36,0:48,0:60,0:72,0:84gs. All maxima lie on a line. With a smaller object diameter all maxima
shift to the right (towards tc), and an increase in object size causes a shift of all maxima to the left (away from tc). All shifts proceed along the same
straight line. Notice that some artifacts occur for the two leftmost points, because all maxima were computed numerically. The velocity effect is
illustrated in Text S1.
doi:10.1371/journal.pcbi.1002625.g001
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both tmod and the g-function describe neuronal responses of object

approaches with constant velocity.

The experimental maxima at time t̂tmax depend linearly on

k:l=v [26]. The g-function predicts this linear relationship

(equation S5 in Text S2), where slope is identified by a, and

intercept by a temporal delay d of corresponding line fits

(Figure 3a).

The maximum of the tmod-function tmax~tmax(k,b1), however,

depends in a nonlinear way on k (equation 2 & equation S6 in Text

S2; illustration: Figure 4). (Nonlinearity means that the slope

depends on k, and linearity means that it does not). Linearity is

approached with increasing values of b1, eventually reaching a

slope of one for b1&1 (equation S9 in Text S2). This is nevertheless

inconsistent with experimental evidence, as the experimental

values for a are underestimated (typically 2vav8).

We thus explored a different possibility: Can the nonlinear

function tmax(k,b1) be hidden by noise? Figure 3b suggests that it

nearly can, as seen when fitting a line to a version of tmax(k,b1)
with additive Gaussian noise. Noise levels were set as reported in

[26]. This hide-and-seek works quite well, and the fitting statistics

(R2, KS-test on residuals, F-statistics) are consistent with linearity

in many random trials (detailed analysis: Text S2).

Figure 4 suggests a correlation between intercept and slope of

line fits for different values of b1. We thus fit lines to the noisified

version of tmax(k,b1) for various values of b1. As before, noise

levels were set as reported, and we again identified intercept and

slope of the line fits to tmax(k,b1) with d and a, respectively. The

result of this procedure is shown in Figure 5, and agrees well with

Figure 4 in [26]. Thus, tmod consistently predicts a good

correlation between intercepts and slopes both in the presence

and in the absence of noise.

The corrected modified t model (‘‘tcm’’)
Maximum detection of tmod in the initial phase of an object

approach (i.e., for small values of b1) is problematic, due to the

signal’s poor signal-to-noise ratio and the rather ‘‘shallow’’

curvature around the maximum. The situation gets progressively

better if we place the maximum closer to tc, that is for bigger

values of b1: The signal-to-noise ratio is better, and curvature is

higher. With tmod, however, we fell short of explaining the results

of our psychophysical experiment (which is below described

further). This led us to modify tmod as follows.

Observe that t(t)wtmod(t) for all b1w0, and thus

D~ttcorr:t{tmod~
b1H

_HH( _HHzb1)
ð3Þ

is a positive correction factor to tmod, such that t:tmodzD~ttcorr.

As with t, the correction factor D~ttcorr per se is again susceptible to

fluctuations in the angular variable _HH, and we would have gained

no improvement by simply adding it to tmod.

Now, the crucial idea is to render D~ttcorr insensitive to such

fluctuations. This is achieved with a first order low-pass filter (a

short introduction is given in Text S8). Low-pass filtering of H and

Figure 2. t̂tmax from experiments (symbols) compared to fitted tmax (bars). All symbols indicate the maxima t̂tmax in the neuronal recording
data as a function of l=v (with v§0). These data were manually resampled from previously published studies (see Text S4 for further details). The line
ends (lines start at the center of each symbol) denote where the fitted functions tmod (thick gray bars) and g (thin and red bars) have their respective
maxima. Thus, the longer a bar, the bigger the difference between the predicted maxima and that of the neuronal data. The respective sum of
absolute differences is indicated in the inset. The mean (+1 s.d., n~31) of absolute differences is 30:6ms+40:72ms (median +srob:
18:6ms+17:24ms) for the g-function, and 20:8ms+28:4ms (median +srob: 10:2ms+8:03ms) for tmod. The two continuous lines connect the data for a
series of l=v values from the same paper (light gray: reference [26]; green: reference [39]; first figure in Text S4: all references.)
doi:10.1371/journal.pcbi.1002625.g002
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Figure 3. Masking of the m-Tau nonlinearity by noise. The experimental data from Gabbiani et al. [26] suggest a linear relationship between
relative time of peak firing rate tpeak:tc{tmax and the half-size to velocity ratio k:l=v. The big shaded areas indicate one standard deviation s from
the mean value of tpeak. Notice the increase in s with increasing k. (a) Resampled Figure 4a from Reference [26] (p. 1128). The locusts were stimulated
by approaching dark squares with different sizes and velocities, such that various values of k were covered. The circle symbol for each k represents
the mean tpeak of neuronal response curves across N~15 DCMD neurons. The result of a weighted least square regression fit reported by Gabbiani et
al. had slope a~4:7+0:3 and intercept d~{27+3ms. With the manually resampled data points shown here, we obtained a~4:61+0:179 and
d~{30+1ms, respectively. The light green shaded area indicates one standard deviation of slope. Additional statistical parameters of our weighted
least square fit are shown above the figure. (b) An example of fitting a straight line to 15 averaged random trials of the ‘‘noisified’’ equation (2) with
b1~1:52651. ‘‘Noisifying’’ means that Gaussian noise with standard deviation 0:87k was added to tpeak (according to equation 8, page 1129 in [26]).
The noise blurs the nonlinear character of the m-Tau function and makes it appear linear. The light red shaded area indicates one standard deviation
of slope. Further simulation results are presented in Text S2.
doi:10.1371/journal.pcbi.1002625.g003

Figure 4. Illustration of nonlinear dependence of m-Tau maxima. The red square symbols denote data points (l=v,tc{tmax):(k,tpeak),
according to Figure 3a from reference [26]). In order to illustrate the nonlinear behavior of m-Tau, for each of these points an instance of m-Tau was
created, such that the peaks of the g-function and the m-Tau function coincide. The corresponding values of b1 were computed with equation S7 in
Text S2, and are indicated in the figure. Along with the b1 , the values of a and d are shown in small font size. The latter two values were obtained by
‘‘brute-force’’ fitting a straight line to the nonlinear m-Tau curves. We observe that: (i) the curvature of m-Tau (equation S6 in Text S2) increases with
decreasing values of b1 . (ii) All ‘‘slopes’’ of the ‘‘brute-force’’ line-fit to m-Tau are smaller than suggested by the data from Gabbiani et al., who
reported a~4:7+0:3 (our fit of their re-sampled data is indicated by the green line and yielded a~4:61+0:179; see figure headline).
doi:10.1371/journal.pcbi.1002625.g004
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_HH transforms D~ttcorr into a slowly varying signal, which is

eventually added to tmod:

q(tzDt)~f1q(t)z(1{f1)H(t)

_qq(tzDt)~f2
_qq(t)z(1{f2) _HH(t)

ð4Þ

q and _qq are low-pass filtered visual angle and angular velocity,

respectively, and Dt is the system’s integration time constant. In

order to avoid initial filter transients, the filter variables were

initialized with q(0)~H(0) and _qq(0)~ _HH(0), respectively. The fi

are filter memory coefficients with 0ƒfiƒ1 for i~1,2. No

filtering would take place for fi~0 (no memory), and the filters

would never change their initial state for fi~1 (infinite memory).

The corrected, modified t model (‘‘corrected m-Tau’’) is then defined

as:

tcm(t):
H

_HHzb1|fflfflffl{zfflfflffl}
tmod(t)

z
b2q

_qq( _qqzb3)zE|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dtcorr

zb4 ð5Þ

where E%1 is a small constant, such that possible division-by-zero

errors are avoided in the simulation. Nevertheless,in the presence

of noise, division-by-zero errors do not typically represent a

problem during an approach with v~const:, because _qqw0 if the

following two conditions hold: (i) appropriate initialization of
_qq(t~t0)w0, and (ii) ‘‘sufficiently strong’’ lowpass filtering. The

offset b4 is included for the sake of completeness. It was only

considered for simulating our psychophysical experiment (de-

scribed below), where it turned out to be negligibly small. In

general, therefore, it is safe to assume b4~0.

Similar to t, the new corrected m-Tau-model also computes an

estimation of ttc for ‘‘sufficiently small’’ angular sizes. But the

principal advantage of tcm over t is that it is less sensitive to noise.

The noise suppression of the corrected m-Tau-model is constrained

by the noise suppression performance of two ‘‘limit functions’’,

which are approached dependent on the values of b1, b2, and b3

(Figure 6). For the derivation of these limit functions, assume (to

simplify matters) that in equation (5) bi:b with i~1,2,3 (and

b4~0). Then, as we will show subsequently, the constraining

functions are the ordinary t function for b%1, on the one hand

(equation 6), and for b&1 a version of t with lowpass-filtered

angular variables, on the other (equation 8). Thus,

t(t)vtcm(t)vtlp(t), where tlp:q= _qq, provided that we exclude

the case b3~0, b2??, which would imply that tcm is

unbounded.

Case I: b%1. For very small b (more precisely b% _HH), the first

term of the equation (5) is approximately

tmod(t)&
H

_HH
ð6Þ

which is just the ordinary t function. For the second term

Dtcorr%tmod, which implies that it can be neglected because its

denominator is approximately equal to _qq
2
. Furthermore, during

Figure 5. Simulation of Figure 4b from Reference [26] (p. 1128). For compiling this figure, a value of b1 was first selected. Then, N~15
noisified curves tpeak(k) (k[½5,50�ms) were generated and averaged, assuming a noise level of j(k)~0:87k in equation S10 in Text S2 [26]. A pair of
intercept and slope values (d and a, respectively) were obtained from a weighted linear regression fit to the average curve (weights ~1=variance).
Now, b1 was parsed from 0:95 to 1:75 in steps of 0:01 (totaling 81 values). For each value of b1, the weighted linear regression fit to the averaged
tpeak(k)-curves was repeated n~15 times. The small grey circles represent the mean value of these n~15 intercept-slope pairs. Statistical parameters
for each fit were also recorded, and the corresponding figures are included in Text S2. The main axis of the ellipse are in the direction of the
eigenvectors of the covariance matrix. The matrix was computed from all intercept-slope pairs (i.e. n~15 samples for each b1). The lengths of the
eigenvectors were scaled with the square root of their associated eigenvalues. The area enclosed by the ellipse thus corresponds to one standard
deviation (legend: s1 and s2). (Note that the ellipse shown in Figure 4b from Gabbiani et al. denotes instead a 68:3% confidence region for intercept
and slope). The noise-free correlation is indicated by the straight line. Notice that the abscissa values are defined up to an arbitrary additive constant.
doi:10.1371/journal.pcbi.1002625.g005
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an object approach with constant velocity, angular size H and

angular velocity _HH are increasing, and _HHwH, as t:H= _HH is

monotonically decreasing (except at times very close to ttc, see Text

S6). The last arguments hold also for q and _qq, respectively, which

are the lowpass-filtered optical variables, where _qq
2
wq. We

eventually arrive at the approximation

Dtcorr&b
q

_qq
2
%tmod ð7Þ

Summarizing the above, if b%1, then the noise suppression

performance of the corrected m-Tau -model is comparable with that

of ordinary t (Figure 6a).

Case II: b&1. For b&1 (more precisely b& _HH), the situation

is just the opposite of Case I. The first term of equation (5) can be

neglected, because _HHzb&H. Given that _qqzb&b in the

denominator of the Dtcorr term, we obtain

Dtcorr&
q

_qq
:tlp ð8Þ

This is the ordinary t-function but with lowpass filtered optical

variables (‘‘tlp’’, Figure 6b).

Predicting psychophysical performance
Details on our psychophysical experiment are spelled out in the

Methods Section. In a nutshell, subjects viewed approaching balls

on a monitor. The balls had two different sizes (big & small,

corresponding to object diameters 0:10m & 0:05m, respectively),

and disappeared after tpres (presentation time) until tc. A beep

sounded always at the same time, tref~1:2s, in order to indicate a

reference time to the subjects. Approaches with different values of

tc were presented, where tc could occur before or after tref .

Subjects were asked to judge whether they were hit by the ball

before or after tref . Responses were pooled, and the ‘‘proportion of

later responses’’ for each presentation time (corresponding to ‘‘ball

hit me after tref ’’) was computed as a function of ttc. Figure 7a

shows the corresponding data points for tpres~0:9s, along with the

best matching Gaussian cumulative density function (‘‘GCDF’’-fit)

for each object diameter. The GCDF-fits represent an estimate of

the underlying psychometric curves or psychometric functions,

respectively. Figure 7b suggests that subjects did not respond to the

average of the stimulus set, because the mean of the distribution

(point of subjective simultaneity) shifted with presentation time. In

addition, the variance of the distribution decreased with increasing

presentation time. The small object diameter is furthermore

associated with a higher variance than the big one.

The full set of data points is shown in Figure 8, where each

figure panel corresponds to a different presentation time (small

object size: circles; big: triangles). The curves shown in Figure 8 do

not represent GCDF-fits (as in Figure 7a), but rather display

simulation results from the tcm-model. For short presentation

times, subjects show near-random performance across ttc

(Figure 8a, b), thereby revealing a bias towards later responses

(i.e. ‘‘ball hit me after tref ’’). The GCDF-fits reveal a higher bias

for the small object diameter (Figure 7b). The corresponding

psychometric functions (not shown) and tcm-predictions for the

shortest presentation time (tpres~0:1s; Figure 8a) are thus rather

flat and noisy. This bias is progressively reduced with increasing

tpres, indicating improving performance: For tpres~0:9s, the point

of subjective simultaneity approaches tref for both object

diameters, and psychometric functions get closer to a step-wise

increase at tc~1:2s (Figure 7a).

We already mentioned that we simulated the psychometric

functions with the corrected m-Tau -model (equation 5), at which we

added noise to angular size and angular velocity (equation 9). By

Figure 6. Limit functions of the corrected m-Tau function. The corrected m-Tau -function tcm responds similar to t, but with an improved noise
suppression performance, as long as parameter values bi (i~1,2,3 and b4~0) are suitably chosen. More precisely, tcm is constrained by the limit
functions t and tlp. This means that corrected m-Tau can approach the former or the latter function for the corresponding (extreme) values of bi , but
typically tcm will perform somewhere between the two limit functions. For the simulations shown in this figure, uncorrelated normal-distributed noise

was added to the angular variables H and _HH. Each curve represents a typical random trial, where noise was identical for all curves. The different
shades of gray indicate different object diameters, as indicated in the legends. (a) ‘‘Normal’’ t function, which is the limit function approached by tcm

for bi%1. Noise suppression is poor. Notice that the displayed range has been truncated so as to match it to the range of the figure on the right-hand

side. (b) The tlp:q(t)= _qq(t) function is the limit function that is approached for bi&1. It has an excellent noise suppression performance, owing to
lowpass filtering of angular variables (f~0:9, c.f. equation 4). Further details are presented in Text S3.
doi:10.1371/journal.pcbi.1002625.g006
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assuming a constant approach velocity, one could compute an

estimation of ttc with equation (12). Note that this estimation

should be constant throughout the approach in a noise-free

situation and for ‘‘sufficiently small’’ angular sizes. As a

consequence of having noise, however, the ttc estimation

fluctuates. We therefore computed an average estimation with

equation (14), by taking the mean value across a time interval (the

interval contained the last 5 estimates). The average ttc estimation

was evaluated at presentation time tpres, and compared with the

reference tref . With a total number N of such trials, we then

counted Nlate occurrences where the average estimate occurred

after tref . The simulated proportion of later responses is then

obtained by dividing Nlate by N (equation 13).

In order to find the appropriate tcm-parameters for predicting

psychophysical performance, the error between tcm-predictions

and psychophysical data points was minimized. We refer to this

procedure as optimization. Optimization was carried out sepa-

rately for object diameters big and small. The first step of the

optimization procedure consisted in parsing the parameter space,

and recording the error associated with each set of tcm-

parameters. The error was determined with two measures (‘‘score

measures’’): The root mean square error (Erms), and an outlier-

insensitive robust error (Erob). In the second step, the parameter

sets were sorted in ascending order with respect to their associated

score measure. Sorting took place separately for Erms and Erob,

leading to corresponding tables where the best set of parameters

was assigned rank one (1st table row), the second best rank two

(2nd table row), and so on (Tables S1 & S2 in Text S5).

A third table of tcm-parameters was then computed which was

optimal for both object diameters simultaneously (combined; Table

S3 in Text S5). This could be done in a straightforward way, simply

by averaging the score measures of big and small of corresponding

parameter sets, and subsequently sorting the averaged errors (more

details on finding parameters are given in Text S5).

For the computation of Erms and Erob, all psychophysical data

points that represent the proportion of later responses entered

equivalently, in the sense that no weighting coefficients were used

to bias the optimization process toward longer presentation times

(as GCDF-fits at longer presentation times have a smaller

variance, see Figure 7b). Notice that parameter optimization for

the combined diameter naturally implicates a trade off – the errors

with respect to big and small will be bigger compared to individual

parameter optimization.

Figure 8 shows that the corrected m-Tau -model adjusts fairly well

to the psychophysical data of both object diameters. Nevertheless,

the tcm-predictions for tpres~0:9s are somewhat worse with the

combined parameter optimization (Figure 8e) when compared to a

separate optimization for big and small (corresponding figures in

Text S7). The most likely explanation for this discrepancy

(individual versus combined parametrizations) is that each object

size is associated with a different noise level (noise levels are

represented by the tcm-parameters pi with i~1,2; see equation 9).

We investigated this hypothesis by comparing the corresponding

values of pi for big and small, as a function of their rank. Figure 9

shows that the pi for small are consistently higher than for big.

Therefore, the corrected m-Tau -model generally supports the notion

that smaller object diameters imply higher noise levels in angular

size and angular velocity, respectively.

We also studied two models with less degrees of freedom than

corrected m-Tau : The first was tlp:q= _qq, and the second was tcm

with bi:b for i~1,2,3 (b4~0). The best (i.e. smallest) score

measures achieved with these reduced models were consistently

higher than the best values achieved by the corrected m-Tau -model

(Text S5), and their best-ranked parameter sets resulted in

psychometric curve predictions that were also inferior by visual

inspection (not shown).

Discussion

With the corrected m-Tau -model equation (5), we proposed a

general framework that comprises the t-function and several

properties of the g-function. By means of adjusting only a single

parameter (b2), the corrected m-Tau -model can approximate t and

g, respectively. Moreover, the t-approximation is less sensitive to

noise than the original t-function, and accounts well for the

performance of the psychophysical experiment that we carried out.

Figure 7. Psychometric functions. (a) Psychophysical data points %̂%~%̂%(tpres,̂ttc) for ‘‘proportion of later responses’’ are shown for the presentation
time tpres~0:9s and object diameters big (triangle symbols) and small (circle symbols), respectively. Each sigmoid curve represents a fit of a Gaussian
cumulative density function (‘‘GCDF’’ with mean m and standard deviation s) to the data points of the respective object diameter. The GCDF-fits
approximate the underlying psychometric functions, with the mean m indicating the time point of subjective simultaneity. (b) The curves show how m
and s depend on presentation time and object diameter. Each point represents the result of a GCDF-fit to the psychophysical data. If subjects
responded correctly, the point of subjective simultaneity would coincide with tref~1:2s (tref is indicated by the dashed horizontal line).
doi:10.1371/journal.pcbi.1002625.g007
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Figure 8. Corrected m-Tau predictions (Erms score; combined diameter). The proportion of later responses (i.e. subjects perceived ttc after
tref~1:2s) are shown as a function of ttc for different presentation times tpres: (a) tpres~0:1s, (b) tpres~0:3s, (c) tpres~0:5s, (d) tpres~0:7s, and (e)
tpres~0:9s. Psychophysical results %̂% were pooled across subjects and are denoted by circles (small object diameter 0:05m) and triangles (big object
diameter 0:10m), respectively. Predictions % of the corrected m-Tau -model ‘‘tcm ’’ are represented by curves. In this figure, the prediction performance
of tcm was measured according to the root mean square error (‘‘Erms-score’’). Corrected m-Tau -predictions with the three best performing parameter
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In the experiment, subjects had to decide whether a (displayed)

ball reached them before or after a reference signal at time tref .

However, balls were only presented until tpres, and disappeared

afterwards. In other words, subjects had to estimate tc (tc could

occur before or after tref ). With respect to our experiment, the

corrected m-Tau -model suggests the following conclusions:

(i) Subjects relied on a t-based mechanism for judging ttc

(~tc). We use the term ‘‘t-based’’ as a synonym for any

timing-based mechanism. The full corrected m-Tau -model

better predicted our psychophysical results than any of the

two alternative models that we considered (t and tlp).

(ii) The decision about whether perceived tc occurs before or

after tref is based on information at (or immediately

around) tpres, as the only information used was from

tref{Dt until tref for predicting ttc (see equation 14).

(iii) Subjects’ performance improves with increasing tpres,

indicating that the signal-to-noise ratio (SNR) that is

associated with the computation of (perceived) tc improves

during an object approach. Such an improvement can be

brought about by two mechanisms. First, the noise level is

signal-independent and thus stays the same during an

object approach. As angular size H and angular velocity _HH
increase monotonically with time, the SNR would improve

accordingly. Second, noise may increase with the signal [37],

but is concurrently suppressed by low-pass filtering. Low-

pass filtering may be adaptive, such that it adjusts to signal

variability in each moment. We are not aware of any such

signal-dependent noise suppression, and we therefore deem

the first mechanism to be the more likely. Accordingly, we

propose that approaching objects with smaller size lead to

decreased SNRs in the signals that represent H and _HH,

respectively.

(iv) The perception of ttc in humans reveals a certain

dependence on object size [22]. Thus, one might argue

that t-based mechanisms are not an adequate model for ttc

perception, because they are largely object-size-indepen-

dent in the early phase of an object approach when H is

still ‘‘sufficiently small’’. However, this argument ignores

noise. As long as the noise-induced fluctuations in H and _HH
do not cancel (‘‘correlated noise’’), the SNR of t will

depend on object size (Figure 6). Therefore, any decision

based on computing tc(t) with a t-based mechanisms will

be limited by the SNR at time t (ttc can be computed by

adding t to t(t), because in the early phase of an approach

t(t) decreases linearly with time for v~const:, see equation

12). The SNR improves with increasing object size and

with decreasing (initial) distance between object and

observer. Thus, bigger objects will imply better accuracy

in estimating tc. Similarly, smaller distances will imply

better estimation accuracy. Both effects are observed in our

psychophysical experiment, where a better ‘‘estimation

accuracy’’ translates into psychometric curves that adjust

better to a step-wise increase from zero to one at tc~1:2s

sets are juxtaposed (i.e. first three rows in Table S3 in Text S5 with smallest Erms-score). Thinner and darker lines represent a better prediction
performance. Furthermore, continuous curves are the tcm-predictions for small (thus should match the circles), while dashed curves correspond to big
(should match the triangles). Here, the same set of tcm-parameters was used for both object diameters (‘‘combined diameter’’). The light-shaded areas
correspond to the variability of simulated responses (+1 SD, see Methods Section): Yellowish shading for small, and bluish shading for big.
doi:10.1371/journal.pcbi.1002625.g008

Figure 9. Median value of noise probabilities as a function of Erms-rank. In order to predict psychophysical performance with the corrected
m-Tau -model, its parameters were optimized. Prediction performance was measured with a score measure, either the root mean square error (Erms ,
shown here), or an outlier-insensitive robust error (Erob; shown in Text S5). The tcm-parameter set with which the best prediction was achieved was
assigned rank one, the second best rank two, and so on. Thus, rank one corresponds to the parameter set with the smallest score measure. The figure
shows the median value of the noise probability equation (9) of: (a) angular size p1 , and (b) angular velocity p2 , as a function of rank. Abscissa values
of 10, 50, etc. signify that the median value across the first 10, first 50, etc. values of p1 and p2 , respectively, was computed, according to ‘‘Erms-
ranking’’. Shaded areas indicate +1 of the corresponding robust estimation of standard deviation srob. The continuous curves were computed with
the pi-values optimized for the small object diameter (listed in Table S1 in Text S5), and broken curves denote corresponding values for the big
diameter (Table S2 in Text S5). The curves shown here suggest that the small object diameter is associated with a higher noise level. This conclusion is
valid for p1 until rank &50 (curves become indistinguishable beyond that value), and for p2 until rank ten: For ranks bigger than ten, p2 reveals a
certain dependence on the score measure and the averaging procedure (not visible in this plot, but see corresponding figures in Text S5).
doi:10.1371/journal.pcbi.1002625.g009
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(because of tref~1:2s; Figure 7a). Without noise, however,

t-based mechanisms cannot predict such dependence on

object size for small angular sizes.

The modified t-model (‘‘tmod’’) constitutes a special case of tcm.

It is obtained from equation (5) for b2~0 (b4~0 by default). Its

distinguishing feature is a maximum before tc, which can be

shifted via b1 (equation 2). The tmod-maximum decreases as it is

positioned closer to tc, because this implies bigger values of b2.

The time tmax of the tmod-maximum depends furthermore on size

and velocity (Figure 1). The curve shape of tmod is reminiscent of

the g-function, since both functions have a maximum. We thus

decided to fit previously published response curves from collision

sensitive neurons to both functions, and observed that both

functions fit the neural curves well in terms of goodness-of-fit

criteria (Text S4). We must not forget, however, two important

differences between g and tcm.

First, since t reveals a minimum shortly before tc (Text S6) and

tmod derives from t, the tmod-response is more precisely biphasic.

The biphasic structure gets pronounced in some of the curve fits,

especially when tmax is close to tc (see corresponding figures in Text

S4). Then, the amplitude of the tmod-maximum is small, and

consequently the fitting algorithm has to scale it to the maximum

of the neuronal recording data. In this way, the minimum is also

scaled.

Second, tmax depends in a nonlinear way on the size-to-velocity

ratio k:l=v (see Figure 4 for an illustration). This is contradictory

to several studies that found a linear dependence. A linear

dependence is also predicted by the g-function (equation S5 in Text

S2). The contradiction can be alleviated by adding noise to relative

time of the tmod-maximum (tpeak:tc{tmax; equation S10 in Text

S2), with noise amplitudes as reported in [26]. As a consequence of

noise, the nonlinear relationship can be literally hidden (Figure 3),

such that statistical tests would affirm an underlying linear process

(Text S2). Masking by noise is more effective for bigger values of k,

because the noise level is proportional to k.

The tmod-function in its original form cannot explain the

neuronal response curves for an approach with _HH~const: (‘‘linear

approach’’) [25]: Rather than predicting a decreasing response

with time, the tmod-function would linearly increase. In contrast,

the g-function makes correct predictions. Correct predictions with

tmod can nevertheless be made by including an additional

inhibitory process in the firing rate equation of tmod (equation

S3 in Text S1, where a full proof of concept is described).

Important, this extension of tmod (i) is based on a power function

with an exponent between 2 and 5, but not on an exponential

function as with g, and in this regard it may hence be considered

as being biophysically more plausible than g (see also reference

[36]); (ii) does not interfere with the ‘‘normal’’ tmod behavior (i.e.

normal object approaches are not affected); and (iii) tolerates high

noise levels (i.e., the mechanism is robust).

What about alternative models which also have a response

peak? In Text S6 we studied two such functions, namely ‘‘inverse t’’

(1=t), and angular acceleration ( €HH). Both of them reveal a linear

dependence of tmax on k (equations S24 & S26, respectively, in

Text S6). The maximum of €HH always precedes that of 1=t.

However, €HH does not make correct predictions for the ‘‘linear

approach’’, as we would obtain €HH:0 ab initio for _HH~const:
(although a dynamical version may predict the decreasing LGMD-

activity on the basis of temporal filtering effects).

In contrast, 1=t would make consistent predictions in that case.

Without further modifications, though, neither €HH nor 1=t seems to

be adequate for fitting the response curves of collision sensitive

neurons, because there is no free model parameter to shift their

respective maximum. Although the occurrence of their maxima

could principally be controlled by a global shift of the time scale d,

the corresponding values (obtained by fitting the neuronal

response curves) would overestimate experimental values (Text

S6). Similarly, when ‘‘fitting’’ the g-function to €HH and 1=t the so

obtained values of a would underestimate experimental values:

The g-maximum would coincide with the maximum of 1=t for

a&0:86, and with the maximum of €HH for a&1:15.

In conclusion, tmod is no replacement for the g-function, at least

for describing neuronal responses of collision sensitive neurons in

insects. However, in the nucleus rotundus of pigeons three classes of

neurons were reported [1,38]. They conform to g-like, _HH-like, and

t-like responses. The fact that tmod is just a special case of tcm

could possibly explain why neurons with g-like and t-like

properties can be found in a single brain. Within the tcm-

framework, the tmod function corresponds to b2~0, and tcm is

obtained for choosing b2w0. Thus, the adjustment of only a single

weight (b2) is necessary to go from one function to the other. The

corrected m-Tau -framework could thus offer a parsimonious yet full-

fledged explanation of the implementation of g-like and t-like

neurons at the circuit level.

Methods

Psychophysical experiment
Subjects. Four subjects that were members of the Basic

Psychology Department of the University of Barcelona participat-

ed in the experiment. All had normal or corrected-to-normal

vision and were naive with respect to the aims of the experiment.

Two of the subjects were well-trained psychophysical subjects in

similar tasks. None of the subjects was stereo blind (StereoFly test,

Stereo Optical Co.). They all signed an informed consent. The

psychophysical experiment was approved by the Ethics Commit-

tee of the Faculty for Psychology of the University of Barcelona, in

agreement with the ethical guidelines of the Declaration of

Helsinki in 1954.

Stimuli and apparatus. Stimuli were displayed on a Phillips

22 inch monitor (Brilliance 202P4) at a refresh rate of 118 Hz and

a screen resolution of 1,154|864 pixels. A 3Dlabs VP870 video

card controlled the stereo shutter spectacles (CristalEyes). Simu-

lated targets were uniform disks that moved on a collision

trajectory along a line that passed the midpoint between the

subjects’ eyes. The screen was at one meter distance from subjects’

eyes.

Seven time-to-contact values (experimentally fixed values

t̂tc[f1:015,1:07,1:135,1:2,1:27,1:34,1:419gs) were combined with

two different object sizes (diameter 2l~0:05m and 2l~0:10m),

and five presentation times (tpres[f0:1,0:3,0:5,0:7,0:9gs), totaling

70 different combinations. In order to ensure that the subjects used

the judged time to contact rather than some other correlated

measure, we varied the initial simulated starting distances (from

x0~1:2m to x0~1:6m), and set velocities v to x0=̂ttc.

Procedure. Each simulated object appeared at its initial

distance x0 on the monitor. After one second, the object started

approaching the observer at the designated constant velocity v,

and was visible until tpres (presentation time). The reference time

tref~1:2s was indicated to subjects with an acoustic signal (beep)

[16]. The reference time remained unchanged throughout the

experiment. Subjects were instructed to press one of two buttons to

indicate whether they thought being hit by the object before or

after tref . In each session, the complete set of 350 stimuli was

shown to subjects in random order (five repetitions times the 70
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combinations). Each subject took part in five sessions. Feedback on

incorrect responses was provided after each trial.

Simulation of our psychophysical experiment
We simulated our psychophysical experiment with the corrected

m-Tau -model (equation 3), where we plugged in noisified versions

of the optical variables (i.e. tcm~tcm½ ~HH,
_~HH~HH�),

~HH(t):(1{p1):H(t)zp1j1(t)

_~HH~HH(t):(1{p2): _HH(t)zp2j2(t)
ð9Þ

with noise probabilities pi (i~1,2), and with the dot denoting the

time derivative. The ji(t) are random variables, which at each

instant t return a value that is drawn from a centered normal

distribution. In the last equations, we used the explicit expression

for angular size,

H(t)~2 arctan
l

x(t)
ð10Þ

and angular velocity (~rate of expansion)

_HH(t)~
2lv

x2(t)zl2
ð11Þ

with x(t):v:(̂ttc{t) and v§0. The values of l,v,̂ttc and x0 are the

psychophysical stimulus parameters. Simulations were carried out

with a temporal resolution of 1ms.

The corrected m-Tau -model is constrained by two limit functions:

Ordinary t on the one hand (equation 6), and tlp on the other

(equation 8). Both limit functions decrease approximately as t̂tc{t
(illustration: Figure 6). Thus, a ttc estimation at time t can be

computed as

tc(t)&tcm(t)zt ð12Þ

(Nomenclature: tc(t) is the model prediction for ttc at time t, and t̂tc

is the experimentally set parameter). In the psychophysical study,
subjects were asked to estimate whether they were hit by the
approaching object before or after tref . We accordingly define

their proportion of later responses %̂%~%̂%(tpres,̂ttc) as the number of trials

Nlate (where subjects responded with being struck after tref ) divided

by the total number of trials N :

%̂%~
Nlate

N
ð13Þ

%̂% is represented by circle and triangle symbols in Figure 7 and 8.
The corresponding predictions from the model are denoted by %.
Specifically, %ij:%(tpres½i�,̂ttc½j�) with i~1,2,:::5 and j~1,2,:::,7,
and analogous for %̂%ij . Computation of Nlate is required for %ij ,

which we did with equation (12) as per

Nlate~
XN

k~1

1

Dt

ðtpres

tpres{Dt

t(k)
c (t’)dt’

 !
wtref

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1 if true, else 0

ð14Þ

Notice that, due to noise (equation 9), t(k)
c (t) will be subjected to

random jitter with each trial k. Therefore, in order to obtain a

more robust estimate of ttc , we do not use only t(k)
c (tpres): The

integral in the last equation computes – in the discrete case – the

mean value across the last nlast time steps until tpres (typically

nlast~5, what amounts to a time interval for averaging of

Dt~5ms, cf. first figure in Text S7). In order to illustrate the noise

level at each tpres, we also computed the standard deviation s of

the N|nlast last values of t(k)
c . The shaded areas in the figures

which visualize % & %̂% correspond to +1s. Predictions of the

corrected m-Tau -model are shown as curves in Figure 8, as well as in

Text S7.

Parameters of the corrected m-Tau model
The corrected m-Tau -model has eight free parameters: P~fp1,

p2, f1, f2, b1, b2, b3, b4g. The parameter space was parsed with

constant step widths. For each set of parameter values P, tcm-

predictions for the proportion-of-later-response curves were

computed according to the procedure described in the previous

section. The corresponding ‘‘goodness of prediction’’ (or ‘‘predic-

tion performance’’) was evaluated with the root mean square error

(rmse, Erms), and the outlier insensitive, robust error (robe, Erob), see

equation S18 in Text S5. The ‘‘goodness of prediction’’ measures

are referred to as score-measures (rmse-scores & robe-scores,

respectively). Parameter values were sorted according to their

scores. In this way we ended up with several score tables, which list

the best set of parameters, according to object size: Table S1 in

Text S5 for small object diameter (2l~0:05m), Table S2 in Text S5

for big object diameter (2l~0:10m), & Table S3 in Text S5 for

combined object diameter. The scores for the combined size were

computed by averaging the scores of big & small for corresponding

parameter values, and then sorting the averaged scores in

ascending order. More details on parameter finding and analysis

are given in Text S5.

Derivation of Equation 2
Consider a rigid sphere (object radius or half-size l) that

approaches an observer on a direct collision course. If the

approach proceeds at a constant velocity v§0, the object-observer

distance at time t is x(t):v:(tc{t). Thus, the initial distance is

x0:v tc.

Now, consider the gain control factor c(t) from equation (1)

c:
_HH

_HHzb1

ð15Þ

where we plug in the explicit expression for angular velocity

equation (11) and obtain

c(t)~
2lv

2lvzb1(x2zl2)
ð16Þ

Especially in the initial phase of the approach, when visual angle

and angular velocity are sufficiently small, t decreases approxi-

mately linearly with time (cf. Text S6),

t(t):
H

_HH
&tc{t ð17Þ

Because of tmod~c:t, the m-Tau function becomes approximately

tmod(t)&
2lx

2lvzb1(x2zl2)
ð18Þ

A maximum of the m-Tau function implies that its first time
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derivative is zero. We define V:2lvzb1(x2zl2). The first time

derivative of the (approximate) m-Tau function

d

dt
tmod(t)~2lv:V{1(2x2b1

:V{1{1) ð19Þ

disappears if V~2b1x2, or

xmax:+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lv

b1

zl2

s
ð20Þ

The last equation is the distance xmax (positive sign) where the

approximated m-Tau function attains its maximum during an

object approach. Thus, the time tmax when the tmod-maximum

occurs is

tmax&
1

v
(x0{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lv

b1

zl2

s
) ð21Þ

Supporting Information

Text S1 Properties and extension of modified Tau. Text

S1 presents additional mathematical details of the tmod-function.

Specifically, it is shown how the tmod-function could be extended

to a model which predicts the so-called ‘‘linear approach’’ data.

Corresponding simulation results from this model are also shown.

(PDF)

Text S2 Nonlinearity of the m-Tau function. Text S2 is

dedicated to the nonlinear character of tmod and how it could be

successfully hidden behind noise. The section presents additional

figures with random trials (analogous to Figure 3b), and

corresponding scatter plots with goodness-of-fit measures as a

function of b1.

(PDF)

Text S3 Noise suppression. Text S3 considers the numerical

robustness of t, tmod, tcm and g, by adding correlated and

uncorrelated noise to the angular variables. Similar to Figure 6, it

is shown how noise affects these functions (e.g. bigger object

diameters are associated with correspondingly less fluctuations),

and thus the results presented in this section help to understand

the simulation and the interpretation of our psychophysical

experiment.

(PDF)

Text S4 Fitting m-Tau and g-function to neuronal
recordings. Text S4 juxtaposes the individual fitting results of g
and tmod to a variety of previously published neural recording

data, which served to compile Figure 2. Further summary results

are presented along with fitting results of individual recording

traces.

(PDF)

Text S5 Finding parameter values for corrected m-Tau.
Text S5 describes the optimization procedure for the corrected m-Tau

-model ‘‘tcm’’, with which we obtained the parameter values for

the simulation of our psychophysical experiment (e.g. Figure 8).

The tcm-parameters were optimized in three different ways: For

achieving a good prediction performance of the psychophysical

data corresponding to (i) the small object diameter (Table S1 in

Text S5), (ii) the big object diameter (Table S2 in Text S5), and (iii)

both diameters at the same time (combined; Table S3 in Text S5).

The best ten values are listed in their respective tables according to

their psychophysical prediction performance (as quantified by

score measures Erms and Erob, respectively): The best parameter

set (smallest score measure) was assigned rank one, the second best

rank two, etc. Several figures were compiled that show an

additional analysis of the parameter ranking.

(PDF)

Text S6 Time to contact approximation of ‘‘Tau’’ and
€HH. Text S6 presents a comprehensive analysis of two alternative

functions which have a maximum before ttc, namely ‘‘inverse t’’

(~t{1) and ‘‘angular acceleration’’ (~ €HH). The two functions were

also fitted to the neuronal recording data (they turn out to be

inadequate), and compared to the maximum of the g-function.

This section also provides insights into the biphasic nature of tmod,

because as tmod approaches ttc, it gets more similar to t, and thus

reveals a minimum.

(PDF)

Text S7 Predictions of corrected m-Tau for the psycho-
physical experiment. Text S7 shows the full set of figures with

simulation results of our psychophysical experiment. Whereas

Figure 8 shows tcm-predictions that were obtained with the

parameter set optimized for the ‘‘combined’’ object diameter

according to Erms-score, Text S7 shows analogous figures for the

remaining parameter optimizations (big and small object diameter,

and Erms and Erob-scores, respectively).

(PDF)

Text S8 First order temporal low-pass filter (Equation
4). Text S8 gives a short introduction to the temporal low-pass

filter that forms a part of the tcm-model (equation 4), and is also

used for the extension of the tmod-model described in Text S1).

(PDF)
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