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Abstract: Corilagin (CLG), a major component of several medicinal plants, can exhibit diverse
pharmacological properties including those of anti-cancer, anti-inflammatory, and hepatoprotective
qualities. However, there are no prior studies on its potential impact on the epithelial-to-mesenchymal
transition (EMT) process. EMT can lead to dissemination of tumor cells into other organs and promote
cancer progression. Hence, we aimed to investigate the effect of CLG on EMT and its mechanism(s)
of action in tumor cells. We noted that CLG reduced the expression of various epithelial markers and
up-regulated the expression of Occludin and E-cadherin in both basal and TGFβ-stimulated tumor
cells. CLG treatment also abrogated cellular invasion and migration in colon and prostate carcinoma
cells. In addition, CLG effectively attenuated the Wnt/β-catenin signaling cascade in TGFβ-stimulated
cells. Overall, our study suggests that CLG may function as and effective modulator of EMT and
metastasis in neoplastic cells.
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1. Introduction

Metastasis remains a vital hallmark by which cells originate and spread to distant institutions [1,2].
When cancer occurs, mutated cells undergo rapid proliferation in tissues of origin and then break
through the basement membranes to migrate to other organs and can re-localize as a secondary
metastatic cancer [3–5]. It is estimated that around 90% of the cancer cells in cancer patients are caused
by metastasis [6,7]. These findings highlight the urgent requirement to further understand mechanisms
regulating metastasis and to develop pharmacological strategies to target this process.

The epithelial-to-mesenchymal transition (EMT) can facilitate conversion of epithelial cells into
mesenchymal cells and promote metastasis [8–11]. During the EMT process, the cancer cells generally
have reduced the levels of epithelial markers, and display an augmentation in the levels of mesenchymal
markers [12,13]. The EMT process can be triggered by various stimuli, including transforming
growth factor-β (TGFβ), epidermal growth factor (EGF), and diverse signaling pathways such as
wingless secreted glycoprotein (Wnt)/β-catenin, and have been implicated in cancer regulation [14,15].
Activation of the TGFβ signaling pathway is of major importance for the initiation of EMT [15,16].
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TGFβ-stimulated cells can exhibit spindle-like morphology leading to a decrease of cellular polarity.
In addition, the activation of TGFβpathway can often lead to tumor progression and drug resistance [17].

A number of agents derived from Mother Nature have been reported to be efficacious against
tumor growth and progression [18–22]. Corilagin (CLG) is one such unique component of the
tannin family [23], which can be found in a wide range of medical plants such as Longan,
Lumnitzera racemose, Terminalia catappa L, and Phyllanthus species [24–26]. CLG has been reported to
possess many pharmacological and biological properties including anti-inflammatory, hepatoprotective,
anti-microbial, antihypertensive, antidiabetic, and anti-tumor activities [27–34]. Recently, the anti-tumor
effect of CLG has been focus of great interest in cancer biology [35–37]. It was found to attenuate
cell proliferation by promoting reactive oxygen species (ROS)-dependent apoptosis and autophagy
in breast and gastric cancer cells [38,39]. Jia et al. reported that CLG inhibited cell growth through
TGFβ/Akt/ERK/Smad signaling pathways in ovarian cancer [36]. In addition, CLG could cause
apoptosis via both the mitochondrial apoptotic pathway and death receptor pathway in hepatocellular
carcinoma cells [40]. However, the actions of CLG on the regulation of EMT have not been deciphered
previously, and this aspect has been studied in this report.

2. Material and Methods

2.1. Reagents

Corilagin (CLG) was procured from Sigma-Aldrich (St. Louis, MO). 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) and bovine serum albumin (BSA) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Alexa Fluor® 488 donkey anti-mouse IgG (H+L) antibody
and Fluor® 594 donkey anti-rabbit IgG (H+L) antibody was obtained from Life Technologies
(Grand Island, NY, USA). Anti-MnSOD(sc-137254), anti-Fibronectin(sc-6952), anti-Vimentin(sc-6260),
anti-E-cadherin(sc-8426), anti-N-cadherin(sc-271386), anti-Occludin(sc-5562), anti-Twist(sc-15393),
anti-MMP-2(sc-53630), anti-MMP-9(sc-393859), anti-Wnt3a(sc-136163), anti-FZD-1(sc-398082), and
anti-β-actin(sc-47778) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Anti-Snail(3879S), anti-Axin-1 anti-Azin-1(3323S), anti-β-catenin(9562S), anti-p-GSK3β(9322S),
and anti-GSK3β(9315S) antibodies were obtained from Cell Signaling Technology (Beverly, MA, USA).

2.2. Cell Lines and Culture Conditions

Human colon carcinoma SNU-C2A cells, human prostate carcinoma DU145 cells, human breast
carcinoma MCF-7 cells, human normal prostate RWPE-1 cells, and human normal breast MCF-10A cells
were obtained from American Type Culture Collection (Manassas, VA, USA). These cells were cultured
in RPMI 1640 medium containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin.
Human normal colon CCD-18Co cells were obtained from Korean Cell Line Bank (Seoul, Korea) and
cells were cultured in DMEM high glucose medium containing 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin.

2.3. MTT Assay

The viability of SNU-C2A and DU145 cells was measured using an MTT assay to detect
NADH-dehydrogenase activity as elaborated before [41].

2.4. Western Blot Analysis

The cells were treated with CLG and TGFβ for the indicated concentrations and time points and
western blotting was done as reported earlier [42]



Biomolecules 2020, 10, 1406 3 of 12

2.5. Immunocytochemistry

SNU-C2A and DU145 cells were treated with CLG and TGFβ for indicated concentrations and
time points. The cells were fixed with 4% paraformaldehyde at room temperature for 20 min and
immunocytochemistry was done as described previously [43].

2.6. Real-Time Cell Proliferation Analysis

To measure cell growth, proliferation assay was performed by xCELLigence Real-Time Cell
Analyzer (RTCA) DP instrument (Roche Diagnostics GmbH, Germany) as elaborated previously [44].

2.7. Boyden Chamber Assay

Invasion capacity of SNU-C2A and DU145 cells was determined using a 48-well micro chemotaxis
Boyden chamber (Nuero Probe, Cabin John, MD, USA) as described before [45].

2.8. Wound Healing Assay

To measure cell migration, wound healing assay was performed. Monolayer of SNU-C2A, DU145,
and PC-3 cells were scratched and treated with CLG as per the protocol described earlier [46].

2.9. Cell Transfection with β-Catenin siRNA

SNU-C2A and DU145 cells were transfected with β-catenin siRNA or scrambled siRNA using
iN-fectTM in vitro Transfection Reagent (iNtRON Biotechnology, Seongnam, KOREA) for 24 h,
and thereafter, western blot analysis was carried out.

2.10. Statistical Analysis

The results were expressed as means± SD, and an analysis of variance (ANOVA) with Bonferroni’s
test was used for the statistical analysis.

3. Results

3.1. CLG Modulated the Expression of EMT Markers in Tumor Cells

The structure of CLG has been depicted in Figure 1A. The cytotoxic action of CLG in SNU-C2A,
CCD-18Co, DU145, RWPE-1, MCF-7, and MCF-10A cells was first determined. Interestingly, CLG did
not exhibit any marked effect on cell viability in human colon, prostate, breast carcinoma, and normal
epithelial cells. The results demonstrated that the cytotoxicity of CLG was less than 10% at 20 µM
concentration (Figure 1B). Hence, in vitro experiments were carried out below the 20 µM dose. We also
determined whether CLG can modulate the levels of EMT markers. Interestingly, the levels of
MnSOD, Fibronectin, Vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail was suppressed by CLG.
However, the levels of Occludin and E-cadherin were increased (Figure 1C–F). Immunohistochemical
analysis as shown in Figure 1G,H, also revealed that the expression of MnSOD and Snail was
down-regulated, whereas expression of Occludin was increased in SNU-C2A and DU145 cells.

3.2. CLG Effectively Attenuated Cellular Invasion and Migration

Invasive activity of SNU-C2A and DU145 cells was investigated by Boyden chamber assay.
As shown in Figure 2A,C, CLG was observed to attenuate invasion of cells.
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Figure 1. Corilagin (CLG) inhibits epithelial-mesenchymal transition (EMT) in SNU-C2A and DU145 
cells. (A) The structure of corilagin (CLG). (B) Cell viability was measured by MTT assay with CLG 
(0, 5, 10, 20, 30, 50 M) for 24 h. Data represent means ± SD. *p <0.05 vs cancer cells, **p <0.01 vs 
cancer cells, ***p <0.001 vs cancer cells. (C–F) SNU-C2A and DU145 cells were exposed to CLG for 
24 h. Whole cell lysate were extracted levels of various proteins was evaluated by Western blot 
analysis. (G) and (H) Expression of MnSOD, Snail, and Occludin was measured by 
immunocytochemistry in SNU-C2A and DU145 cells. 

Figure 1. Corilagin (CLG) inhibits epithelial-mesenchymal transition (EMT) in SNU-C2A and DU145
cells. (A) The structure of corilagin (CLG). (B) Cell viability was measured by MTT assay with CLG
(0, 5, 10, 20, 30, 50 µM) for 24 h. Data represent means ± SD. *p < 0.05 vs cancer cells, **p < 0.01 vs
cancer cells, ***p < 0.001 vs cancer cells. (C–F) SNU-C2A and DU145 cells were exposed to CLG for 24
h. Whole cell lysate were extracted levels of various proteins was evaluated by Western blot analysis.
(G) and (H) Expression of MnSOD, Snail, and Occludin was measured by immunocytochemistry in
SNU-C2A and DU145 cells.
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Figure 2. CLG suppressed invasion as well as migration. SNU-C2A and DU145 cells were exposed to 
CLG (20 M) for 24 h. (A and C) Invasive activity was measured by Boyden chamber assay in SNU-
C2A and DU45 cells. Data represent means ± SD. *** p < 0.001. (B and D) The cells were scratched 
and wound healing assay for evaluate cell migration. Data represent means ± SD. ***p <0.001. (E–H) 
SNU-C2A and DU145 cells were treated with TGFβ (10 ng/mL), CLG (20 M), or a combination for 24 
h. Whole cell lysates were extracted and expression of EMT-related proteins was analyzed by western 
blotting. The results shown are representative of the three independent experiments. 

In addition, migration was examined by wound healing assay. The results showed that CLG 
significantly reduced migratory ability in the treated cells (Figure 2B and D). 

Figure 2. CLG suppressed invasion as well as migration. SNU-C2A and DU145 cells were exposed to
CLG (20 µM) for 24 h. (A and C) Invasive activity was measured by Boyden chamber assay in SNU-C2A
and DU45 cells. Data represent means ± SD. ***p < 0.001. (B and D) The cells were scratched and wound
healing assay for evaluate cell migration. Data represent means ± SD. ***p < 0.001. (E–H) SNU-C2A
and DU145 cells were treated with TGFβ (10 ng/mL), CLG (20 µM), or a combination for 24 h. Whole
cell lysates were extracted and expression of EMT-related proteins was analyzed by western blotting.
The results shown are representative of the three independent experiments.

In addition, migration was examined by wound healing assay. The results showed that CLG
significantly reduced migratory ability in the treated cells (Figure 2B,D).
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3.3. CLG Abrogated TGFβ-Induced EMT Cascade

Next, we determined whether CLG can also modulate TGFβ-driven EMT in SNU-C2A and
DU145 cells. Western blotting data revealed that exposure to TGFβ up-regulated levels of various
proteins regulating EMT and invasion processes. Interestingly, CLG treatment reversed TGFβ-induced
up-regulation of these oncogenic proteins (Figure 2E,G). Moreover, TGFβ down-regulated occludin
and E-cadherin expression and CLG treatment could reverse these changes effectively (Figure 2F,H).
In addition, immunocytochemistry data showed that, CLZ suppressed TGFβ-induced MnSOD and
Snail levels, whereas it enhanced occludin levels (Figure 3A,B).
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Figure 3. CLG reduced TGFβ-induced EMT process and cell invasion. SNU-C2A and DU145 cells were
exposed to TGFβ (10 ng/mL), CLG (20 µM), or a combination for 24 h. (A and B) Expression of MnSOD
as well as occludin was observed in green, and Snail was observed in red by immunocytochemistry.
(C and D) Invasion assay with Boyden chamber was performed. Data represent means± SD. ###p < 0.001
vs. non-treated (NT) cells and ***p < 0.001 vs TGFβ-treated cells.
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3.4. CLG Suppressed TGFβ-Induced Metastatic Effects

It was also noted that CLG suppressed TGFβ-induced cellular invasion in SNU-CA and DU145
cells (Figure 3C,D). TGFβ-treated cells displayed enhanced invasive property, whereas CLG treatment
prevented TGFβ-induced invasion. In addition, wound healing assay data revealed that TGFβ induced
migration, but CLG suppressed this activity significantly (Figure 4A,B).
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Figure 4. CLG down-regulated Wnt/β-catenin signaling cascades. SNU-C2A and DU145 cells were
exposed to TGFβ (10 ng/mL), CLG (20 µM), or a combination for 24 h. (A and B) Cell migration was
determined by wound healing assay. Data represent means ± SD. #p < 0.05 vs non-treated (NT) cells,
*p < 0.05 vs TGFβ treated cells, and **p < 0.01 vs TGFβ treated cells. (C and D) Western blotting for
Wnt/β-catenin signaling cascades such as β-catenin, Wnt3a, FZD-1, Axin-1, p-GSK-3β, and GSK-3β.
β-actin was used as a loading control. The results shown are representative of the three independent
experiments. (E) SNU-C2A and DU145 cells were transfected with β-catenin siRNA or scrambled
siRNA (100 nM) for 24 h. After that, cells were treated with CLG for 24 h and Western blotting for
various antibodies was done.
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3.5. CLG Down-Regulated TGFβ-Induced Activation of Wnt/β-Catenin Pathway

We investigated whether CLG could affect the Wnt/β-catenin signaling pathway in SNU-C2A and
DU145 cells. As shown in Figure 4C,D, CLG substantially suppressed TGF β-induced the levels of
β-catenin, Wnt3a, FZD-1, Axin-1, and GSK-3β activation. We also performed a β-catenin knockdown
study to confirm the relationship between CLG-induced modulation of Wnt/β-catenin pathway and
EMT proteins. As shown in Figure 4E, β-catenin, Fibronectin, and Vimentin expression was suppressed
in β-catenin siRNA transfected cells. However, the expression of these proteins was not altered
substantially in the cells transfected with scrambled siRNA, thus indicating that β-catenin may act as a
potential molecular target primarily affected by CLG.

4. Discussions

Corilagin (CLG) can be isolated from wide range of medical plants [23,24] and can display
many biological activities including those of anti-inflammatory, hepatoprotective, anti-microbial,
antihypertensive, antidiabetic, and anti-tumor [27–34], but its impact on EMT has not been well
characterized yet. We report here for the first time that CLG reduced levels of different mesenchymal
markers and enhanced that of epithelial markers (occludin and E-cadherin) in both SNU-C2A and
DU145 cells. In addition, we found that CLG abrogated TGFβ-induced expression of various proteins
regulating EMT, whereas it increased TGFβ-promoted reduction in occludin and N-cadherin levels.
Interestingly, CLG-induced alteration of EMT was observed to be associated with attenuation of invasion
and migration. In addition, CLG mitigated constitutive as well as TGFβ-induced Wnt/β-catenin
signaling pathway activation in tumor cells.

EMT can alter the levels of different epithelial markers and then cause transformation into
mesenchymal state via up-regulating the levels of important markers such as Fibronectin, Vimentin,
N-cadherin [47,48]. Consequently, these mesenchymal cells can exhibit enhanced motility and
have increased ability to undergo metastasis [49]. In addition, previous reports have found that
polyphenol and resveratrol can effectively suppress cell migration and invasion in human prostate
and colorectal carcinoma cells [50,51]. Moreover, resveratrol also modulated the expression of
EMT-related markers such as E-cadherin and Vimentin in DU145 and PC3 cells [50]. We observed
that CLG down-regulated MnSOD, fibronectin, Vimentin, and N-cadherin in SNU-C2A and DU145
cells. The levels of occludin and E-cadherin were also effectively up-regulated by CLG in these cells.
In addition, CLG down-regulated the levels of E-cadherin repressor proteins, Twist and Snail. Matrix
metalloproteinases (MMP) family such as MMP-9 and MMP-2 can play an important role in cancer
proliferation, invasion, and metastasis [52–54]. We observed that CLG inhibited the level of both
MMP-9 and MMP-2 proteins, thus implicating that the negative regulation of invasion and metastasis
by CLG may be mediated by down-regulation of these two proteins. Overall, alteration of diverse
mesenchymal markers and epithelial markers by CLG can abrogate EMT in tumor cell lines.

TGFβ can regulate EMT process and tumorigenesis, thus leading to enhanced motility and
invasion [55]. Previous studies have reported that mesenchymal markers were found to be substantially
overexpressed and epithelial markers were suppressed in TGFβ-stimulated cells [8,43,44]. We also
noted that CLG suppressed the levels of up-regulated EMT-associated proteins and down-regulated
E-cadherin and occludin expression in TGFβ-induced SNU-C2A and DU-145 cells. We further observed
that CLG altered the morphological transformation as well as migration and invasion induced by
TGFβ. Our findings suggest that CLG can effectively target TGFβ-induced EMT and subsequent
downstream phenotypic changes in tumor cells.

A number of cellular signaling pathways can regulate EMT, such as HGF, EGF, TGFβ, Notch,
Wnt/β-catenin, etc. [56,57]. Activation of the Wnt/β-catenin signaling cascade is common in various
malignancies including colon and prostate cancers [58–61]. The Wnt/β-catenin can act as an important
regulator of EMT in many different types of cancers [62–66]. Wnt/β-catenin signaling pathway has been
reported to cooperate with TGβ signaling in the orchestration of the EMT response [15]. Bernaudo et al.
reported that cyclin G2 potently suppressed EMT through inhibition of the Wnt/β-catenin signaling



Biomolecules 2020, 10, 1406 9 of 12

pathway by down-regulating LRP6, DVL2, and β-catenin [64]. In addition, aspirin can suppress colon
cancer migration through modulating EMT by Wnt signaling [67]. In this study, we noted that CLG
diminished TGFβ-promoted activation of Wnt/β-catenin pathway in both SNU-C2A and DU145 cells.
CLG suppressed TGFβ-induced activation of various proteins such as β-catenin, Wnt3a, FZD-1, Axin-1,
and GSK-3β substantially. We also noted that the inhibitory actions of CLG on EMT-related proteins
were predominantly mediated through Wnt/β-catenin signaling pathway based on the findings of our
siRNA experiments.

Overall, our findings suggest that the potential effects of CLG on constitutive and TGFβ-induced
EMT process through modulating Wnt/β-catenin signaling pathway. We noticed that CLG attenuated
the levels of mesenchymal markers and up-regulated that of epithelial markers. In addition, CLG inhibited
cell invasion and metastasis by causing blockage of EMT driven signals. Moreover, CLG abrogated
Wnt/β-catenin signaling cascade in TGFβ-stimulated tumor cells. However, additional experiments
are required to evaluate the anti-metastatic potential of CLG in suitable preclinical models.
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