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ABSTRACT  The Rho GTPase Cdc42 is a central regulator of cell polarity in di-
verse cell types. The activity of Cdc42 is dynamically controlled in time and 
space to enable distinct polarization events, which generally occur along a 
single axis in response to spatial cues. Our understanding of the mechanisms 
underlying Cdc42 polarization has benefited largely from studies of the bud-
ding yeast Saccharomyces cerevisiae, a genetically tractable model organism. 
In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 
phase of the cell cycle to establish a proper growth site. Here, we review find-
ings in budding yeast that reveal an intricate crosstalk among polarity pro-
teins for biphasic Cdc42 regulation. The first step of Cdc42 activation may de-
termine the axis of cell polarity, while the second step ensures robust Cdc42 
polarization for growth. Biphasic Cdc42 polarization is likely to ensure the 
proper timing of events including the assembly and recognition of spatial 
landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-
binding proteins, at the incipient bud site. Biphasic activation of GTPases has 
also been observed in mammalian cells, suggesting that biphasic activation 
could be a general mechanism for signal-responsive cell polarization. Cdc42 
activity is necessary for polarity establishment during normal cell division and 
development, but its activity has also been implicated in the promotion of 
aging. We also discuss negative polarity signaling and emerging concepts of 
Cdc42 signaling in cellular aging. 
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INTRODUCTION 
Cells within a multicellular organism or unicellular organ-
isms such as yeast and bacteria exhibit some form of polar-
ity in order to carry out specialized functions. Cell polariza-
tion involves polarized organization of cell shape or cellular 
components including organelles, proteins, or RNAs. Estab-
lishing and maintaining polarity is essential for cellular pro-
cesses including differentiation, chemotaxis, morphogene-
sis, cell movement, and cell division [1, 2]. The highly con-
served Rho GTPase Cdc42 regulates polarity development 
across the eukaryotic kingdom. Like other Rho GTPases, 
Cdc42 cycles between an active GTP-bound state and an 
inactive GDP-bound state. Guanine-nucleotide exchange 
factors (GEFs) activate Cdc42 by catalyzing the exchange of 
GDP for GTP, whereas GTPase activating proteins (GAPs) 
enhance its intrinsic GTPase activity, facilitating the con-
version of Cdc42 to its inactive form. The active Cdc42 re-

cruits and/or regulates a variety of downstream effectors 
(Figure 1; Table 1). Localized activation of Cdc42 has been 
shown to be a key event leading to cell polarization in 
yeast and mammalian cells [3, 4]. While the universal role 
of Cdc42 in establishing and maintaining tissue/cell polarity 
is critical for normal cell division and is also implicated in 
tumor suppression, Cdc42 activation has been suggested to 
contribute to tumor cell invasion and migration as well as 
cellular aging [5-7]. Thus, uncovering the molecular mech-
anisms underlying Cdc42 polarization will provide insights 
into how cell growth is regulated and how perturbation of 
Cdc42 activity may lead to disease and aging. 

Polarized growth is generally directed by intracellular 
or extracellular spatial cues such as cell-cell contacts, 
chemoattractants, and cortical landmarks. Budding yeast is 
an excellent model system to study cell polarity because it 
displays pronounced cell polarization during various phases 
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Abbreviations: 
CDK – cyclin-dependent kinase, 
CRM - cytokinesis remnants, 
DH – Dbl homology, 
GAP – GTPase activating protein, 
GDI – guanine nucleotide dissociation 
inhibitor, 
GEF – guanine-nucleotide exchange 
factor, 
GTPase – guanosine triphosphatase, 
PM – plasma membrane, 
RLS – replicative lifespan, 
WT – wild type. 
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of its life cycle, such as budding during vegetative growth 
and mating between two haploid cells of opposite mating 
types. During the mitotic cell cycle, yeast cells undergo 
oriented cell division by choosing a specific bud site de-
pending on their cell type. Haploid a and α cells bud in an 
axial pattern, in which both mother and daughter cells 
select a new bud site adjacent to their immediately preced-
ing division sites. In contrast, diploid a/α cells bud in the 
bipolar pattern, in which daughter cells predominantly bud 
at the pole distal to the division site, and mother cells can 
choose a new bud site near either pole [8-10] (Figure 2). 
These different patterns of growth require cell-type-
specific cortical cues and the Rsr1 GTPase module, com-
posed of Rsr1 (also known as Bud1), its GAP Bud2, and its 
GEF Bud5 [11-15]. Multiple genetic and physical interac-
tions suggest that the Rsr1 GTPase module guides Cdc42 
and its regulators to direct organization of the actin cyto-
skeleton and septin filaments for polarized growth to the 
selected site [11, 13, 16-21].   

Polarized growth and cytokinesis in budding yeast are 
coordinated with cell cycle progression. Yet how polarity 
establishment is temporally regulated in the G1 phase is 
still largely unknown. The cyclin-dependent kinase Cdc28 
(CDK1), complexed with a G1 cyclin, is required to promote 
bud emergence as well as other key events in the cell cycle 
(such as DNA replication and spindle pole body duplication) 
once cells pass through the irreversible commitment point 
known as ‘Start’ [22, 23], which is equivalent to ‘restriction 

point’ in mammalian cells. The Start transition corresponds 
to the time of the nuclear exit of approximately 50% of 
Whi5, a transcriptional repressor [24], which partitions the 
G1 phase into two temporal steps. The first step (T1) is crit-
ical for cell size control and depends on the upstream cy-
clin Cln3 [25]. Whi5, which is functionally analogous to 
mammalian retinoblastoma (RB), inhibits two heterodimer-
ic transcription factor complexes SBF (Swi4–Swi6) and MBF 
(Mbp1–Swi6), which dictate G1/S transcription. Phosphory-
lation of Whi5 initially by Cln3-CDK1 drives its exit from the 
nucleus, leading to activation of the G1/S transcriptional 
program, including expression of the G1 cyclins Cln1 and 
Cln2, which trigger further inactivation of Whi5 [26, 27]. 
The second step (T2), defined from Start to bud emergence, 
is cell size-independent [25]. Recent studies have uncov-
ered an intricate crosstalk among the polarity proteins that 
function in these distinct steps in the G1 phase to promote 
Cdc42 polarization at the proper time and place, which will 
be a major focus of this review (see below).  

In the absence of spatial cues or Rsr1, yeast cells can 
still direct polarized growth to a single random site. This 
spontaneous cell polarization without spatial cues (often 
referred to as ‘symmetry breaking’) is thought to rely on 
positive feedback loops that promote the amplification of 
small stochastic clusters of Cdc42. One of these positive 
feedback mechanisms may rely on actin-based transport of 
Cdc42, whereas the other involves the Cdc42-signaling 
network that  includes  a  complex  of  the  scaffold  protein  

FIGURE 1: The Cdc42 GTPase and its regulators in budding yeast. Cdc42 activity is regulated by at least three types of regulators: the GEFs, 
Cdc24 and Bud3; the GAPs, Rga1, Rga2, Bem2, and Bem3; and the GDI Rdi1. These regulators are likely to mediate the regulation of Cdc42 in 
response to internal and external signals. Cdc42 regulates the organization of the actin and septin cytoskeletons and polarized secretion via 
its downstream effectors including PAKs. 
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TABLE 1. The Cdc42 and Rsr1 GTPses and their regulators and effectors. 

Name of protein or 
protein complex 

Protein activity Function in relation to Cdc42 polarization in 
haploid cells 

Selected Refer-
ences 

Cdc42 Rho GTPase Essential for polarity establishment and mainte-
nance 

[61, 87, 106-109] 

Cdc24 GEF for Cdc42 Essential for polarity establishment and mainte-
nance 
Activates Cdc42 likely after Start 

[17, 19, 39, 41, 
42, 54, 63, 72, 
109-115] 

Bud3 GEF for Cdc42; Axial land-
mark 

Essential for axial budding of haploid a and  cells 
Activates Cdc42 before Start 

[14, 37, 40, 116, 
117] 

Rga1 GAP for Cdc42 Essential for preventing polarization within old cell 
division sites 

[44, 46, 49, 58, 
59, 94] 

Rga2, Bem2, Bem3 GAP for Cdc42 (and Rho1) Important for polarity regulation and septin ring 
assembly 

[60, 88, 89, 94, 
118-123] 

Rdi1 GDI for Cdc42 (and Rho1 and 
Rho4) 

Important for cycling of Cdc42 and other Rho 
GTPases between the cytosol and PM during cell 
polarization 

[75-77, 124, 125] 

Bem1 Scaffold for GEF-based ampli-
fication of Cdc42 activation 

Forms a complex with Cdc24 and PAK (Cla4/Ste20) 
important for robust Cdc42 polarization after Start;  
Interacts with Exo70 and Rsr1-GDP 

[17, 21, 63, 64, 
68, 71, 72, 109, 
118, 126, 127] 

Cla4 PAK (p21-activated kinase) 
Effector of Cdc42 

Part of Bem1 polarity complex important for Cdc42 
polarization  

[63, 70, 72, 113, 
128-130] 

Ste20 PAK, Effector of Cdc42 Part of Bem1 polarity complex important for Cdc42 
polarization 

[65, 70, 131-133] 

Gic1, Gic2 Related effectors of Cdc42 Act in parallel with Rsr1 in Cdc42 polarization prior 
to Start 
Stabilize Cdc42-GTP on the PM 

[61, 87, 134-137] 

Rax1, Rax2 Interdependent transmem-
brane proteins 

Localize to the bud tip and division site; Stably 
inherited at old division sites; Anchor negative 
polarity cues Nba1 and Nis1; Important for proper 
targeting of the bipolar landmark. 

[34, 49, 100, 101] 

Aim44 (= Gps1) Bud neck associated protein Negative regulator of Cdc42 signaling at the divi-
sion site that functions in parallel with Rga1; 
Scaffold for Nba1 and Nis1  

[98, 138] 

Nba1, Nis1 Negative polarity complex Anchored by Rax1/2 at old cell division sites  
Recruits Rga1 via direct interaction between Nba1 
and Rga1 

[34, 49] 

Bni1 Formin, nucleates actin fila-
ments; 
Effector of Cdc42 and Rho1; 
Polarisome component 

Promotes the assembly of actin cables and actin 
rings, important for exocytosis, cytokinesis, and 
spindle orientation. 

[139-147] 

Exo70 Exocyst subunit Required for the tethering of post-Golgi vesicles to 
the PM 
Interacts with Cdc42, Bem1, and Rho3 

[64, 148-150] 

Bud4, Axl1, and Axl2 
(including Bud3) 

Axial landmark Intrinsic positional marker for Cdc42 polarization in 

haploid a and   cells 

[14, 84-86, 117, 
151-157] 

Rsr1 (=Bud1) Ras GTPase Essential for proper bud-site selection  
Interacts with Cdc24, Cdc42, and Bem1 
Promotes Cdc42 polarization by linking the spatial 
cue to Cdc42 prior to Start 

[11, 14, 17, 18, 
20, 21, 61, 67] 

Bud2 GAP for Rsr1 Essential for proper bud-site selection  
 

[12, 15, 46, 158-
160] 

Bud5 GEF for Rsr1 Essential for proper bud-site selection  
Interacts with the axial and bipolar landmark 

[13, 86, 161-163] 
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Bem1, Cdc24 (a Cdc42 GEF), and a Cdc42 effector p21-
activated kinase (PAK), although the details of these mech-
anisms are still under debate. In vivo analyses and compu-
tational modeling have also suggested a negative feedback 
loop that enhances robustness to the polarity circuit. 
Symmetry breaking has been covered in greater detail in a 
number of reviews [28-31], and we refer interested read-
ers to these sources and references therein. These key 
players in symmetry breaking are discussed later in this 
review with respect to their role in spatial-cue-dependent 
polarization. 

Another key aspect of yeast budding is asymmetric cell 
division, resulting in mother and daughter cells with dis-
tinct characteristics including mother cell-specific aging 
[32]. Mother cells progressively age and produce a finite 
number of daughter cells, referred to as replicative lifespan 
(RLS). In contrast, daughter cells are born with full replica-
tive potential. Interestingly, however, aged cells sometimes 
undergo symmetric cell division, and thus daughter cells 
from very old mothers often display reduced lifespans [33]. 
Negative polarity factors in Cdc42 signaling have been im-
plicated in yeast aging [34]. Yet the causal factors or con-
sequence of aging still remain elusive [35]. In this review, 
we discuss polarity establishment during yeast budding. In 
particular, we focus on recent findings that cover regula-
tion of Cdc42 in relation to the two temporal phases of G1. 
We also discuss the importance of negative polarity signal-
ing and the possible implication of Cdc42 signaling in cellu-
lar aging. 

 
 
 

BIPHASIC CDC42 POLARIZATION IN THE G1 PHASE  
The first step determines the axis of cell polarity 

Haploid a and  cells select a new bud site adjacent to the 
previous division site. This axial budding pattern depends 
on the deposition of a transient cortical landmark, referred 
to as the axial landmark, composed of Bud3, Bud4, Axl1, 
and Axl2 (see [36] and references therein). While earlier 
studies suggested a morphogenetic hierarchy from spatial 
cues to Cdc42 polarization via the Rsr1 GTPase module, our 
unexpected finding of Bud3 as a Cdc42 GEF has uncovered 
a more complex regulatory mechanism underlying Cdc42 
polarization in correlation with cell cycle progression [37]. 
Bud3 contains a conserved Dbl homology (DH) domain, 
which is necessary for GEF activity of Rho GEFs [38], and 
functions as a GEF for Cdc42 both in vitro and in vivo [37]. 
Prior to this finding, Cdc24 had been known as the sole 
Cdc42 GEF in budding yeast [39]. Bud3 localizes to the 
mother-bud neck (i.e., future cell division site), peaking in 
M phase, and stays at the division site until the next G1 
phase [40]. In contrast, the majority of Cdc24 is seques-
tered in the nucleus in late M and early G1 phases via in-
teraction with the nuclear anchor Far1 in haploid cells [41, 
42]. Consistent with these localization patterns, Bud3 is 
mainly responsible for activation of Cdc42 in early G1, ac-
counting for Cdc42 polarization soon after cytokinesis, 
while Cdc24 activates Cdc42 in late G1. The distribution 
and activity of Cdc42 in vivo has been quantitatively de-
fined by live-cell imaging using a fluorescent probe carrying 
a PBD (p21-binding domain), which contains CRIB 
(Cdc42/Rac-interactive binding motif) and specifically in-
teracts with Cdc42-GTP in budding yeast [43-45]. Using this 
biosensor, we showed that yeast cells with a mutation in 

FIGURE 2: Oriented cell divisions of S. 
cerevisiae. (A) Each cell division leaves 
a bud scar that marks the site of divi-
sion on the mother cell surface and 
birth scar on daughter cell. Successive 
divisions produce distinct patterns of 
bud scars (also called cytokinesis rem-
nants: CRMs). Bud scars can be visual-
ized by scanning electron microscopy 
(image on the right) or by staining 
with the dye Calcofluor (as shown in 
B). Electron micrograph was taken 
from Ref. [44] with permission. (B) 
Axial and bipolar patterns of bud-site 
selection in S. cerevisiae. Red arrows 
denote the axes of cell polarization. 
Below, the patterns of bud scars on 
the yeast cell surface resulting from 
the different modes of budding are 
visualized after Calcofluor staining: (a) 
axial pattern; (b) bipolar pattern; and 
(c) random budding by a mutant (such 

as rsr1). Micrographs were published 
previously [20]. 
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the Bud3 DH domain with defective GEF activity display 
greatly diminished Cdc42 polarization in early G1 com-
pared to wild type (WT). In contrast, a temperature sensi-
tive cdc24 mutant was able to polarize Cdc42 normally in 
early G1 but failed in subsequent Cdc42 polarization and 
arrested as unbudded cells at the non-permissive tempera-
ture [37]. Importantly, this study provided the first evi-
dence for stepwise Cdc42 polarization in correlation with 
two temporal steps in the G1 phase (Figure 3). 

As a component of the axial landmark complex, Bud3 
likely functions in liking spatial information from the cell 
division site to the next bud site by triggering the initial 
activation of Cdc42 for polarity establishment in haploid 
cell types. Then, how is a single, new bud site established 
near the last division site even though Bud3 (and other 
components of the axial landmark) form a ring at the divi-
sion site? This question is especially relevant because the 
perimeter of the ring appears large enough to accommo-
date multiple sites. A subsequent study from our group 
[46] addressed this question and uncovered the potential 
involvement of negative and positive feedback loops in 
selection of a proper bud site during axial budding. Live-cell 
imaging showed that the Cdc42-GTP level fluctuates 
around the septin ring until the axis of Cdc42 polarization 
becomes stabilized in mid G1. This wandering behavior of 
Cdc42-GTP cluster is particularly evident in daughter cells 
during the first phase of G1, which lasts much longer in 
daughter cells compared to mother cells. The output of 
delayed negative feedback, where accumulation of a mole-
cule leads to its own dispersal so that the concentration 
does not reach a steady state, results in oscillatory or wan-
dering dynamics of a molecule [43, 47, 48]. To explain 
these distinct dynamics of Cdc42-GTP cluster in mother 
versus daughter cells, we used mathematical modeling. We 
considered a generic model of particle density of the 
membrane bound Cdc42 on a two-dimensional computa-
tional domain with the axial landmark as a ring in the cen-
ter. Initially, we assumed two phases to mimic two tem-
poral steps of the G1 phase with two sequential positive 
feedback loops. We also considered the distribution of the 
Cdc42 GAP Rga1 that localizes as a ring at the division site 
to inhibit Cdc42 re-polarization. However, simulations from 

this initial biphasic modeling with the fixed distribution of 
Rga1 as a homogeneous ring at the division site led to 
budding within the division site. Surprisingly, by reexamin-
ing Rga1 localization, we found that Rga1 exhibits a frag-
mented ring-like structure or amorphous distribution at 
the division site during cytokinesis and G1 phase. This 
time-dependent Rga1 distribution at the division site is 
necessary for proper bud-site selection [46]. We thus im-
plemented this new pattern of Rga1 localization and as-
sumed putative delayed negative feedback together with 
positive feedback in the first phase in our biphasic model. 
Importantly, when we assumed transient negative feed-
back with different durations to mimic the lengths of the 
first temporal step of G1 in mother and daughter cells (typ-
ically about 3 min in mother cells and 15 min in daughter 
cells) in addition to sequential positive feedback loops, this 
modeling recapitulated the distinct Cdc42 polarization dy-
namics in mother versus daughter cells as observed in vivo 
[46]. Therefore, pre-Start Cdc42 polarization likely involves 
negative and positive feedback loops that link the axial 
landmark to Cdc42 polarization [37, 46]. Furthermore, the 
correlation of spatial distribution of Rga1 with cell cycle 
progression is important to fine-tuning the axis of cell po-
larity in budding yeast [46, 49]. 

Polarity proteins often exhibit oscillatory or wandering 
behavior, as observed in plants [50], mammalian cells [51], 
fission yeast [47], and budding yeast [46, 52]. Thus, de-
layed negative feedback may be a common mechanism 
underlying control of GTPase function in many organisms. 
In theory, there could be two possible scenarios of how 
active Cdc42 induces its own inactivation: Cdc42-GTP acti-
vates its inhibitor (e.g., a Cdc42 GAP) or inhibits its activa-
tor (e.g., a Cdc42 GEF). It has been suggested that negative 
feedback might involve inactivation of the Cdc24 GEF dur-
ing symmetry breaking in diploid budding yeast [53]. How-
ever, this is unlikely to occur in haploid cells during the first 
phase of G1 because the majority of Cdc24 is sequestered 
in the nucleus until Start [41, 42, 54]. While a critical study 
has yet to uncover the precise mechanism, negative feed-
back during pre-Start Cdc42 polarization in haploid cells 
may potentially involve the Cdc42 GEF Bud3 or its GAP 
Rga1. Bud3 contains numerous putative phosphorylation 

FIGURE 3: A scheme of biphasic Cdc42 
polarization in the G1 phase. Cdc42 po-
larization occurs stepwise triggered by its 
two GEFs: first by Bud3 and subsequently 
by Cdc24 [37]. Whi5 partitions the G1 
phase into two temporal steps, and the 
‘Start’ transition corresponds to the time 
of the nuclear exit of approximately 50% 
of Whi5 [24]. The sites of Cdc42 polariza-
tion prior to the onset of cytokinesis and 
until a new bud appears are marked with 
purple color. 
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and ubiquitination sites [55-57], but it is currently un-
known how Bud3 is regulated to promote Cdc42 activation 
specifically prior to Start. Rga1 is also required for proper 
bud-site selection [58-60] and prevents re-budding at the 
same site by inactivating Cdc42 from the division site [44], 
although its regulation is not fully understood (see below). 

Does biphasic Cdc42 polarization occur only in cells 
budding in the axial pattern? Is stepwise activation of 
Cdc42 necessary to ensure sequential execution of the 
processes in the G1 phase? Our recent study that included 
analyses of temperature-sensitive cdc42 alleles found that 
cells cannot traverse the G1 phase without Cdc42 polariza-
tion prior to Start [61]. Remarkably, a positive feedback 
loop involving two redundant Cdc42 effector proteins Gic1 
and Gic2 is likely to act in parallel with Rsr1 in Cdc42 polar-
ization prior to Start (Figure 4). As suggested in a previous 
report [62], cells lacking Rsr1 and both Gic proteins fail to 
polarize despite the presence of all components implicated 
in symmetry breaking. Specifically, depletion of Rsr1 and 
both Gic1 and Gic2 prevents cells from polarizing Cdc42 
during the first phase of G1 and results in cell cycle arrest. 
Genetic data and FRAP (fluorescent recovery after photo-
bleaching) analyses suggest that despite the shared role in 
pre-Start Cdc42 polarization, Rsr1 and Gic1/Gic2 may pro-
mote Cdc42 polarization via distinct mechanisms: the Rsr1 
GTPase module links the spatial cue to Cdc42, and its func-
tion depends on local activation of Cdc42 by Bud3. In con-
trast, Gic1 and/or Gic2 interact with Cdc42-GTP and then 
stabilize Cdc42-GTP on the plasma membrane (PM), reduc-

ing lateral diffusion of Cdc42-GTP [61]. It is interesting to 

note that rsr1 cells display sporadic and relatively weaker 
pre-Start Cdc42 polarization compared to WT. Yet both WT 

and rsr1 cells display robust Cdc42 polarization in the 
second phase of G1 [46]. Pre-Start Cdc42 polarization by 
Gic1/Gic2 is likely essential in the absence of Rsr1 and thus 
in cells undergoing symmetry breaking. Interestingly, an-
other study has also observed pre-Start Cdc42 polarization 

by locally recruiting Cdc24 by optogenetics in rsr1 cells. 
But recruitment of Bem1 before Start did not induce the 
positive feedback loop, suggesting that there are two dis-
tinct modes of Cdc42 polarization before and after Start 
[63]. Therefore, biphasic Cdc42 polarization is likely to oc-
cur in yeast cells regardless of their budding pattern.  

While Rsr1 bound to GTP positively regulates polarity 
establishment, Rsr1 bound to GDP likely inhibits premature 
polarization through its interaction with the scaffold pro-
tein Bem1 [21]. Consistent with an earlier in vitro analysis 
[17], Rsr1 interacts with Bem1 preferentially in its GDP-
bound state in vivo, and this interaction takes place during 
late M and early G1 phases [21]. Rsr1-GDP associates spe-
cifically with a part of the Bem1 Phox homology (PX) do-
main, which overlaps with a region previously shown to 
interact with Exo70, an exocyst component [64]. Further-
more, expression of a constitutively GDP-bound Rsr1 inter-
feres with Bem1’s association with Exo70, inhibiting Bem1-
dependent Exo70 polarization, and also leads to delayed 
Cdc42 polarization and bud emergence. Consistent with 
these in vivo findings, mathematical modeling predicts that 

FIGURE 4: Model for biphasic Cdc42 polarization coupled to stepwise assembly of a new septin ring during axial budding. During T1, two 
positive feedback loops likely operate: one involving Bud3 and Rsr1 (marked with red arrows and line); another involving Gic1/2 (marked 
with green arrows). The Bem1-mediated positive feedback loop likely operates during T2 (gray lines and arrows). For simplicity, some other 
known links are omitted, including the link between the axial landmark and the Rsr1 GTPase module; and the link between Rsr1-GTP and 
Cdc24 (see text). Stepwise assembly of the septin ring in correlation with Cdc42 polarization during each temporal step in G1 is shown be-
low: gray and blue rings denote old and new septin rings, respectively. Blue dots and gray dotted line denote newly recruited septin ‘clouds’ 
and disassembling old ring, respectively. Modified from Refs. [61] and [21]. 
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Bem1 is unable to promote Cdc42 polarization in early G1 
in the presence of Rsr1-GDP. Thus, Rsr1-GDP likely inter-
feres with the role of Bem1 in Cdc42 polarization and po-
larized secretion during the first phase of G1 in both hap-
loid and diploid cells [21]. Importantly, this study suggests 
that Bem1-mediated positive feedback, which is critical for 
symmetry breaking, does not occur before Start because of 
its association with Rsr1-GDP, consistent with a previous 
finding that Bem1 functions in the polarity complex after 
Start [63] (see below). In contrast, another report argues 
that Bem1 and Cdc24 are active before Start in WT diploid 
cells [65]. The reason for this discrepancy is not clear, and 
further studies are required to clarify this issue. 

  
The second step leads to robust polarization to the incipi-
ent bud site  
After Start, active Cdc28 (CDK1) complexed with a G1 cyclin 
(Cln1 or Cln2) phosphorylates Far1, a CDK1 inhibitor and a 
nuclear anchor of Cdc24, leading to subsequent degrada-
tion of Far1 and thus release of Cdc24 from the nucleus in 
haploid cells [42, 66]. Cdc24 is then directed to the select-
ed site of polarized growth through association with Rsr1-
GTP [16, 17, 67]. In the absence of spatial cues or a com-
ponent of the Rsr1 GTPase module, yeast cells can still 
polarize Cdc42 at a single random site that is determined 
around the transition from the first to second temporal 
step in the G1 phase [46]. This implies that similar mecha-
nisms may operate to reinforce polarity establishment 
after Start at a single chosen site during spatial-cue di-
rected cell polarization as well as during symmetry break-
ing.   

Previous studies on symmetry breaking have suggested 
that Bem1 mediates positive feedback for robust Cdc42 
polarization [68, 69]. Bem1 was initially identified to play 
an essential role in symmetry breaking based on synthetic 

lethality of a rsr1 bem1 double mutant [68]. Bem1 was 
also found to be essential for cell polarization when actin is 
inhibited [69]. Expression of an artificial fusion protein of 
GEF Cdc24 – PAK Cla4 was able to rescue the lethality of 

the rsr1 bem1 mutant and drive polarization, establish-
ing the role of the scaffold protein Bem1 in linking a Cdc42 
GEF and a PAK for symmetry breaking [70]. A recent study 
employing an optogenetic strategy [63] provides a direct 
demonstration of the Bem1-mediated positive feedback 
loop. Remarkably, this study also suggests that the Bem1-
mediated positive feedback loop requires CDK1-mediated 
phosphorylation: the Bem1 optogenetic construct could 
not induce Cdc42 cluster formation prior to the Start tran-
sition; and the Cdc24 optogenetic construct also could not 
recruit Bem1 prior to this transition [63]. Although it has 
not been directly tested whether this mechanism is also 
involved in spatial-cue directed cell polarization, these po-
larity factors are required for budding of WT cells. While a 
study argues that Bem1 promotes Cdc42 polarization prior 
to Start [65], an increasing number of evidence suggests 
that Bem1 functions after Start: the GEF activity of Cdc24 is 
enhanced by Bem1 [71, 72], which associates with Cdc24 
after Start in cells lacking RSR1 [63]. In addition, Bem1’s 

role in promoting actin-independent localization of Exo70 
is inhibited by Rsr1-GDP prior to Start [21] (see Figure 4). 

Since Cdc42 promotes the organization of the actin cy-
toskeleton, which serves as tracks for the delivery of secre-
tory vesicles, actin may also be involved in a positive feed-
back loop by promoting transport of Cdc42 on vesicles. 
However, the significance of actin-dependent feedback in 
polarity establishment is still under debate. A number of 
studies including mathematical modeling have suggested 
that the actin-dependent feedback loop acts in the genera-
tion of robust cell polarity [73, 74], which may function in 
parallel with the Bem1-mediated positive feedback [69]. 
Although Cdc42 trafficking on vesicles through endo- and 
exocytosis is slow, GDI (guanine nucleotide dissociation 
inhibitor)-mediated extraction of Cdc42-GDP can serve for 
fast recycling of Cdc42. It has been shown that GDI-
mediated membrane-cytosol shuttling along with actin 
mediated delivery is necessary to establish a robust and 
stable Cdc42 polarity site [75, 76]. In contrast, a number of 
studies argue against the actin-dependent feedback for 
polarity establishment. These studies suggest that the slow 
delivery and low abundance of Cdc42 on polarized actin 
cables can lead to dilution of Cdc42 molecules at the polar-
ity site rather than reinforcing polarization [77-81]. Inter-
estingly, however, high-resolution imaging with comple-
mentary mathematical modeling indicates that the spatial 
coordination of opposing membrane trafficking activities 
via endocytosis and exocytosis allows robust polarity es-
tablishment, supporting the positive role of the actin cyto-
skeleton in polarity establishment [82]. While Cdc42-GTP 
auto-amplification can drive the clustering of exocytic ac-
tivity to discrete sites, endocytic corralling ensures the 
selection of a unique, polarization cluster [82]. Additionally, 
actin depolymerization destabilizes the polarity cluster in 
both budding and fission yeasts [69, 83]. While expression 
of a GDI-insensitive cdc42 allele is able to promote sym-
metry breaking, these budding yeast cells display a defect 
in proper bud-site selection and loss of singularity in bud-
ding [83]. Thus, the mechanisms promoting Cdc42 delivery 
to the PM may not be essential for initial establishment of 
cell polarity but may be important for robust Cdc42 polari-
zation leading to bud emergence at a single site, which is 
particularly critical for the growth and division mode of 
budding yeast. While further investigation is necessary to 
fully understand these underlying mechanisms, actin-
mediated positive feedback of Cdc42 polarization may be 
more important in the second temporal step of the G1 
phase.     

  
Biological outputs of biphasic Cdc42 polarization 
While we have a better understanding of the mechanisms 
underlying Cdc42 polarization, critical questions remain 
including why Cdc42 polarization occurs in two steps dur-
ing G1. What are the biological outputs of stepwise Cdc42 

polarization? In haploid a and  cells, Cdc42 polarization in 
the first phase of G1, which is triggered by Bud3, may be 
important for full assembly of the axial landmark and thus 
for establishing the polarity axis in the proper orientation. 
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This idea has been supported by live-cell imaging and bio-
chemical assays [37]. Each component of the axial land-
mark likely assembles sequentially at the division site dur-
ing M and early G1 phase: Bud3 and Bud4 localize to the 
mother-bud neck first (i.e., future cell division site) through 
the interaction with septins [40, 84] and then recruit the 
other landmark proteins Axl1 and Axl2 [85]. Once this 
complex is fully assembled, it can interact with the Rsr1 
GEF Bud5 [85, 86]. In contrast, in a bud3 DH domain mu-
tant with defective GEF activity, Bud4 fails to interact with 
Axl1, and Bud5 poorly associates with Bud4 and Axl1 [37]. 
Furthermore, Bud4 poorly associates with Axl1 in a tem-
perature-sensitive cdc42 mutant that is specifically defec-
tive in axial budding at a semi-permissive temperature, 
indicating that fully functional Cdc42 is necessary for axial 
landmark assembly [37]. Axial landmark assembly is likely 
critical for further recruitment and activation of Cdc42 via 
Rsr1 (and Bud3), leading to Cdc42 polarization at a single 
incipient bud site around Start. Active Rsr1 is then ex-
pected to guide Cdc24 and Cdc42 to the proper site for 
subsequent Cdc42 polarization in the second phase of G1 
[16-20, 67]. Although Rsr1-GTP may also play a role in acti-
vation of Cdc24 by facilitating its release from autoinhibi-
tion [19], this role of Rsr1 is likely to be mediated by other 
regulators of Cdc24 [21, 71, 72] (see above).  

Cdc42 also plays a key role in septin organization [87-
89]. An earlier study by Bi and colleagues suggested that a 
new septin ring assembles stepwise – septins are first re-
cruited as disorganized ‘clouds’, which are then converted 
to a ring [87]. In a subsequent study, which combined live-
cell imaging and computational modeling, they showed 
that septins recruited to the site of polarization by active 
Cdc42 subsequently inhibit Cdc42 in a negative feedback 
loop driven by Cdc42 GAPs. Polarized exocytosis then 
sculpts the septin patch into a ring, creating a hole that 
relieves inhibition of Cdc42 at the site of bud emergence 
[89]. Our recent study showed that this stepwise assembly 
of the septin ring occurs in correlation with biphasic Cdc42 
polarization in the G1 phase [61]. When Rsr1 and both Gic 
proteins were depleted, cells failed to polarize Cdc42 dur-
ing the first phase of G1 and as a consequence failed to 
recruit new septins. Remarkably, overexpression of Cdc42 
allowed its own polarization as well as septin recruitment 
in the absence of Rsr1 and both Gic proteins [61]. There-
fore, stepwise regulation of Cdc42 in relation to the two 
temporal steps of G1 is likely important to ensure the 
proper timing of events including the assembly and recog-
nition of spatial landmarks, and execution of polarity es-
tablishment at a single site by organizing the actin and sep-
tin cytoskeleton (see Figure 4).  

While an understanding of the mechanistic details re-
quires further investigation, it is interesting to note that 
stepwise activation of Cdc42 and Rac GTPases has also 
been observed in other cell types, such as growth factor-
stimulated endothelial cells and antigen-stimulated mast 
cells during spatial cue-directed cell polarization [90-92]. 
Therefore, biphasic activation of a GTPase may be a gen-
eral mechanism underlying signal-responsive cell polariza-
tion. 

NEGATIVE POLARITY SIGNALING AND POTENTIAL 
IMPLICATIONS IN AGING 
Cycling of the GTP- and GDP-bound states of Cdc42 is es-
sential for proper cellular function in yeast and animals 
including humans. Thus, turning off Cdc42 activity is as 
important as its activation. Specific cdc42 alleles that ex-
press dominant active mutant forms of Cdc42 cause dos-
age-dependent lethality in budding yeast [93]. Deletion of 

Cdc42 GAPs (rga1 rga2 bem3), which leads to elevated 
levels of active Cdc42-GTP, also causes defects in septin 
organization and polarized growth in yeast, suggesting that 
GTP hydrolysis by Cdc42 is essential for its function [60, 88, 
94].   

Negative regulation of Cdc42 is also involved in select-
ing a new bud site. Both haploid and diploid cells select a 
new bud site that does not overlap with the previous bud 
site [95, 96]. Indeed, an elegant study showed that Rga1 
plays a critical role in inactivating Cdc42 at the division site 
and thus blocks repolarization of Cdc42 within that site 
[44]. This distinct role of Rga1 in fine-tuning bud-site selec-
tion is not shared with other Cdc42 GAPs in haploid and 
diploid cells [44, 97]. Another negative regulator of Cdc42 
signaling is Gps1 [98] (also known as Aim44, whose defi-
ciency alters mitochondrial biogenesis and inheritance 
[99]). Gps1 establishes a novel polarity cue that sustains 
Rho1-dependent polarization but inhibits premature 
Cdc42-dependent activation of the PAK Cla4 at the site of 
cytokinesis [98]. Genetic analyses suggest that Gps1 may 
work in parallel with Rga1 to inhibit Cdc42 repolarization at 
the current division site [98]. These studies, however, did 
not answer why all old bud sites (other than the immedi-
ately preceding division site) are excluded from subse-
quent divisions.  

All cell division sites are decorated with chitin-rich bud 
scars, which contain ‘cytokinesis remnants (CRM)’ includ-
ing Rax1 and Rax2, two interdependent transmembrane 
proteins. Rax1 and Rax2 localize to the distal pole (in 
daughter cells) as well as the division site after septation 
and stably remain at the site during multiple generations 
[100, 101]. Interestingly, while Gps1 does not localize to 
CRMs, it recruits Nba1 and Nis1, a negative polarity com-
plex that antagonizes Cdc42 activation, at the current divi-
sion site. Nba1 and Nis1 are subsequently inherited to 
CRMs and stably anchored via interaction with Rax1/Rax2 
[34]. This negative polarity cue has been suggested to in-
hibit Cdc42 at CRMs by interfering with the interaction 
between Cdc24 and Rsr1 and thus locally preventing acti-
vation of Cdc24 [34]. However, this mechanism is debata-
ble because neither Cdc24 nor Rsr1 localizes to CRMs. On 
the other hand, Rga1 localizes not only to the current cell 
division site but also to CRMs transiently [46, 49] via its 
direct interaction with Nba1 [49]. Genetic analyses also 
confirmed that Rga1 functions together with Nba1 and 
Nis1, rather than in parallel, in preventing re-budding with-
in the current and all previous division sites [49]. Therefore, 
the inhibitory function of the negative polarity cues at 
CRMs is likely due to the GAP activity of Rga1, reinforcing 
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the idea that Rga1 activity prevents re-use of any previous 
division site for yeast budding (Figure 5). 

Remarkably, yeast cells lacking negative polarity cues 
display nuclear segregation defects and a decreased RLS 
[34]. These observations led to a proposal that cytokinesis 
remnants act as ‘cellular memory’ for previous polarization 
events, and that negative polarity cues keep Cdc42 inactive 
at CRMs for proper asymmetric division [34]. The diameter 
of the bud neck region where nuclear segregation occurs is 
narrower in rga1Δ nba1Δ single or double mutant cells due 
to repeated re-budding at the same site. This abnormality 
has been attributed to the cause of impaired nuclear seg-
regation and reduced lifespan in these mutants [34]. How-
ever, deletions of other Cdc42 GAPs (rga2Δ or bem3Δ) also 
display significantly reduced RLS than WT, even though 
their deletions do not have the same phenotypes as rga1Δ 
(PJK, unpublished). Thus, an enticing interpretation of 
these observations is that an increase in Cdc42 activity due 
to deletion of a Cdc42 GAP may contribute to cellular aging.  

Cdc42 activity has been implicated in aging in other cell 
types. Notably, Cdc42 activity is substantially increased in 
hematopoietic stem cells as well as in other tissues from 
aged mice compared to those taken from young mice. This 
increased Cdc42 activity correlates with the depolarized 
phenotype and aging of hematopoietic stem cells [102]. 
Young hematopoietic stem cells divide mainly asymmetri-
cally, whereas aged hematopoietic stem cells divide pri-
marily symmetrically [103], as also observed in old yeast 
mother cells [33]. This mode of cell division is tightly linked 
to stem cell polarity and is regulated by the activity level of 
Cdc42 [103]. Large-scale data analyses and modeling have 
also found a correlation between CDC42 upregulation in 
human white blood cells and aging as well as association of 
increased expression of CDC42 with higher mortality [104]. 
Additionally, mice deficient for the p50RhoGAP protein, in 
which Cdc42 activity is increased in all tissues, present with 
premature aging-like phenotypes [105]. Interestingly, 
treatment of aged hematopoietic stem cells with a Cdc42 

activity inhibitor (CASIN) reduced the level of Cdc42 activity 
to that of young cells and rejuvenated aged hematopoietic 
stem cells [102]. These studies raise a number of questions 
regarding the development of aging and reveal the intri-
guing possibility that negative regulation of Cdc42 is critical 
in aged cells as in young cells. While the connection be-
tween Cdc42 activity and aging is a tantalizing possibility, 
further investigation is necessary to reveal a concrete role 
of Cdc42 signaling in aging.   

 
CONCLUDING REMARKS 
Cell polarity is a nearly universal feature that arises in al-
most all species ranging from bacteria to human and is 
fundamental to asymmetric cell division, growth, and de-
velopment. Despite substantial progress in deciphering the 
mechanisms underlying Cdc42 polarization in budding 
yeast, significant gaps exist in our current knowledge of cell 
polarization. In particular, we are only beginning to under-
stand how multiple processes leading to bud emergence, 
including actin and septin cytoskeleton organization and 
polarized secretion, are temporally coordinated. Another 
critical question is why budding yeast maintain such an 
elaborate program of polarized growth. Although a num-
ber of ideas have been suggested, it has not been directly 
addressed why this single-cell organism undergoes such 
complex oriented cell division as seen in developing em-
bryos, which need a distinct body plan. To fully understand 
how yeast cells integrate multiple signals and why such a 
genetic program has evolved may benefit from both exper-
imental and theoretical efforts. Further studies are re-
quired to understand the causative relationship of numer-
ous changes associated with aging and the role of Cdc42 
signaling. A deeper understanding of spatial and temporal 
regulation of Cdc42 activity in young and aged cells is un-
doubtably significant and may also lead to identification of 
key pharmacological targets for turning back the clock on 
aging. 
 

FIGURE 5: Model for inhibition of Cdc42 at the current and old cell division sites by negative polarity cues. During cytokinesis, Rga1 (green) 
and the Nba1-Nis1-Gps1 complex inhibit Cdc42 repolarization to the division site. After cytokinesis and septum formation, the Nba1-Nis1 
complex (red) are inherited to the immediately preceding division site and remain at the older division sites (CRMs) via interaction with 
Rax1/Rax2 (blue lines). Rga1 also localizes transiently to CRMs via interaction with Nba1-Nis1 and inhibits Cdc42 repolarization at CRMs. The 
complex at the old division site is omitted in the cell shown on the left. Taken from Ref. [49]. 
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