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Abstract

Near infrared spectroscopy (NIRS) is a non-invasive optical imaging technique that can be used to measure cortical
hemodynamic responses to specific stimuli or tasks. While analyses of NIRS data are normally adapted from established fMRI
techniques, there are nevertheless substantial differences between the two modalities. Here, we investigate the impact of
NIRS-specific noise; e.g., systemic (physiological), motion-related artifacts, and serial autocorrelations, upon the validity of
statistical inference within the framework of the general linear model. We present a comprehensive framework for noise
reduction and statistical inference, which is custom-tailored to the noise characteristics of NIRS. These methods have been
implemented in a public domain MATLAB toolbox, the NIRS Analysis Package (NAP). Finally, we validate NAP using both
simulated and actual data, showing marked improvement in the detection power and reliability of NIRS.
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Introduction

Near infrared spectroscopy (NIRS [1]; for a recent review see

[2]), is a non-invasive optical imaging technique that measures

changes in oxygenated and deoxygenated hemoglobin concen-

trations, often in response to changes in neuronal activity. While

similar to fMRI’s blood-oxygenation-level-dependent (BOLD)

outputs for cortical regions, NIRS offers important advantages of

low cost, portability, and the ability to extend research to young

children and within more ecological environments. Most

importantly for adapting dynamical analyses developed for

fMRI [3,4] is the superior temporal resolution, which affords

additional information needed for reliable estimation of temporal

features of the hemodynamic response for diagnostics. This,

however, comes at the expense of limited spatial resolution and

restriction to imaging superficial cortical structures. NIRS allows

penetration of about one cm into the cortex, due to the light

absorption properties of brain tissue, and spatial resolution of

about 2 cm, as the source to detector distance must be large

enough so that collected photons will be sensitive to tissue

absorption [5–8].

Because NIRS is still a relatively new modality, it suffers from

the lack of a universally accepted framework for data analysis.

Given that fMRI, a mature experimental modality, also measures

hemodynamic responses, one logical approach has been to adapt

well-established methods optimized for fMRI [9] ‘‘as is’’ to NIRS

data (e.g. [10]). However, doing so runs some risks if the unique

characteristics of the NIRS signal, and even more importantly its

noise, do not meet basic preconditions required for valid statistical

inference within the framework of the general linear model

(GLM).

In the context of functional imaging of task related activity,

error or ‘‘noise’’ is defined as activity uncorrelated with the

experimental manipulation; this includes a combination of

‘‘spontaneous’’ hemodynamics (reflecting ongoing brain activity),

various sources of physiological activity (such as heart pulsation),

and measurement noise. The most striking feature of such resting

data is apparent when the power spectra of the data are

considered. As can be seen in Fig. 1a, resting data spectra closely

follow a power law; that is, when the power spectra are plotted on

a logarithmic scale, a linear relation appears to hold between the

frequency and its magnitude.

The power spectrum of a time series is the Fourier transform of

its autocorrelation function (Wiener–Khinchin theorem); thus,

deviation from a flat power spectrum indicates degree of serial

correlation. More specifically, data that exhibit strong exponential

decay of power will also exhibit high positive autocorrelation in

low frequencies. Such autocorrelation is devastating in the context

of GLM analysis; while it does not result in bias in the estimates of

the parameters of the linear model, it nevertheless leads to

underestimation of the noise variance, and therefore to inflation of

estimated statistics (such as the t statistic, which is inversely

proportional to the estimate of the noise variance).

Since the noise correlations generally follow a power law, they

can be explicitly modeled as such by calculating their exponent.

However, to do so reliably corrections need to be made to suppress

significant deviance from the power law at specific frequency

bands. These deviances result from systemic physiological artifacts

(in this case cardiac pulsations occurring around 1 Hz and blood

pressure waves at approximately 0.1 Hz [11] - Fig. 1a). Hence,

elimination of systemic artifacts would afford two benefits: not only

the ability to reliably estimate the noise autocorrelation structure,
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but also to increase signal to noise ratio by abolishing excess power

in the artifact frequencies.

A second critical impediment to reliable statistical inference in

NIRS is the effect of motion artifacts on NIRS data, which are

caused mostly by head movement [12–16]. NIRS imaging

requires optodes to be placed against participants’ scalps. As the

optodes press against a participant’s skin, gross head movements

compromise the contact between the optodes and skin, in effect

changing the refractory constant and the source-to-detector

distance seen by the NIR beam (Fig. 2a). One of the consequences

of such artifacts is a substantial statistical bias towards false

positives [2,15], which must be subdued to achieve efficient

statistical inference.

Below we show how the noise inherent to NIRS can be modeled

and controlled for, thus enabling to achieve near optimal statistical

inference. The methods we describe have been implemented

in our NIRS analysis package (NAP; http://lsec.neuropraxia.

webfactional.com/Software_and_Instrumentation.html), a public

domain MATLAB (Mathworks, Natick MA) toolbox.

Methods

1. Experimental materials and methods
Participants. We recruited 12 adults (three females), ages 23-

39 to participate in the experiment. All subjects were healthy and

free of neurological or cardiovascular illness. This study was

approved by the Institutional Review Board of Stony Brook

University School of Medicine; all participants provided informed

written consent.

Experimental procedure. Participants were presented with

a full-screen checkerboard stimulus flickering at 8 Hz [17],

interspersed with an equiluminant screen, in a 15/30 sec block

design (10 repetitions).

Data acquisition. NIRS data were collected using the ETG

4000 (Hitachi,Tokyo) with 33 probes (52 channels) placed

occipitally, and sampled at 10 Hz. The ETG 4000 employs two

lasers with wavelengths of 695 nm and 830 nm, both with optical

intensity of 2mW. Optodes were secured to the skull using a

custom-made cap and participants’ heads were placed in a

custom-made head holder. Optode locations and skull markers

were measured using a Polhemus ISOTRAK II magnetic tracker

(Inition, London) controlled by the ETG 4000. The 10-20 markers

[18] measured were: Nz (nasion) Iz (inion) AR (right ear) AL (left

ear) and Cz (midpoint of the crown of the head).

2. Data analysis
Data were analyzed using the NAP. First, data were cleaned

from movement artifacts and systemic noise (heart beat cancel-

ation followed sequentially by movements, breathing and blood

pressure artifact cancelation). Next, data were analyzed using the

feasible generalized least squares (FGLS) scheme described below

(i.e., precoloring with a cutoff of 1.7 Hz and/or whitening with a

power law derived noise covariance matrix) employing both an

SPM HRF model and an FIR (finite impulse response) model

(spanning 20 sec.). To save computation time, data were

temporally binned by a factor of three (reducing the FIR

coefficients to 67) before carrying out inference. Single subject

optode locations were registered to the MNI (Montreal Neuro-

logical Institute) template space, channel locations computed using

the method described in [19]. Group analyses were carried out

using the method described in Beckmann et al. ([20], see appendix

S3).

2.1. Correction of periodic physiological artifacts
While NIRS measurements capture aspects of the underlying

hemodynamics in the imaged tissue, the resulting time series

reflect not only functional changes but underlying physiological

processes that are not directly coupled to neuronal activity. Among

the primary influences are cardiac pulsation, as well as respiratory

and blood pressure waves. Accordingly, NIRS time series usually

exhibit conspicuous periodic artifacts arising from these oscillatory

systemic processes (Fig. 3a). However, as such artifacts are quite

regular in time and exhibit moderate variation from a stereotypical

form associated with each such process, NIRS data provide

sufficient information to model these processes and thereby

eliminate them.

In the neuroimaging literature, two methods have been

suggested to explicitly model cardiac pulsations: an event-triggered

averaging method utilizing independent cardiac measurements

(i.e., [21]) and a stand-alone method employing time-warping

averaging (i.e., [22]). In what follows, we present a standalone

method for periodic physiological artifact removal, which

synthesizes, extends, and generalizes the aforementioned methods.

The proposed method capitalizes on the fact that systemic artifacts

are contained in relatively restricted bandwidths of measured

signals. Therefore, the same algorithm can be applied recursively

by moving from higher frequency artifacts to lower frequency ones

(e.g., beginning with correcting cardiac artifacts and then

proceeding to correct respiratory artifacts).

For each systemic artifact, beginning with high frequency

events, the following steps are proposed:

N Average data from different channels to enhance artifact:

As systemic artifacts result from a unitary underlying cause

(e.g., [21]), averaging across channels reduces both noise and

spontaneous hemodynamic components arising from local

spontaneous neuronal activity, enhancing the trace of the

systemic process (see Fig. S1). It is more effective to discard

Figure 1. Noise characteristics of NIRS DATA. (a): A representative power spectrum of a NIRS time series captured in the absence of stimulation
(rest data in red) displayed on a logarithmic scale. The power spectrum follows a power law (exponent , 21.8) tightly, apart from conspicuous
deviations caused by systemic artifacts. The spectrum of the same time series after artifact reduction (see Methods section 2.1) is plotted in black. (b)
Data were simulated data to mimick NIRS rest data (exponent 22). Ten thousand random vectors of this type were generated and analyzed with a
GLM representing the design of the task described in Methods section 1, applying the precoloring method [23] to subdue autocorrelation. Next an
ANOVA (for the FIR model) or a t-test (for the SPM-HRF model) wass carried out on the resulting coefficients, and the significance (p-value) for each
derived. The resulting histogram of p-values is shown (c) A similar set of simulated noise was fitted with a FIR model representing the task design,
and the FGLS (feasible generalized least squares- i.e. whitening according to a power law fit + precoloring (0.017 Hz)) method described in Methods
section 2.3 was applied. The resulting histogram of p-values is very close to the theoretical optimum. (d) Simulated noise was fitted with a single
basis function – the SPM hemodynamic response function [9] and the FGLS method described in Methods section 2.3 was applied. The resulting
histogram of p-values exhibits some slight negative bias. (e-f) The same design vector was convolved with the SPM HRF. It then served as a model
signal to which simulated noise of varying degrees was added. Next, FGLS was carried out using both the FIR and SPM HRF model. Probability of
detection (average p-value) as a function of signal to noise (ratio of RMS (root means squared) squared) for the FIR (e) and SPM HRF model (f) are
shown. As can be seen, both models are highly sensitive in the face of noise although, unsurprisingly, given that in the case of the SPM HRF model
the model and signal are identical, the SPM HRF model is more sensitive in this case.
doi:10.1371/journal.pone.0024322.g001
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noisy channels before averaging, to facilitate artifact detection.

A simple way to achieve this is selecting channels with low

variance. For example, the channel variances can be z-

transformed and only the channels with a variance lower than

one standard deviation averaged.

N Band-pass filter the resulting time series to the relevant

bandwidth: For example, in the case of adult data: relevant

bandwidths are [0.6–2.0] Hz for cardiac pulsations, [0.15–0.4]

Hz for respiratory artifacts, and [0.05–0.2] Hz for blood

pressure waves.

N Detect systemic events by identifying the local minima and

maxima of the signal: The most straightforward way of

doing this is to compare the signs of the derivative function

to the left and right of each point in a time series. A local

maximum is characterized by the derivative being positive

in a neighborhood to the left of the point, followed by a

change in sign to the right, and vice versa for local minima.

The sign of the derivative to the left of t0 can be

approximated by sign(x(t0){x(t0{1)) and similarly for

the sign on the right.

Figure 2. Reduction of motion artifact. (a) In red, a NIRS time series contaminated by a motion artifact. Superimposed on it in black is the time
series resulting from artifact cancellation. (b) In red, a simulated NIRS time series (phase randomized noise, exponent 22) to which a simulated
motion artifact is added, matched to the one in (a) by amplitude and duration. In black is the time series resulting from artifact cancellation. (c) The
time series in (b) was analyzed using the SPM hemodynamic response model and the feasible generalized least squares FGLS (feasible generalized
least squares – i.e. whitening according to a power law fit + precoloring; 0.017 Hz) method described in Methods section 2.3, resulting in a p-value of
0.227. A set of 10000 artificial motion artifacts varying only in time of onset was generated and added to this time series and analyzed similarly. The
resulting histogram of p-values demonstrates that motion artifact negation is imperative for valid statistical analysis. After motion artifact cancellation
the correlation of these data to the original time series was 0.99660.004, and the resulting p-value was 0.23760.068 (reflecting the slight negative
bias shown in 1(c)).
doi:10.1371/journal.pone.0024322.g002

The NIRS Analysis Package

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e24322



N Identify time-invariant signature waveforms (i.e., ‘‘time-

warping’’) associated with each type of artifact by from local

extrema: We aim here to provide a time-invariant ‘‘signature’’

waveform associated with each type of systemic artifact (e.g. a

characteristic heart pulsation artifact). First, segment data

between local minima and maxima. Secondly, divide segments

into two groups: low to high phases (segments between

consecutive minima and maxima) and high to low segments.

Compute the average length (number of samples) of segments

in each group. Resample each of the low to high segments

(using linear interpolation) so they encompass the same

number of samples (the average length). Thus if a time series

of length k is to be resampled to comprise l timepoints, if we

denote the original time series x and the resampled one x̂x, then

it is assumed that x̂x(1) = x(1), x̂x(l) = x(k) and in general that

x̂x((i{1):(k{1)=(l{1)z1)) = x(i). Finally, average all the

resampled low to high segments. Repeat the same procedure

for the high to low phases. Combine the average low to high

segment with the average high to low segment to form one

time series: the time-warped wave form. If necessary, the low

to high and high to low segment values are adjusted so that the

ends will coincide (i.e. that the high to low template will end

Figure 3. A recursive algorithm for systemic artifact reduction. (a) A power spectrum of an activated NIRS channel (red) on a logarithmic
scale. The spectrum exhibits excess energy in several frequency bands associated with periodic systemic artifacts: heart pulsations (1–2 Hz in adults),
respiration (,0.4 Hz in adults), and blood pressure (Mayer) waves (,0.1 Hz). Superimposed on this are the spectra resulting from each successive
application of the algorithm described in Methods section 2.1: in light gray after heart beat is removed (i.e. using [0.6 2] Hz), in dark gray after the
second sweep, for respiratory artifacts (i.e. using [0.15 0.4] Hz), and finally in black after using [0.05 0.2] Hz for blood pressure waves. (b) The same plot
in linear scale. (c) After the first sweep the NIRS time series was averaged around the detected heart beat onsets. As can be seen in gray, the artifact is
all but gone as compared to averaging the original time series in the same fashion. (d) The above time series was averaged around stimulus onset
(see Methods section 2.1 for details) before (red) and after (black) the procedure. As shown, the resulting response doesn’t exhibit conspicuous
oscillatory components.
doi:10.1371/journal.pone.0024322.g003
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with the same value of the first value of the low to high

template).

N Resample this template according to the detected events:

‘‘stretch’’ and ‘‘contract’’ it to conform to detected local

minima and maxima using linear interpolation. This results in

an estimate of the artifact time series – e.g. a time series

containing pulsations occurring and the same time point as

heart pulsations detected by the method above.

N Remove the estimate of the artifact from the original time

series: For each time series, the estimate of the artifact in that

channel is subtracted from the original series.

N Average the resulting time series around event onsets (i.e. local

maxima) to obtain the residual.

N Remove the residual from the time series: Replicate and

realign the resulting template according to original local

maxima times and subtract.

The reason for utilizing both time-warped averaging as well

as event-triggered averaging is twofold. First, while time-

triggered averaging is by definition unbiased in the window

around the event onset (the length of which is the minimal

event-to-event time-difference) it does not sufficiently reduce

the average magnitude of the events preceding and following

the trigger. Second, time-warped averaging is slightly biased

within the event-onset window; however, not outside of it.

Therefore, the combination of the two is superior to the

application of each method on its own, as systematic biases are

thereby avoided.

For low frequency artifacts (i.e. respiratory and blood pressure

waves) it might be more prudent to average the band passed signal,

rather than the original, since the fact that these events are slow

means that they are relatively infrequent in the time series.

Therefore, low frequency signal modulations (e.g. response to

stimulation), which contain the lion’s share of energy of the signal

might not average out sufficiently. Although normally deoxyhe-

moglobin time series do not exhibit cardiac artifacts, at times

residual artifacts are nevertheless present. In such cases the

corresponding oxy-hemoglobin data can be used for artifact

detection and the remaining steps carried out as described.

2.2. Motion artifact correction
Motion artifacts are manifested in NIRS data as brief signal

inflections of one to two orders of magnitude larger in amplitude

than the hemodynamic signal. Several methods for motion artifact

detection and cancellation have been proposed in the NIRS

literature [12–15]. Unlike some of the global methods that modify

the entire time series (which would again adversely affect

dynamical analyses), we describe a more targeted approach below

that explicitly detects and approximates motion artifacts, rectifying

the signal only in the contaminated segments. The proposed

method includes two phases: detection of artifacts, followed by

their reconstruction. We found that for this purpose it is useful to

classify artifacts into two categories: spikes, which are near-

instantaneous signal inflections, and ripples, which are prolonged

events sometimes spanning up to several seconds.

As explicit detection of events requires a threshold, data are first

preprocessed in the following manner to enable standardization

and therefore automation of threshold selection:

N Highpass filter the time series. We applied a 4th order

Butterworth filter with a cutoff frequency of 0.01 Hz.

N Apply a z-transform to the time series. (i.e. remove the time

series’ mean and divide by its standard deviation)

To detect and cancel ripples we suggest the following

procedure:

N Detect ripple apexes: Segments of the data that exceeded a

fixed threshold (e.g., 6 four standard deviations) are identified

according to the magnitude of their integral (e.g., at least 10

consecutive data points have to exceed the threshold). In each

contaminated segment the maximum of the absolute value of

the segment was found. The resulting set of points mark the

apexes of the movement artifacts in the signal.

N Detect ripple onset and offset: First, define a search window

around each side of each ripple apex. Initially, set the window

size to a duration that is sufficient to encompass typical

artifacts (,10 seconds). Next, find within that window the

global opposite extremum point (maximum if the apex is

negative and vice versa). Set the window to encompass several

time points (e.g. 10) to the side of the extremum point (left if

detecting onset and vice verse). Then, segment the data within

the resulting window into three segments on each side, using a

greedy top down/bottom up algorithm (see Appendix S1).

This allows the detection of the change points marking the

onset and offset of artifacts (i.e., it is the end of the first segment

for onsets and the end of the second segment for the offsets).

N Approximate the artifact using piecewise continuous low order

polynomials: approximate each phase of the ripple with a 3rd

degree polynomial and subtract the estimate from the original

time series. This allows preserving the high frequency content

of the original time series (thus preserving the power law

structure of the signals’ power spectrum). This is important for

later estimation of the noise autocorrelation when inference is

carried out (see Methods section 2.3)

To detect and cancel spikes we suggest the following procedure:

N Find the local extrema of the time series (local minima and

maxima using the procedure described above)

N z-transform the magnitude of the peak to valley and valley to

peak changes.

N Find consecutive inflections that exceed a threshold (e.g. a

peak to valley segment followed by a valley to peak segment

both of a magnitude exceeding 2.5 standard deviations).

N Interpolate data in the implicated time points (consecutive

segments): As spike artifacts comprise a scant number of

samples (typically 3–4 time points at 10 Hz), more complex

reconstruction methods are uncalled for. Accordingly spike

detection is appropriate only for high sampling rates (e.g.

10 Hz, the standard sampling rate of many commercially

available NIRS systems)

Conceptually, it might seem reasonable to first treat movement

artifacts before proceeding to tackle systemic ones such as cardiac

pulsations. However, since the algorithm described above rests

upon simplification of the NIRS time series (i.e., segmentation into

non-overlapping line segments), we have found it more effectual to

first clean the signal from the heartbeat pulsations before

proceeding to detect movement artifacts.

2.3. Inference of activation
In this study we applied two GLMs, the SPM GLM [9], and a

FIR model comprising 20 seconds (in 10 Hz 200 basis vectors).

To combat serial correlation we used either feasible generalized

least square analysis (FGLS), prewhitening [23], or both.

In FGLS, ordinary least squares (OLS) is carried out first,

followed by estimation of the noise covariance utilizing the
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residuals under the assumption that they conform to a presup-

posed structure. In the case of NIRS data, this is sound practice

because the structure of the noise covariance in a given cortical

locus is known up to a single parameter, namely the exponent of

the power spectrum [24].

The procedure of estimating the noise covariance matrix

includes the following:

N Carry out OLS regression (see Appendix S2) and compute the

residuals e~y{ŷy~y{X (X tX ){1X ty

N Compute the power spectrum of the residuals S(f )~
DFT(e)DFT�(e) (* denotes the complex conjugate).

N Regress the power spectrum to a line after transferring to log

units: regress log(f) to log(S(f)) to find the slope b

N Compute the autocorrelation function: i.e., R̂R(t)~IDFT(f b)

N Build the covariance matrix: Note that the covariance matrix is

simply another way of arranging the autocorrelation function,

namely: COV (e)ij~R̂R(j{i)~Toeplitz(R̂R)

Once the covariance matrix is found, which we will denote V, it

can be inverted and used for GLM analysis.

b̂b~(X tV{1X ){1X tV{1y

C~(X tV{1X ){1

t0~
b̂bj

se(b̂bj)
~

b̂bjffiffiffiffiffiffiffiffiffiffiffi
ŝs2Cij

p t0j jwta=2,n{k{1

H0 : t0~0 H1 : t0=0

F0~
b̂btTt½TC{1Tt�{1

Tb̂b=r

ŝs2
F0j jwFa,r,n{k{1

Ho : Tb~0 H1 : Tb=0

ŝs2~SSRes=(n{k{1)~ytV{1y{b̂btX tV{1y

Precoloring was implemented by high-pass filtering (via a 4th order

Butterworth filter) the data and design matrix (sparing the initial

column to keep the regression scheme intact). If only precoloring

was applied, it was followed by OLS (see Appendix S2 for a

detailed account). If both precoloring and FGLS were combined,

after precoloring the exponent of the residual power spectrum was

estimated outside the cutoff frequency. Next, the resulting

spectrum was multiplied by the filtering kernel, after which

whitening was carried out as above using this modified spectrum.

3. NIRS Analysis Package (NAP), a publicly available
Matlab suite for NIRS analysis

The methods described above have been implemented in our

NIRS Analysis Package (NAP) a MATLAB (Mathworks, Natick MA)

toolbox, which can be downloaded at http://lsec.neuropraxia.

webfactional.com/Software_and_Instrumentation.html). NAP en-

ables any combination of cardiac, respiratory, blood pressure, and

motion artifact cancellation. While NAP is set to default

parameters that we have found to be most effective, motion

artifact thresholds can be user specified. Similarly, users can select

several predefined settings determining the frequency bands of

systemic artifacts according to age (adults, children of ages 5–12,

and toddlers of ages 2–5) as well as a custom option.

The toolbox enables researchers to apply either the standard

SPM HRF model (with or without derivatives), or an FIR model to

single subject data. Either whitening (according to a power law fit),

precoloring, or both can be specified to offset serial correlations in

the data. Apart from the de-noising methods described here and

single-subject FGLS analysis, NAP also includes group analysis

capabilities, using either hierarchical GLM analysis (Beckmann,

2003) or the SPM summary statistic method (Friston, 1999).

Finally, NAP enables simulation of hemodynamic responses to

arbitrary paradigms, and standalone registration of optode and

channel locations to the MNI space (the Montreal Neurological

Institute template) by using magnetic measurements of the optode

position according to the method described in [19].

NAP provides visualization of the results of GLM analyses as

SPMs overlaid on the cortical surface, both at the individual and

group level, as well as marking channel and optode loci. Also, NAP

includes a channel data plotting module. The channel plotter

allows plotting data with or without additional filtering, as well as

plotting data power spectra and event-triggered averages.

Results

1. Systemic artifact cancelation
The results of applying NAP’s systemic artifact cancelation to

NIRS data are shown in Fig. 3, in which data resulting from visual

stimulation with a flickering checkerboard stimulus (see Methods

section 1) were cleaned of heart pulsations, respiratory waves and

finally blood pressure waves in succession. In Fig. 3a–b, the power

spectra of the successive stages are shown, demonstrating that each

iteration of the algorithm abolishes the excess power in the

frequency band associated with each systemic artifact in turn. In

Fig. 3c, we show the result of averaging the time series around

detected heart pulsations before and after heartbeat cleaning,

illustrating the effectiveness of the method. Finally, Fig. 3d shows

the average response to a visual stimulus for this channel. The

original (red) exhibits noticeable cardiac pulsations as well as

respiratory waves. They are all but gone from the corrected signal,

but without the loss in high frequency power that would have

resulted from ordinary filtering (for a discussion of the effectiveness

of filtering in inference see Results section 3 and Friston et al. [23]

and Smith et al. [25]), which would negate the advantage of

temporal resolution for dynamical analyses obtained from NIRS.

On average systemic artifact cancellation resulted in an increase

in signal to noise by a factor of 4.33.

2. Motion artifact cancellation
To quantify the impact of motion artifacts on inference, we

simulated typical NIRS noise (i.e. colored, or 1=f noise), then

proceeded to carry out statistical inference on each simulated

artifact vector using a GLM (corrected for autocorrelation as

described in Methods section 2.3) representing a 15 sec stimulus

alternating with a 30 sec rest block design with TR = 0.1 sec using

an SPM-like HRF regressor [9]. We chose a specific instance of

noise whose significance under this model was p = 0.227, and

added to it a simulacrum of the observed artifacts both in

magnitude and duration at random times (Fig. 2b). We then

proceeded to carry out the same GLM analysis on 10000 noise

vectors of this type (i.e. each containing the original time series to

which a simulated artifact was added at a random time), and then

calculated the distribution of resultant p-values. As can be seen

(Fig. 2c), artifacts of this magnitude completely mask the
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underlying signal, thereby rendering subsequent GLM analysis

invalid, and therefore must be corrected for reliable statistical

inference.

We applied the method in Methods section 2.2 to the simulated

data, and analyzed them with the same model, which resulted in

p = 0.227 for the original noise vector. The resulting correlation

coefficient between the rectified time series and the original time

series was 0.996 on average (s.d. = 0.00043). The correction, as

shown in Fig. 2, enabled reasonable subsequent inference; the

resulting p-value was .2376.068 on average.

An example of the above de-noising procedure on a NIRS time

series is shown in Fig. 2a. It illustrates that artifacts can be

abolished without compromising functional changes, although

these involve abrupt changes that would be picked up by simply

applying a change point methodology. Rather, the proposed

method is custom-tailored to the statistical nature of the observed

motion artifacts and not simply to massive violation of stationarity

(as in a functional response). For a comparison to two other

publically available methods see Fig. S2.

3. Reliable inference of activation
To compare various schemes of inference, we simulated NIRS

resting data, or noise, by generating colored noise sampled at

10 Hz with exponents (slopes in the logarithmic representation of

the power spectra) in the range found in actual data. This was

achieved by phase randomization of the Fourier sinusoidal

components such that their combined magnitudes conform to a

desired power law [26]. Next, these data were fitted with a GLM

representing a 15–30 sec. block design (mimicking the design

employed in our study; see Methods section 1). Next an ANOVA

(for the FIR model) or a t-test (for the SPM-HRF model) is carried

out on the resulting coefficients, and the significance (p-value) for

each fit derived. Colored noise vectors are directly sampled from

the null hypothesis in the scenario of NIRS GLM analysis;

therefore, the resulting histogram of p-values should be flat, as is

the case when OLS regression analysis is carried out on white

noise. As can be seen in Fig. 1b, however, analyses of uncorrected

data result in severe bias.

In theory, the optimal strategy for dealing with biases resulting

from such autocorrelated noise is through whitening (see Methods

section 2.3). However as noted by Friston et al. [23], while

whitening is the most efficient method in theory, its use can

backfire in the case of model misspecification. They suggest that

this risk can be minimized by precoloring, multiplying both sides of

the regression problem by a linear filtering matrix (i.e., filtering

both data and the design matrix), rather than by a whitening

matrix derived from the covariance estimate. Unlike a recent

recommendation of precoloring as a method of choice in NIRS

analysis [i.e., 10], this approach proved to be ineffective on

simulated NIRS noise (see Fig. 1b). However, as noted by Smith

et al. [25], precoloring (especially with a high-pass filtering matrix)

can be combined with other whitening schemes, thus, possibly

enjoying the best of both worlds. As seen in Fig. 1(c–f), this

approach works quite well on the simulated noise and as we will

show now it is indeed far superior to both whitening and

precoloring on their own when applied to actual data. Addition-

ally, applying motion artifact and systemic artifact cancelation to

such noise did not compromise inference (Smirnov Kolmogorov

test on the p-value distributions, p..8 for SPM-HRF model, p..6

for the FIR model, n = 1000).

To check the robustness of the proposed FGLS scheme, we

carried out residual analysis after applying precoloring alone,

applying whitening alone, and finally applying both. Fig. 4a–b

shows exemplary residual autocorrelation functions; while both

whitening and precoloring reduce the autocorrelation in the

residuals, only the combination of both achieves satisfactory

results. The entire distribution of the residual autocorrelation

coefficients for this participant is shown in Fig. 4c. As a

comparison we applied the same design matrix to white noise

using OLS (Fig. 4d). Clearly, the combined FGLS scheme is

superior to both precoloring and whitening, and is nearly as

efficient as the optimal scheme in the uncorrelated scenario.

Contrary to our expectation, the FIR model was not effective in

resolving the underlying hemodynamic function; only in a small

fraction of the activated channels across participants did the

impulse response exhibit definite structure.

A representative response evoked by the visual stimulation is

shown in Fig. 5a. We show activation maps for the same

participant whose data underwent both the analysis suggested in

Ye et al. [10]- FIR-GLM augmented with precoloring, cutoff

0.17 Hz (Fig. 5b) - and analyses following the methods proposed

above (Fig. 5c). It is important to note that conventional analyses

lead to a great inflation in the estimated p-values: 46 out of 52

channels turn out to be significant after Bonferroni correction for

multiple comparisons at a threshold of p,0.01. In contrast, the

activation map resulting from using the abovementioned FGLS

scheme is well contained within the visual cortices at the same

threshold.

The average group response (oxyhemoglobin) is shown in

Fig. 5d, and although no filtering was applied to the data, there

remain no residual systemic effects. The group activation map for

the FIR model is displayed in Fig. 5e (p,0.01 corrected). Again

activation is restricted to the visual cortices, as appropriate.

Discussion

1. Limitations and future work
Contrary to our expectation, although the NIRS sampling rate

is over an order of magnitude faster than standard fMRI, we were

unable to resolve the hemodynamic response function using a FIR

GLM. Although this might result in part from utilizing a block

design, one possibility is that it results from the inherent NIRS

signal to noise ratio. If so, it might be appropriate to incorporate in

NAP, basis sets that lie somewhere in between the highly

constrained SPM model, and the uttermost flexibility of FIR

models – e.g. [27]. Future NIRS studies, using event-related

designs, will be able to address this issue.

Our first version of NAP is geared toward inference of

activation in a classical block or event-related design, since these

types of designs still represent the vast majority of studies currently

conducted. However in recent years there has been a growing

Figure 4. residual analysis. (a) Results of residual analysis (channel 23, participant 5). In red: the empirical autocorrelation of the residuals after
fitting the time series with an SPM HRF model with precoloring. In gray: the results of similar analysis, this time using whitening (see Methods section
2.3). In black: the results using both. In this example, while whitening substantially outperforms precoloring, it is nevertheless improved upon by the
combined approach. (b) Results of residual analysis (channel 46, participant 5). Same notation as (a). In this example, precoloring actually
outperforms whitening, but again the combined approach is superior to both. (c–f) A histogram of all residual autocorrelation values (lag.0) for this
participant using (c) precoloring (d) whitening (e) both. (f) histogram of all residual autocorrelation values (lag.0) resulting from applying the same
design matrix with OLS to white noise. As shown, the combined the FGLS approach we propose is very close to the theoretical limit of efficiency.
doi:10.1371/journal.pone.0024322.g004
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Figure 5. The results of the visual task (a): a representative time series (Participant 8, channel 26). Data were band-passed filtered for purposes
of presentation (b) the activation map (oxyhemoglobin data) for this participant, using a FIR model with precoloring (cutoff 0.017 Hz). 46 out of 52
channels are activated for p,0.01 (corrected for channel number). (c) the activation using a FIR model with whitening+precoloring (cutoff 0.017 Hz)
for p,0.01 (corrected for channel number). Now activation is restricted to the visual areas. (d) the average activation for all participants (channel 26,
n = 12). Note, that no residual oscillatory artifacts are present. (e) the activation map for all participants for the FIR model p,0.01 (corrected for
channel number). Group analyses were carried out using the method described in Beckmann et al. ([20], see appendix S3).
doi:10.1371/journal.pone.0024322.g005
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tendency to analyze imaging data either in task-free scenarios or

employing nonlinear analysis e.g. [28], connectivity [29] and

complexity [3,4] analyses. In line with this direction, future

versions of NAP will incorporate connectivity and complexity

analysis tools, which will extend NAPs flexibility in adapting to a

wider variety of experimental protocols.

2. Conclusion
We have described a complete analysis scheme for NIRS

functional data that comprises three major steps:

N Elimination of systemic artifacts, thus increasing signal to noise

and enhancing the ability to estimate the structure of the noise

covariance

N Elimination of motion artifacts, without which statistical

inference is not valid.

N Feasible generalized least squares inference by combining

whitening of the data, using the covariance structure resulting

from fitting a power law to the residuals of OLS regression,

and precoloring (i.e. highpass filtering the data as well as the

design matrix [23,25]).

Applying the described procedure both to simulated data as well

as visual stimulation data demonstrates that near optimal inference

can be achieved.

These methods have been implemented in NAP (http://lsec.

neuropraxia.webfactional.com/Software_and_Instrumentation.html)

a public domain MATLAB toolbox for NIRS analysis, visualization and

anatomical registration. It is therefore our hope that it will serve the

community of NIRS researchers and become a platform for additional

refinement and improvement of customized NIRS analysis methods.

Supporting Information

Figure S1 Global synchrony of systemic artifacts. Heart

pulsations taken from the four corner channels in a 52 channel

array support the assumption of synchrony for systemic artifacts.

Top: Oxy data from the flickering checkerboard data. Bottom:

data collected during viewing of a movie – frontal optode

positioning. Pulsations seem to be in perfect sync in the superficial

cortical layers seen by NIRS.

(TIF)

Figure S2 Comparison of NAP to other publically
available motion artifact reduction methods. Red –

original time series, black – modified time series (a-c) analysis of

the HbO time series originating from the same channel as fig. 2.

(a) With artifact reduction using NAP, artifacts are reduced

without compromising functionally related signal changes (b)

Artifact reduction using HOMER (i.e. using the method of [16]).

To achieve substantial noise reduction it was necessary to discard

10 principal components; however, use of 11 components nearly

abolished the functional signal (c) Artifact reduction using ([15];

http://www.alivelearn.net/nirs/CBSI.m). Spikes in the data are

removed. However this method comes at the expense of losing

information in the deoxy signal (i.e. the end result is a modified

oxy signal, precluding analysis of both the deoxy and total signals).

Further still the global changes in the time series can result in loss

of information about various signal features. (d-e) Analysis of the

time series of fig. 2e, with artifact reduction using HOMER. As

can be seen, in this case removal of 10 principal components does

not eliminate the artifact, yet compromises the functional signal

and even introduces additional spikes. This points at a major

weakness of PCA based denoising methods, which is the inability

to predefine satisfactory component selection criteria; the number

of components necessary to effectuate meaningful change in a time

series varies greatly. Moreover, criteria suggested in the literature

for selection of components are usually similarity to the task design

(e.g., [30]), which in the case of subsequent inference can

substantially bias the results. This of course is also true of selection

by visual inspection. Aside from having clear cut statistical criteria

for theresholding, the NAP movement reduction has the

advantage of being local, and hence applicable to wider scenarios

than functional imaging, e.g. analysis of resting state data and

connectivity.

(TIF)

Appendix S1 Top-Down/Bottom-Up Segmentation. De-

scription of the segmentation algorithm derived from [31]

incorporated into NAP’s motion artifact detection.

(DOC)

Appendix S2 Single subject GLM analysis with FGLS. A

detailed account of application of whitening using a power law

covariance structure to offset autocorrelated errors in single subject

inference of activation using a GLM.

(DOC)

Appendix S3 Group analysis using hierarchical GLMs
with FGLS. A detailed account of group analysis applying a

hierarchical GLM incorporating the single subject estimated error

covariances to achieve optimal inference (through whitening).

Method derived from [20].

(DOC)
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