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Abstract

Antibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study 
describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The 
faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the 
highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)−1, ermB and cfxA2. This 
study characterized the baseline resistome, the microbiome composition and the metabolic components described by the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The 
microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome 
cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically 
significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using 
these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study 
was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This 
study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. 
It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between 
animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even 
when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or 
the environment will remain in the absence of antibiotics.

Data Summary
The sequences have been deposited in the European Nucleo-
tide Archive (ENA) repository under the accession number 
PRJEB23112 and secondary accession ERP104845 and in EBI 
metagenomics project codes ERP104845 and PRJEB23112. 
These are open access data repositories. This also available on 
NCBI under Bioproject accession PRJEB23112 and ID 485570 
and author Maynooth University.

Introduction
The concept to date is that animals, in particular food animals, 
are potential reservoirs of antimicrobial resistance genes 
(ARGs) and transfer and survive in the gut microflora and 
transfer to human or animal pathogens [1]. In addition, the 
animal wastes, which are spread on agricultural land may 
cause additional routes of transfer of ARGs to humans via the 

food chain and water cycle [1]. Therefore, animals, especially 
animal faeces are of concern for human and environmental 
health. The use of antibiotics in animal husbandry and welfare 
have been linked to increasing antimicrobial resistance in 
animals and humans [2]. Antibiotics are used prophylacti-
cally at specific stages of pig growth, predominantly in order 
to treat diarrhea, which is especially common during the 
weaning stages in piglets [3].

There is a rich literature on the topic of the presence of specific 
ARGs, in faecal samples from animals and in environmental 
reservoirs such as soil or water. The ability to detect a wide array 
of ARGs has evolved in line with the evolution of microbiology 
from culture-based studies to PCR or qPCR-based and now 
metagenomic-based studies. Many studies of the animal faecal 
resistome have focused on the presence of ARGs or antibiotic-
resistant bacteria present in manure [1, 4, 5]. These studies have 
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detected a range of ARGs conferring resistance to all classes of 
antimicrobials. The initial studies investigated AMR in zoonotic 
pathogens but with the development of further molecular tools it 
was possible to analyse the presence of the ARGs within animal 
faecal or manure samples [1, 6, 7]. The advance of metagenomic 
analysis has enabled the detection and relative quantification of 
ARGs present in animal faeces such as pigs, chickens and cattle 
[8–11]. In addition, we can now compare the microbiome and 
resistome within the same samples. However, the number of 
studies is relatively low in comparison to that in humans. The 
characterization of antimicrobial resistance in environmental 
samples such as soil or water was technically challenging, but the 
use of molecular biological tools such as PCR or qPCR enabled 
the investigation and detection of reservoirs of ARGs in soil, 
water and anthropogenically amended environments [12]. 
The advent of metagenomic analysis has now also enabled the 
detection of a wide range of ARGs and the microbiome content 
of environmental samples of soil and water [13, 14]. The great 
advantage of using the same tools across different matrices is 
the ability to compare the data. When analysing AMR from a 
One Health perspective it is necessary to detect, quantify and 
compare AMR data across human, animal and environmental 
biomes. Metagenomic data may be used for this purpose. 
However, remaining gaps in our current tools, cost, skills 
and lack of standardization are still prohibitory to the routine 
surveillance of AMR in these biomes for many researchers and 
government organizations [15].

In order to analyse the risk of ARG transfer or create surveil-
lance data across countries, techniques such as PCR can be used, 
which is a cost-effective tool available to all. However, using 
PCR to analyse samples for all known ARGs would be costly 
and time-consuming. Therefore, a subset of indicator ARGs 
must be selected to identify the spread of antibiotic resistance 
through the food chain and across the globe. In order to select 
these ARGs it is essential that the baseline antibiotic resistome in 
healthy animals is known. One of the initial goals of the Human 
Microbiome Project was to characterize the healthy human 
microbiome as a baseline for reference and comparison studies 
[16]. This study aimed to firstly identify the baseline ARGs, 
the microbiome composition and the metabolic components 
described by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways in healthy pig faeces, without antibiotic 
selective pressures. Secondly, we aimed to identify if there were 
correlations between the resistome and microbiome. Thirdly, 
we wanted to use the metagenomic dataset generated to test 
the ability of the smaller sets of resistance genes suggested by 
Bengtsson-Palme to accurately rank environmental samples in 
terms of total (characterized and uncharacterized) resistance 
gene abundance and diversity [17].

Methods
Sample collection and DNA extraction
Fresh faeces were sampled at the rectum of 16 large white 
sows from the same farm. The samples were taken from each 
animal at the same time on one day. The animals were housed 
at the University College Dublin farm under the same housing, 

feed and environmental conditions. They had not been given 
antibiotics since weaning. Antibiotics must be prescribed by 
a veterinary practitioner in Ireland and no antibiotics were 
prescribed. The samples were transported immediately to the 
laboratory and stored at −80 °C. DNA was extracted from 
each sample in triplicate using the PowerSoil DNA extrac-
tion kit (Qiagen, Crawley, UK). The DNA concentrations 
were measured using NanoDrop technology and the Qubit 
dsDNA High Sensitivity Assay Kit (ThermoFisher Scientific, 
Dublin, Ireland).

DNA sequencing
Metagenome sequencing
The final DNA concentrations were 5 ng ul−1 in 100 ul. The 
sequencing was performed at the Illumina approved service 
provider University of Liverpool Centre for Genomics 
Research. The samples were sequenced in Illumina HiSeq 
4000 paired end sequencing (2×150 bp). We received between 
60 and 101 million raw reads per sample. The raw Fastq files 
were trimmed for the presence of Illumina adapter sequences 
using Cutadapt version 1.2.1 [18]. The option -O 3 was used, 
so the 3′ end of any reads, which match the adapter sequence 
for 3 bp or more were trimmed. The reads were further 
trimmed using Sickle version 1.200 with a minimum window 
quality score of 20. Reads shorter than 10 bp after trimming 
were removed.

Bioinformatics analysis
The trimmed, quality control approved reads were uploaded 
to the European nucleotide Archive (ENA). The uploaded 
files in ENA were transferred to EBI metagenomics 
(currently MGnify) for analysis of the metagenomic data 
[19]. The silva SSU/LSU version 128 was used by MGnify 

IMPACT STATEMENT

Antibiotic resistance may move between bacteria within 
the gut of animals and then be transferred to other 
bacteria that may cause infections in animals or humans. 
The aim of this work was to identify what antibiotic 
resistance genes are present in the faeces of pigs even 
when they have not been given antibiotics. We identified 
many genes that cause antibiotic resistance. Some of 
these were present in all faecal samples of the pigs and 
some were present in a small number. The significance 
of these findings is that using this information we know 
that if we find, e.g. ermB gene in a pig faecal sample that 
this is not unusual as it was in all our samples. However, 
if we find a qnrB gene, this is unusual, and something 
has happened in the gut of this pig to allow this gene to 
move into the bacteria present in the pig faeces. Why do 
we need to know this? We need to be able to see what 
genes move in order to identify what genes will poten-
tially move to bacteria that cause infections in animals 
and humans.
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to assign the eukaryotic as well as prokaryotic taxa [19]. 
The resulting classification system was compared to QIIME/
Greengenes and benchmarked using both mock community 
and real-world datasets to confirm validity of results [19].

Antibiotic resistance gene analysis
The resistome profiles of each metagenomic dataset were 
determined using the two-stage ARGs-OAP pipeline, 
with all parameters as default for the pipeline [20, 21]. All 
paired-end reads from each dataset were initially screened 
for potential ARG sequences by searching against the Struc-
tured ARG database (SARG) using ublast [22]. The SARG 
comprises both the ARDB and CARD [22]. The microbial 
community within each dataset was determined by identi-
fying 16S rRNA hypervariable regions using ublast, and 
copy number correction was performed for each dataset 
with the Copyrighter database [23]. Each set of potential 
ARGs per dataset were then annotated and classified using 
blastx on the ARGs-OAP Galaxy platform [20]. ARG types/
subtypes were identified and their abundances were calcu-
lated with normalization by the 16S rRNA gene sequence 
length, the number of 16S rRNA genes and the ARG refer-
ence sequence length. ARG abundance was expressed as 
‘copy of ARG per copy of 16S-rRNA gene’ (thereafter called 
‘ratio’).

Core vs accessory resistome assignment
The ARGs were assigned to the core resistome if the gene was 
present in all 16 samples. If a resistance gene was detected in 
one sample but less than 15 samples it was assigned to the 
accessory resistome.

Statistical and data analysis
The statistical analysis of the ARGs and correlation analysis 
of the ARGs was performed using the PAleontological 
STatistics version 3.2 (past) software [24]. Using ANOVA 
Mann–Whitney pairwise tests were performed for between-
group comparisons with Bonferroni correction for multiple 
comparisons separately for the datasets' core ARGs and 
accessory ARGs. Mann–Whitney pairwise test P-values are 
given for all Np=G(G-1)/2 pairs of groups. The asymptotic 
approximation described under the Mann–Whitney module 
is used [24].

(1)	 Raw P-values, uncorrected significance: the P-values 
from each individual pairwise test, marked in yellow if 
P<0.05, not corrected for multiple testing.

(2)	 Bonferroni corrected P-values: the values shown are 
P’=pNp. Marked as significant if P’<0.05.

The Bonferroni corrected P-values were used when describing 
significance in the results and discussion. The raw P-values 
and Bonferroni corrected P-values of the statistically signifi-
cant differences in the core or accessory resistomes of each 
sample compared with every other sample are described in 
the Supplementary Excel File (available in the online version 
of this article).

The Mantel test was performed within past using the Bray–
Curtis similarity index. The hierarchical cluster analysis of 
the microbiome OTUs was performed using Calypso version 
8.56 software [25].

Data availability
The sequences have been deposited in the European Nucleo-
tide Archive (ENA) under primary accession PRJEB23112 
and secondary accession ERP104845 and in EBI metagen-
omics project codes ERP104845 and PRJEB23112.

Results
Total DNA from faecal samples from 16 pigs were analysed 
using shotgun sequencing. The total reads per sample analysed 
(after quality control and trimming) ranged from 27 343 532 
reads to 39 515 474 reads.

Antibiotic resistomes
In total 257 ARGs were detected across all pig faecal samples. 
Samples 5 and 9 contained the highest variety of ARGs (n=187 
and 196, respectively). The relative abundance of ARGs per 
sample by antibiotic class were summed in order to investigate 
if the trends of antibiotic resistance were consistent across 
all samples (Fig. 1). All samples contained resistance genes 
from the same classes of antibiotics. Tetracycline resistance 
comprised the greatest proportions of ARGs present in all 
samples, followed by the macrolide, lincosamide, strepto-
gramin B class (MLSB), aminoglycoside and beta-lactam 
classes. Resistance to the remaining classes of antibiotics was 
relatively low. The relative abundances of the total classes 
and specific classes varied across the samples. Sample 6 
contained double the relative abundance of total resistance 
genes compared with samples 2, 7, 8 and 12. This was due to 
the presence of double the relative abundances of tetracycline 
resistance genes – tetQ and tetL – in comparison with the 
other samples. Samples 5 and 9 contained tenfold more genes 
classified as multi-drug resistance than the other samples.

The resistome consisted of the core resistome genes, which 
were present in all samples (n=56) and the accessory resistome 
genes (n=201) that were present in at least one but less than 
16 pigs. The core resistome genes comprised aminoglycoside 
(n=5), bacitracin (n=2), beta-lactam (n=5), fosmidomycin 
(n=1), MLSB (n=10), tetracycline (n=14), unclassified (n=2), 
vancomycin (n=8) and multi-drug resistance (n=9) genes. The 
multi-drug resistance genes were all efflux-associated genes. 
The tetracycline resistance genes were the largest group of 
genes in the core resistome. Of the five beta-lactam resistance 
genes detected three are not ARGs, but are enzymes involved 
in peptidoglycan biosynthesis [penicillin-binding proteins 
(PBPs)], the remaining two genes were blaCFXA2 and blaCFXA3.

Relative abundances of the core resistome
The core resistome contained 56 different resistance genes. 
The analysis of the data indicated that while these genes were 
present in all samples the relative abundances of the genes 
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Fig. 2. Relative abundances (copy of ARG per copy of 16S rRNA gene) of core resistome across 16 pig faecal samples.

Fig. 1. Relative abundance of ARGs per sample by antibiotic class.

varied greatly across samples (Fig. 2). The genes present at the 
highest relative abundances across all samples were tetW, tetQ, 
tet44, tet37, tet40, mefA, aadE, ant(9)−1, ermB and cfxA2. The 
similarity and distance matrices using Bray–Curtis grouped 

the samples based on the relative abundances of their core 
resistomes (Fig. 3). Samples 6 and 15 clustered together but 
away from the remaining samples. Both samples had elevated 
relative abundances of the tetQ gene. While sample 6 had 
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Fig. 3. Similarity and distance matrices of the total core resistomes 
using Bray–Curtis.

Fig. 4. Similarity and distance matrices of the individual ARGs within the core resistomes across all samples using Bray–Curtis.

a higher total abundance of the core genes, sample 15 was 
similar to the other samples. The core genes tetQ and tetW 
clustered together and away from all other genes based on 
similarity and distance matrices using Bray–Curtis (Fig. 4). 
In addition, the multi-drug resistance genes (mdt genes) and 
the PBPs, which are chromosomal genes rather than ARGs, 
clustered together and apart from most other genes.

Accessory resistome
The accessory resistome comprised of 201 genes that were 
detected in at least one sample but not present in all samples 
(Table S2). Classes to which antibiotic resistance genes were 
present only in the accessory resistome were sulfonamides, 
trimethoprim, quinolone and chloramphenicol antibiotics. 

The sul1 and sul2 genes were detected in 15 of 16 samples 
analysed. Each sample contained between three and eight 
different chloramphenicol resistance genes. Seven different 
dfrA trimethoprim resistance genes were detected across the 
samples. Both trimethoprim and quinolones are synthetic 
antibiotics and ARGs to these classes were detected in at least 
one sample. The qnrB gene was detected in samples 5 and 9 
and the qep resistance genes in sample 13.

The cluster analysis of accessory resistomes grouped samples 
5 and 9 together but separate from the remaining samples 
(Fig.  5). In addition, similar to the core resistome cluster 
analysis, samples 6 and 15 and samples 10 and 16 were similar 
to each other but less similar to all other samples. Samples 8 
and 12 also remain closely clustered but their nearest neigh-
bours have changed from sample 9 to samples 13 and 14. The 
clustering also identified that the level of similarity decreased 
in the accessory resistome relative to the core resistome, 
indicating that the variability across samples is greater in the 
accessory resistome.

The cluster analysis identified the rarely detected ARGs, 
which are distantly related to the remaining ARGs on the 
basis of presence in the samples, e.g. qepA. The qepA gene 
clustered closely with the oprA gene but both of these were 
distant to the remaining genes. The qnrB gene was clustered 
with three ARGs: a bleomycin resistance gene, dfrA16 and 
blaCMY-41. Similar to the core resistome several of the multi-
drug resistance genes (e.g. mdt genes) and the efflux genes 
(tolC, acrB), which are chromosomally associated, clustered 
together and apart from most other genes (Fig. 6).

There were no statistically significant differences between 
the relative abundances of the core resistomes. The accessory 
resistomes of both samples 5 and 9 were statistically signifi-
cantly different to all other samples except each other (Supple-
mentary Excel File). The accessory resistome of sample 16 
was significantly different to all other samples except 2, 3, 4 
and 11. The accessory resistome of sample 4 was significantly 
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Fig. 5. Sample similarity and distance matrices using Bray–Curtis of the relative abundances of accessory resistomes.

Fig. 6. Cluster analysis of the accessory resistome.

different to eight other samples (1, 5, 6, 7, 8, 9, 12 and 14). 
The specific difference in relative abundances of the ARGs can 
be seen in the heatmaps as a colour change (Supplementary 
Excel File). The core ARGs with changes comprising a tenfold 
difference in abundance between samples were aad(6), aadA, 
cfxA3, ermA, inuA, macB, vatB, tetA, tetL, tetP, vanB, vanG, 
vanS, vanW, vanX, vanY and rosA (Fig. 2).

Microbiome analysis
The phyla that comprised the bacterial microbiome in the 
Irish samples were the same phyla that comprised the samples 
obtained by Xiao et al. from pig faeces obtained from farms 
in France, China and Denmark (Fig. S1) in terms of type 
and relative abundances [11]. However, the Irish samples 
contained a lower relative abundance of unassigned taxa. The 
most abundant phyla in both sets of data were Firmicutes, 

Bacteroietes and Tenericutes. The total OTU microbiome 
hierarchical analysis of the Irish pig samples resulted in 
a cluster tree with a highly similar pattern to that of the 
accessory resistome cluster tree (Fig. 7). This indicates that 
the microbiome composition and the accessory resistomes 
of the healthy pig faeces are closely linked and have a high 
degree of association. Findings of Munk et al. identified that 
samples with similar taxonomic compositions tended to have 
similar resistomes in their studies of European pig faeces 
[26]. However, they did not analyse if there was a distinction 
between the core resistomes and the accessory resistomes.

Correlation between total resistomes and 
microbiomes
The correlations between total resistome and total OTUs 
(data from Bacterial kingdom to genera, Archaea, Eukaryotes, 
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Fig. 7. Hierarchical cluster analysis of total OTU in sample microbiomes.

viruses and bacterial taxa) were analysed for the 16 samples 
using the Mantel test [27, 28]. Pearson’s correlation coefficient 
(R) was positive (0.3861) and there was significant positive 
correlation (P-value=0.001).

Correlation between indicator ARGs and total 
resistome
Bengtsson-Palme suggested that a small sets of resistance 
genes may be used to accurately rank environmental samples 
in terms of total (characterized and uncharacterized) resist-
ance gene abundance and diversity [17]. He described ten 
genes as predictors for resistance (tetQ, aph3′-Ib, vanRG, 
tetV, dfrC, tetW, blaTEM, otrA, tetX, tetM) [16]. The ARGs 
tetQ, tetW, tetX and tetM were present in the core resistome 
and the ARGs aph3′-Ib, blaTEM and otrA were in the accessory 
resistomes of this study. The remainder were not detected in 
any sample (vanRG, dfrC, tetV). The Simpson diversity index 
is a measure of diversity, which takes into account the number 
of species present, as well as the relative abundance of each 
species in taxonomic terms. In our analysis the species are 
replaced by ARGs. Using the Mantel correlation between the 
Simpson diversity indices for the total antibiotic resistome in 
comparison to the genes present from the predictors ARGs 
(n=7) we identified a statistically significant (P=0.0005) 
positive correlation R=0.7656 between the indicator ARGs 
detected in our samples and the resistomes.

Functional capacity profiling of gut microbiome
Genes with a relative abundance of greater than 0.001 % were 
included for further analysis. This cut-off was chosen in order 
to remove any potential false positives due to low sequence 
copy number and compare with previous studies of animal 
gut metagenomes that had used this cut-off [29]. A total of 
1068 genes were assigned KEGG Gene Ontology (GO) terms 

in at least one of the 16 samples [data available on the EBI 
metagenomics project number ERP104845 (PRJEB23112)]. 
The GO terms were segregated into biological processes 
(n=411 GO terms), cellular components (n=51 GO terms) 
and molecular functions (n=606 GO terms).

The biological processes comprised 311 GO terms present 
in all samples. Almost all of these genes were involved in 
bacterial biological processes. However, all samples contained 
virion assembly genes and genes described as ‘response to 
antibiotics’. These animals were not treated or fed antibiotics 
since weaning thus the response to antibiotics is only the 
natural response in the microbiome of the gut. The presence 
of the remaining 100 genes varied in their functional identi-
ties. Fifty-five genes occurred in less than 50 % of the samples 
and 32 of these were present in samples 5 and 9 only. The 55 
genes included genes that would not normally be associated 
with the gut microbiome, for example, arsinite transport 
(samples 5, 9), bioluminescence (samples 8, 9, 14), chitin cata-
bolic processes (samples 3, 10, 11, 16), conjugation (sample 
9), microtubule-based movement (sample 3) and response to 
UV (samples 5, 14).

The cellular components comprised 51 GO terms from which 
36 were present in all samples and 15 were present in 14 or 
less samples. The cellular components with the highest pres-
ence were basic cellular components, including membrane, 
ribosome and cytoplasm. The presence of the septin gene 
and the viral capsid in all samples indicates the presence 
and importance of fungi and viruses as part of the pig faecal 
microbiome. In relation to antibiotic resistance, the presence 
of extrachromosomal circular DNA cellular components in 
all samples at relatively high gene abundance may indicate the 
presence of a relatively high amount of plasmid genes in all 
samples. However, although sample 9 contained conjugation-
associated genes it did not contain a higher abundance of 
extrachromosomal circular DNA cellular components. There-
fore, these extrachromosomal circular DNA genes may be 
an indication of genes associated with yeast or non-bacterial 
microbes [30].

The molecular function genes comprised 606 GO terms, of 
which 483 were present in all samples and 123 were present 
in 15 or less samples. The molecular functions common to 
all samples included ATP, DNA, RNA and protein binding, 
DNA replication and transport enzymes and metal-binding 
enzymes. The aminoglycoside 3-N-acetyltransferase resist-
ance gene was detected in 12 of the samples. Beta-lactamase 
activity was detected only in sample 10. Both samples 5 and 
9 contained the largest variety of molecular functions in the 
group of 123 genes, which totalled 79 and 87 genes, respec-
tively. The remaining samples contained between 26 and 67 
molecular function genes.

Discussion
This study provided the core and accessory resistomes of the 
healthy pig faeces under controlled conditions, in the absence 
of antibiotics, which may be used as a reference set for future 
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resistome studies. Scientists, government agencies and inter-
national organizations are currently trying to establish One 
Health surveillance protocols and lists of genes that may be 
used as indicators of antibiotic resistance pollution or transfer 
between animals, food, the environment and humans. The 
detection of the resistance genes must be translated into risk 
to environment or human or animal health.

There are several possible reasons for the presence of ARGs in 
the faecal microbiome of healthy non-antibiotic treated pigs, 
likewise for any animal.

The bacteria naturally contain ARGs on their 
chromosomes
Some of the bacteria present in the gut as natural flora 
naturally harbour ARGs as part of their chromosomal DNA. 
Whether intrinsic resistance genes should be classified as 
ARGs is under debate by microbiologists. This is due to the 
fact that, for example, any pathogen known to harbour an 
AmpC will not be treated with penicillin. Others argue that 
these genes may move into susceptible pathogens and are 
therefore relevant. This study identified a core resistome in 
the faecal samples comprising 56 ARGs. As the microbiomes 
of the pigs were stable across all animals it is the core ARGs 
that are most likely to be the intrinsic or chromosomally 
mediated ARGs.

ARGs are transferred to the gut bacteria through 
horizontal transfer
The ARGs most likely to be mobile are those of the accessory 
resistomes. For example, genes such as the plasmid-mediated 
quinolone resistance genes qepA and qnrB have never been 
reported as present on the chromosomes of the natural 
bacterial flora of the gut. Therefore, these are most probably 
imported into the gut via horizontal transfer. Whether these 
mobile resistance genes are transferred at or before birth or 
at some point during the lifetime is unknown. However, it is 
clear from the data that not all pigs contain the same mobile 
resistance genes and despite the similarities in their living 
conditions there is variation in their mobile resistomes.

The presence of ARGs has been selected due to 
factors other than antibiotic use
Antimicrobial resistance plasmids may contain virulence 
genes or other genes conferring a fitness advantage to the 
bacteria. These bacteria and their ARGs are then selected 
through non-antibiotic selective pressures and the ARGs are 
co-selected.

Animals are continuously with the ARGs and 
bacteria from their environments or food
The link between the presence of ARG and the source of 
ARG is very difficult in the real world. It is possible that the 
gut resistome is constantly seeded from external sources 
such as the living environment or feed sources. This would 
then ensure the constant provision of antimicrobial-resistant 

bacteria to the gut, even if the selective pressure of antimi-
crobials is absent.

Two previous studies measured the inter-country variations 
in the resistomes of pig faeces and determined the ARGs 
detected in several European countries and China [11, 26]. 
These studies used pig farms with varying levels of antibiotic 
use. The study of the Xiao et al. identified that ARGs with 
the highest prevalence were those associated with resist-
ance to bacitracin, cephalosporin, macrolide, streptogramin 
B or tetracycline, and therefore could be described as the 
core resistome [11]. The additional core ARGs to chloram-
phenicol, gentamycin B, kanamycin and neomycin were also 
present in all pigs but with a much lower abundance in the 
French and Danish pigs compared to the Chinese pigs. This 
study of Irish pigs identified a higher variety (n=56) of core 
ARGs. The core resistome comprised very similar families to 
the Xiao et al. study conferring resistance to the bacitracin, 
MLSB, tetracycline and aminoglycosides antibiotic classes, 
in addition the core resistomes of the Irish pigs contained 
beta-lactam, fosfidomycin and vancomycin ARGs [11]. The 
same chloramphenicol resistance genes were not detected in 
all Irish samples and therefore, were not part of the Irish core 
resistome, however, each sample contained at least one ARG 
associated with chloramphenicol resistance.

The European study of Munk et al. also detected a core 
resistome comprising 33 ARGs [26]. Eight of the ARGs 
that differed in abundances between countries conferred 
resistance to a subset of the classes of antibiotics described 
previously by Xiao et al. and in this study: chloramphenicol, 
macrolides, metronidazole, linezolid, tetracycline and amino-
glycosides [cat(pC194), ermB, ermF, inuA, nimJ, optrA, tet(40) 
and aac(6′)-Im] [11]. Within these genes cat(pC194), nimJ, 
optrA and aac(6′)-Im were not detected in any Irish sample. 
The remaining genes [ermB, ermF, inuA and tet(40)] were 
detected in all samples and were present in the most abundant 
50 % of ARGs in all samples. Similar to these two studies we 
also did not detect either the colistin resistance mcr-1 or the 
mcr variant genes or the blaNDM genes.

The Xiao et al. study identified fluoroquinolone resistance 
genes only in the Chinese samples and not in the French or 
Danish pig faecal samples [11]. The European study of poultry 
and pig faeces described the fluoroquinolone resistance 
genes only in the poultry samples [26]. Therefore, this study 
describes the first European detection of fluoroquinolone 
resistance genes (qnrB and qep) in pig faecal metagenomes.

The ARGs present in this study that were recommended by 
Bengtsson-Palme as predictors for resistance were positively 
correlated (statistically significant) with the total resistomes 
of the samples [17]. Therefore, these ARGs were predictors 
of resistance in the healthy pig faecal metagenomes. The 
correlation between total resistome and total microbiome 
OTUs in this study was positive and there was significant 
positive correlation. This has demonstrated that the micro-
biome composition influenced the resistome composition. 
However, the converse may also be true in that the micro-
biome could be shaped in part by the resistome present, and 
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some organisms may not have been able to compete due to 
the presence of these genes or the production of products 
from these genes. The microbiome of environmental and 
animal samples has previously been shown to be significantly 
correlated with the antibiotic resistomes of environmental, 
human and animal samples [26, 31, 32]. The phylogenetic 
cluster tree of the genera of each sample separated samples 5 
and 9 from the other samples. This was also the same in the 
cluster analysis of the accessory resistome. While each study 
has demonstrated the correlation between microbiome and 
resistome, it is yet to be determined which specific genera 
are key to the resistome or if there are clusters of genera 
contributing to the differing resistomes. Metagenomic and 
other molecular biology-based techniques have limitations 
and advantages over culture-based techniques in the analysis 
of the antibiotic resistome of agricultural ecosystems [33]. 
Whilst the core and accessory ARGs present in a wide global 
spread of pig faecal samples has now been established, tech-
niques such as epicPCR may provide the way to identify 
the bacterial hosts of these ARGs across a range of hosts or 
environments [34].

This study identified a core and accessory resistome present 
in a cohort of healthy pigs. It highlights the presence of 
antibiotic resistance in the absence of antibiotic selective 
pressure and the variability between animals even under 
the same housing, food and living conditions. The correla-
tion between total resistome and total microbiome in this 
study was positive and statistically significant. Therefore, the 
microbiome composition influenced the resistome composi-
tion. Using the metagenomic dataset generated we tested the 
ability of the smaller sets of resistance genes suggested by 
Bengtsson-Palme to accurately rank environmental samples 
in terms of total (characterized and uncharacterized) resist-
ance gene abundance and diversity [17]. The subset of ARGs 
suggested by Bengtsson-Palme as potential indicator ARGs 
correlated well with the total metagenomic resistomes in this 
study [17]. In addition, we would suggest including some of 
the rarely found ARGs in healthy animals in Europe or the 
environment such as those suggested by Berendonk et al.[12]. 
This combination would enable the identification of changes 
in the resistome in terms of the common resistome and the 
emergence of problem ARGs such as blaNDM in animals or 
the environment.
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