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NK cells contribute to early defenses against viruses through their inborn abilities
that include sensing of PAMPs and inflammatory signals such as cytokines or
chemokines, recognition, and killing of infected cells through activating surface
receptors engagement. Moreover, they support adaptive responses via Ab-dependent
mechanisms, triggered by CD16, and DC editing. Their fundamental role in anti-
viral responses has been unveiled in patients with NK cell deficiencies suffering from
severe Herpesvirus infections. Notably, these infections, often occurring as primary
infections early in life, can be efficiently cleared by NK, T, and B cells in healthy hosts.
Herpesviruses however, generate a complicated balance with the host immune system
through their latency cycle moving between immune control and viral reactivation.
This lifelong challenge has contributed to the development of numerous evasion
mechanisms by Herpesviruses, many of which devoted to elude NK cell surveillance
from viral reactivations rather than primary infections. This delicate equilibrium can be
altered in proportions of healthy individuals promoting virus reactivation and, more
often, in immunocompromised subjects. However, the constant stimulus provided
by virus-host interplay has also favored NK-cell adaptation to Herpesviruses. During
anti-HCMV responses, NK cells can reshape their receptor repertoire and function,
through epigenetic remodeling, and acquire adaptive traits such as longevity and
clonal expansion abilities. The major mechanisms of recognition and effector responses
employed by NK cells against Herpesviruses, related to their genomic organization will
be addressed, including those allowing NK cells to generate memory-like responses. In
addition, the mechanisms underlying virus reactivation or control will be discussed.
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INTRODUCTION

Human NK cells are innate lymphocytes that rapidly provide defenses against tumors and viral
infections allowing pathogen elimination or limiting viral spread (Vivier et al., 2011; Della Chiesa
et al., 2014b). Their fast responses mainly rely on the expression of multiple germ-line encoded
activating receptors among which natural cytotoxicity receptors (NCRs) and NKG2D play the
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most relevant role in the recognition and killing of infected cells
(Bottino et al., 2000; Moretta and Moretta, 2004; Lanier, 2015).
The responses elicited by activating receptors are integrated
and balanced by the engagement of inhibitory receptors
mainly depending on those specific for HLA class I (HLA-
I) molecules that include the Killer Ig-like Receptors (KIRs),
able to distinguish among allotypic determinants of HLA-A, -B
and -C (Bottino et al., 1996; Parham, 2005), the CD94/NKG2A
heterodimer, specific for the non-classic HLA-I molecule HLA-
E (Braud et al., 1998), and LILRB1 (or CD85j/ILT-2) broadly
recognizing HLA-I alleles (Colonna et al., 1997).

Upon infection many viruses, including Herpesviruses, target
T cell function via specific interactions with TCR and HLA-
I molecules. Indeed, several viral products interfere with host
TAP proteins and HLA-I expression, leading to reduced CTL-
mediated recognition of infected cells, and decreased naïve T
cell activation (Hill et al., 1995; Imai et al., 2013; Schuren et al.,
2016). Conversely, downregulated HLA-I expression renders
infected cells susceptible to NK-cell killing (Huard and Fruh,
2000; Tortorella et al., 2000). However, activating counterparts
of HLA-I-specific receptors, namely activating KIRs (aKIRs), and
CD94/NKG2C can also importantly contribute to defense against
virus (Della Chiesa et al., 2015).

Human NK cells are usually divided in two major populations,
the CD56bright subset expressing NKG2A, lacking KIRs and
CD16 (i.e., a low affinity Fcγ Receptor) and the CD56dim subset
expressing high CD16 and variable proportions of KIRs, NKG2A,
LILRB1, CD57, and NKG2C (Cooper et al., 2001; Caligiuri,
2008; Freud et al., 2017). These two subsets differ in their
proliferative potential, cytotoxic activity, cytokine production,
and homing to peripheral tissues (Moretta, 2010; Castriconi
et al., 2018) thus offering different anti-viral defenses. Notably,
CD56dim NK cells, besides high cytotoxicity, can also rapidly
produce IFN-γ and TNF-α upon receptor-induced cell triggering
(De Maria et al., 2011).

The critical role of NK cells in viral defense has been
disclosed by the higher susceptibility to viral infections, caused
primarily by Herpesviruses, in individuals affected by congenital
immunodeficiencies in which NK cells are absent or defective
(Orange, 2002; Etzioni et al., 2005; Notarangelo and Mazzolari,
2006; Mace and Orange, 2019). Herpesviruses are a family of
dsDNA viruses, divided in three subfamilies, i.e., α- (HSV-
1, HSV-2, and VZV), β- (CMV, HHV6, and HHV7) and
γ-Herpesvirus (EBV and KSHV), that differ for their genetic
content, infection sites and pathogenesis, while sharing the ability
to persist in the host in a latency status after resolution of a
primary infection (De Pelsmaeker et al., 2018). The mechanisms
by which Herpesviruses establish and maintain latency have not
been completely elucidated.

In an evolutionary perspective, our immune system and
Herpesviruses have co-evolved influencing reciprocally. During
this process the generation of several viral immunoevasion
mechanisms has been favored. Most of these mechanisms aim at
limiting and suppressing NK-cell responses, which point again
to the relevance of these lymphocytes in Herpesvirus control.
Although viral immunoevasion strategies are crucial in NK-
Herpesvirus interactions, they will not be specifically addressed

here and have been exhaustively reviewed elsewhere (Corrales-
Aguilar et al., 2014; De Pelsmaeker et al., 2018).

On the other hand, the host-Herpesvirus interaction has
exerted a strong pressure on our immune system likely favoring
the generation of unexpected memory responses by NK cells
and their adaptation to Herpesviruses, in particular to CMV
(Muntasell et al., 2013; Sun et al., 2014).

OVERVIEW OF THE MAIN ACTIVATING
RECEPTORS REGULATING
NK-MEDIATED RECOGNITION AND
EFFECTOR RESPONSES TO
HERPESVIRUS

The main mechanisms by which NK cells can recognize and
eliminate virus-infected cells involve the employ of (i) activating
receptors for cellular ligands often overexpressed upon infection,
(ii) activating receptors for virus-derived ligands, (iii) activating
receptors, i.e., NKG2C and aKIRs, recognizing virus-modified
HLA-I molecules, and (iv) CD16-mediated antibody-dependent
cellular cytotoxicity (ADCC) (Hammer et al., 2018b). Almost
all these mechanisms can be applied to NK cells in Herpesvirus
control (Figures 1A–C).

The importance of certain activating receptors in Herpesvirus
elimination has been indirectly revealed by the numerous
proteins encoded by the different Herpesviruses aimed at limiting
activating receptors function, in most cases by downregulating
the respective cellular ligands on infected cells. In this context,
the activating receptor NKG2D that recognizes stress-induced
cellular ligands often overexpressed upon viral infection or
tumor transformation (i.e., MIC-A, MIC-B, and ULBPs) (Lanier,
2015), is central in NK-mediated immune responses against
virtually all Herpesviruses, namely HSV-1, VZV, CMV, HHV6,
HHV7, KSHV, and EBV, all of which encode molecules
downregulating NKG2D ligands (Wu et al., 2003; Thomas et al.,
2008; Nachmani et al., 2009; Schneider and Hudson, 2011;
Campbell et al., 2015; Schmiedel et al., 2016). Besides NKG2D,
other non-HLA-I-specific activating receptors can play a role
against several Herpesviruses suggesting a common strategy to
eliminate these pathogens. In particular, the three NCRs (i.e.,
NKp46, NKp30, and NKp44) are involved in killing HSV-1-
infected fibroblasts. The upregulation of cellular NCR ligands
upon HSV-1 infection is resulted responsible for the increased
susceptibility to NK-mediated cytotoxicity (Chisholm et al.,
2007). Interestingly, NK-mediated killing was appreciable even
before HLA-I downregulation had occurred, suggesting that,
in NK-HSV-1 interactions, activating signals can overcome
inhibitory receptors signaling (Chisholm et al., 2007). In this
context, increased NCRs expression and function have been
observed in NK cells differentiating in vitro from CD34+
precursors in the presence of HSV-infected myelomonocytes,
further strengthening the relevance of the NCRs-NCR ligands
axis against HSV (Costa et al., 2009).

The NCR NKp30 also participates in recognition and killing
of CMV- and HHV6-infected cells. Its involvement is again
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FIGURE 1 | NK cell-mediated mechanisms of recognition and responses to Herpesviruses. (A) Several non-HLA-I-specific activating receptors and co-receptors,
i.e., NCRs, NKG2D, DNAM-1, 2B4, and NKp80 play an important role in the elimination of cells infected by different Herpesviruses through the recognition of cellular
ligands expressed on target cells. (B) NK cells can efficiently kill opsonized Herpesvirus-infected cells through antibody-dependent cellular cytotoxicity (ADCC) via
CD16 engagement by the Fc fragment of anti-viral immunoglobulins. (C) NKG2C and aKIRs play a role mainly in the recognition of CMV-infected cells. The
underlying recognition mechanisms are based on interactions with cognate HLA-I molecules. NKG2C shows enhanced interaction to HLA-E presenting peptides
derived from viral UL-40 or HLA-G leader sequences, while, among aKIRs, KIR2DS1 seems to better recognize HLA-C2, modified upon CMV infection or presenting
EBV-derived peptides. (D) NK cells express different functional TLRs involved in the recognition of PAMPs derived from Herpesviruses. In particular TLR2 alllows
NK-mediated recognition of envelope glycoproteins from HSV and CMV, while TLR9 can recognize viral CpG sequences shuttled by KIR3DL2 from the surface of NK
cells to endosomes. APC-derived cytokines and reciprocal interactions with these immune cells (e.g., dendritic cells and macrophages) can further enhance NK cells
effector function against Herpesviruses.

testified by viral evasion mechanisms that downregulate B7-H6,
a major NKp30 cellular ligand (Brandt et al., 2009), possibly
expressed on infected cells (Schmiedel et al., 2016; Charpak-
Amikam et al., 2017). In addition, NKp30 itself is the target of
a CMV-encoded protein, pp65, that by binding to this NCR can
induce its dissociation from the signaling molecule CD3ζ, thereby
inhibiting NK-mediated killing of CMV-infected fibroblasts and
dendritic cells (DCs) (Arnon et al., 2005). Along this line, a role
for the NKp44-NKp44 ligand signaling pathway against KSHV is
suggested by NKp44 ligand downregulation during lytic infection
in KSHV-infected cells (Madrid and Ganem, 2012).

Similar to NKG2D and NCRs, the activating co-
receptor DNAM1 recognizing PVR and Nectin-2 (CD112)

(Bottino et al., 2003), plays a role against different Herpesviruses,
i.e., CMV, EBV, and HSV-2 as demonstrated by different
evasion strategies reducing DNAM-1 signaling (Tomasec
et al., 2005; Prod’homme et al., 2010; Grauwet et al., 2014;
Williams et al., 2015).

While NKG2D, DNAM-1, and NCRs serve against several
Herpesviruses, other activating NK receptors are specifically
involved in the recognition/elimination of cells infected only
by a given Herpesvirus. An example is the co-receptor 2B4 (or
CD244) which requires the adaptor protein SLAM-associated
protein (SAP) to deliver activating signals upon engagement
with its ligand CD48 (Nakajima et al., 1999; Bottino et al.,
2000). 2B4 engagement is crucial to NK-mediated killing of
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EBV-infected B cells. Indeed, B cells that are CD48 high,
represent a preferential target for this Herpesvirus (Chijioke
et al., 2016). A role for 2B4 was actually revealed by the
severe consequences of primary EBV infection in individuals
suffering from X-linked lymphoproliferative disease (XLP-1),
a congenital immunodeficiency in which SAP is absent or
defective (Sayos et al., 1998), resulting in inhibitory signals from
2B4 impairing NK-mediated B-EBV elimination (Parolini et al.,
2000). Interestingly, NK cells can respond efficiently to EBV-
infected B cells in early lytic cycle and NK-mediated killing
involves also NKG2D and DNAM-1 (Chijioke et al., 2013;
Williams et al., 2015). However, EBV-infected B cells in latency
or even in late lytic stages are resistant to NK attack, due
to viral evasion mechanisms independent of NK cell function
(Williams et al., 2015).

Finally, a role for the activating co-receptor NKp80 in the
recognition of KSHV-infected cells was also proposed, based on
the downregulation of its ligand AICL upon KSHV infection
(Thomas et al., 2008).

Overall, in most instances, the activating receptors described
above allow NK cells to eliminate infected cells by the
recognition of cellular ligands expressed on target cells, while
the engagement of activating receptors by virus-encoded ligands
has not been demonstrated for Herpesviruses, at variance with
influenza or vaccinia virus whose products hemagglutinin,
and neuraminidase are directly recognized by NKp46 and
NKp44 (Mandelboim et al., 2001; Ho et al., 2008). On the
contrary, the HLA-I specific receptor NKG2C can recognize viral
ligands although the mechanisms described so far are based on
interactions with viral peptides bound to HLA-E molecules on
CMV-infected cells. NKG2C is also involved in generating CMV-
induced adaptive responses and will thus be discussed in more
detail in the dedicated paragraph.

Another major mechanism employed by NK cells in
controlling both primary viral infections, when adaptive
immunity is already established, and secondary reactivations
(either subclinical or clinical), relies on the activating
receptor CD16 (FcγRIIIa), the low-affinity receptor for the
immunoglobulin Fc fragment (Braud et al., 1998; Vivier
et al., 2011). Upon CD16 engagement, NK cells can efficiently
eliminate opsonized infected cells via ADCC. The relevance
of this mechanism in providing defense against Herpesvirus is
underlined by severe EBV and VZV infections associated to a
dysfunctional mutated CD16 (de Vries et al., 1996; Grier et al.,
2012). Furthermore, a polymorphism of the CD16 gene resulting
in the surface expression of a high affinity CD16 receptor (i.e.,
the CD16A-158V/V polymorphism) is associated to enhanced
NK-mediated ADCC and confers protection from clinical HSV-1
reactivation (Moraru et al., 2012, 2015). Not unexpectedly, this
highly effective anti-viral mechanism is targeted by multiple
evasion strategies, as both HSV and CMV encode Fcγ-binding
proteins that act as decoy receptors interfering with IgG binding
to CD16 and thus attenuating ADCC (Johnson et al., 1988;
Atalay et al., 2002; Corrales-Aguilar et al., 2014; Costa-Garcia
et al., 2015). However, it has been recently described that a viral
Fcγ-binding protein, gE, which is expressed on the cell surface
by HSV-infected cells, can react with non-specific IgG thus

generating a “Fc-bridge” that instead favors NK-mediated ADCC
responses (Dai et al., 2017; Dai and Caligiuri, 2018).

NK cells can importantly contribute to early viral defense not
only by exerting cytolytic activity against infected cells but also
through their ability to sense pathogens via toll-like receptors
(TLRs) (Sivori et al., 2004). NK cells express different functional
TLRs among which TLR2, TLR3, and TLR9 seem to be primarily
involved in the recognition of pathogen-associated molecular
patterns (PAMPs) derived from Herpesviruses, such as double
stranded viral nucleic acids or structural proteins (Adib-Conquy
et al., 2014; Della Chiesa et al., 2014b). In particular, NK cells can
directly recognize envelope glycoproteins from both CMV and
HSV virions through TLR2 (Kim et al., 2012; Muntasell et al.,
2013). Upon TLR2 engagement, NK cells become activated, and
produce IFN-γ, further promoting anti-viral immune responses.
Indeed, NK cells have been detected in herpetic lesions in close
contact with CD4 T cells, thus possibly contributing to directly
shaping adaptive responses (Kim et al., 2012). Interestingly, TLR9
polymorphisms are associated with susceptibility to infection,
with the T-1237C polymorphism that causes altered TLR9
expression, being predictive of susceptibility to CMV infection
(Carvalho et al., 2009). NK cells could thus play a role in TLR9-
mediated defense to CMV, as they can efficiently respond to TLR9
agonists such as CpG-ODNs. Remarkably, these TLR9 ligands
can be bound at the cell surface by KIR3DL2, a member of
the KIR family, and then shuttled by receptor internalization to
endosomes where TLR9 is localized (Sivori et al., 2010).

Thus, in a scenario where NK cells are recruited to viral
infection sites, their effector function (e.g., cytotoxicity, IFN-
γ, and chemokine production) can be enhanced by combined
exposure to microbial products and cytokines available in the
inflammatory milieu, such as IL-12 or IL-18. In this context,
TLRs- and/or cytokine-activated NK cells can reciprocally
interact with other immune cells responding to the same PAMPs
via TLRs, such as DCs or macrophages (Figure 1D). This cross-
talk can occur in the early phases of anti-viral responses (Andrews
et al., 2005; Vogel et al., 2014) and can also contribute to DC
editing and/or promote DC maturation (Della Chiesa et al., 2005,
2014b; Ferlazzo and Morandi, 2014), thus possibly amplifying
and regulating adaptive responses to Herpesviruses.

It should be noted however, that TLR-mediated sensing of viral
PAMPs by NK cells has not been definitively settled yet, similar to
the contribution of TLRs on DC and macrophages to the response
to NK cells. A more extensive review work and additional original
work will be needed to appropriately address this issue.

“ADAPTIVE” NK-CELL RESPONSES TO
CMV

The conventional view of NK cells as short-lived innate
lymphocytes, unable to retain any kind of memory has been
considerably challenged in the last years, based on several studies
demonstrating that NK cells are capable of adapting to viruses
and keep memory of past infections (Sun and Lanier, 2009; Sun
et al., 2011, 2014; Della Chiesa et al., 2015, 2016). Interestingly,
the first evidence that NK cells can develop memory responses
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to pathogens was against the Herpesvirus CMV, initially in mice
(Hadinoto et al., 2009) and later on in humans (Della Chiesa et al.,
2012; Foley et al., 2012b; Muccio et al., 2016).

In CMV-seropositive individuals a striking expansion of
NK cells expressing the HLA-E-specific activating receptor
CD94/NKG2C was observed 15 years ago (Guma et al., 2004).
Further studies on NK cells developing in hematopoietic stem
cell transplation (HSCT) recipients showed that indeed CMV is a
powerful driver of NK cell differentiation favoring the expansion
of KIR+NKG2A−LILRB1+ mature NK cells expressing the
marker of terminal differentiation CD57 (Della Chiesa et al.,
2012; Foley et al., 2012a,b; Locatelli et al., 2018).

In the HSCT setting the CMV-induced reconfiguration also
revealed features typical of adaptive immunity, i.e., virus-induced
clonal expansions and long-term persistence that led to the
concept of “adaptive” or “memory” NK cells (Sun et al., 2011;
Della Chiesa et al., 2016; Rolle and Brodin, 2016). This peculiar
CMV-driven NK cell subset is characterized by epigenetic
modifications, altered expression of signaling molecules and
transcription factors that modulate their phenotype and function
(Luetke-Eversloh et al., 2014; Lee et al., 2015; Schlums
et al., 2015). The generation of this population likely involves
interactions between NKG2C and its ligand HLA-E that usually
binds peptides derived from HLA-I leader sequences. However,
in CMV-infected cells, HLA-I molecules are downregulated by
viral evasion mechanisms, while HLA-E can be stabilized and
upregulated by peptides derived from the viral-encoded protein
UL40 leader sequence, thus stimulating NKG2C+ NK cells and
favoring adaptive NK cells expansion (Guma et al., 2006; Rolle
et al., 2014). Interestingly, recent studies demonstrated that
NKG2C+ NK cells can distinguish subtle differences between
peptides bound to HLA-E molecules, showing stronger responses
to a particular peptide derived from rare variants of CMV-
encoded UL40, precisely mimicking the peptide derived from
HLA-G leader sequence (Hammer et al., 2018a; Rolle et al., 2018).
This peptide-specificity and the avidity selection of NK cells
during CMV infection recently reported in mice (Adams et al.,
2019), further support the concept that CMV recognition by NK
cells can elicit responses akin to T cell-adaptive responses.

In addition to NKG2C-HLA-E interactions, CD2-
costimulation, and different cytokines such as IL-12, IL-18,
and IL-15 are involved in adaptive NK cells generation and
proliferation (Hammer et al., 2018a; Rolle et al., 2018).

Upon CMV-induced reconfiguration, NK cells display
specialized effector function, showing in particular enhanced
ADCC abilities. This increased response to Ab-coated targets
has been associated to the downregulated expression of the
signaling protein FcεRγ which represents a common feature
in CMV-adapted NK cells (Lee et al., 2015; Schlums et al.,
2015; Muntasell et al., 2016; Muccio et al., 2018). Although the
generation of this subset seems to be promoted exclusively by
CMV, its increased ability to eliminate Ab-coated infected cells
through enhanced ADCC could keep under control infections
and reactivations caused by other viruses, as suggested by
studies reporting efficient ADCC-mediated killing of opsonized
EBV- and HSV-infected targets by adaptive NKG2C+ NK cells
(Costa-Garcia et al., 2015; Moraru et al., 2015).

Interestingly, adaptive NKG2C+ NK cells are also capable
of presenting CMV antigens through HLA-DR to autologous
memory CD4 T cells (Costa-Garcia et al., 2019), regulating T-cell
mediated adaptive responses to CMV and possibly contributing
to control viral reactivations.

Besides the central role played by NKG2C, aKIRs are
also involved in CMV recognition and generation of adaptive
responses (Beziat et al., 2013; Della Chiesa et al., 2015). Indeed,
CMV infection can promote the expansion of mature NK cells
expressing aKIRs in patients receiving Umbilical Cord Blood
transplants from NKG2C−/− donors, thus lacking NKG2C
expression (Della Chiesa et al., 2014a). The involvement of aKIRs
is in line with observations in mice where NK cells expressing
the activating receptor Ly49H, homolog of aKIR, expand in
response to MCMV infection and confer long-term protection
to secondary challenges through the recognition of the viral-
encoded ligand m157 (Arase et al., 2002; Hadinoto et al., 2009).
Moreover, in humans, a reduced risk of CMV reactivation was
associated to the presence of aKIRs in both hematological and
solid organ transplant patients supporting their role in anti-
viral defense (Stern et al., 2008; Zaia et al., 2009; Mancusi
et al., 2015). The exact mechanisms underlying the recognition
of infected cells by aKIRs has not been precisely elucidated,
however a role for KIR2DS1 in the recognition of its ligand
HLA-C2, modified by CMV in infected fibroblasts, has been
recently reported (van der Ploeg et al., 2017). Interestingly,
KIR2DS1 tetramers were also described to efficiently interact
with EBV-infected B cells expressing HLA-C2 (Stewart et al.,
2005; Figure 1C).

Notably, in individuals lacking both NKG2C and aKIRs,
CMV infection can still favor NK cell reconfiguration indicating
that additional unknown mechanisms are responsible for
CMV recognition and adaptive NK cell differentiation
(Muntasell et al., 2016).

While in mice it has been reported that NK cells can
maintain memory of prior encounters with HSV-2 and protect
from reactivations (Abdul-Careem et al., 2012), in humans
few reports suggest that Herpesviruses other than CMV
can induce the generation of specific NK cell subsets with
memory properties. Upon EBV infection an expansion of
CD56brightNKG2A+CD62L− NK cells was observed in tonsils
(Lunemann et al., 2013), whereas CD56dimNKG2A+KIR−
NK cells accumulated in peripheral blood during infectious
mononucleosis and were involved in lytic EBV-infected B cells
elimination (Azzi et al., 2014). However, at variance with CMV-
induced expansions, EBV-induced NK cells were not bearing a
specific activating receptor and evidences for their epigenetic
reprograming has not been provided (Chijioke et al., 2016).

Further studies are necessary to investigate the impact of NK-
Herpesvirus interactions in inducing adaptive NK cell subsets
outside the CMV context. The possibility to generate virus-
specific NK cell populations could help in designing novel
vaccine protocols against Herpesviruses, considering that only
anti-VZV vaccines have been successfully developed (Arnold
and Messaoudi, 2017). However, in the generation of novel
vaccines, it should be considered that prolonged exposure to both
VZV and HSV-1 can directly impair NK-cell effector function,
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through still unknown mechanisms, as recently described
(Campbell et al., 2019).

CLINICAL AND BIOLOGICAL
PERSPECTIVE AND CONCLUDING
REMARKS

As mentioned above, major defects in NK cell function in
respect to human Herpesviruses have been described and become
overwhelmingly manifest during primary infections that may be
lethal upon first host-virus encounter [e.g., SAP defects, NK cell
deficiencies (Sayos et al., 1998; Orange, 2002; Etzioni et al., 2005;
Notarangelo and Mazzolari, 2006; Mace and Orange, 2019)].
These cases represent a very limited part of Herpesvirus-induced
clinical syndromes, since most primary infections are controlled
by the immune system often as asymptomatic infections and
latency ensues in the vast majority of patients without further
clinical reactivations in >70% of infected subjects in the
absence of secondary immunodeficiencies (e.g., HIV infection,
transplantation, immunosuppression) (Clark and Griffiths, 2003;
Ljungman et al., 2011; Locatelli et al., 2016). For this reason, most
NK cell evasion mechanisms are less relevant during this acute
phase of primary infection. Herpesvirus latency (e.g., HSV/VZV
in neuronal ganglia, EBV in B cells and epithelial cells or CMV in
organ and BM macrophages) has been long considered a period
of antigenic eclipse to the immune system, while reactivation
with clinical symptoms (e.g., recurrent HSV, Zoster or shingles,
transformation by EBV or KSHV) represent a possible failure
of the immune system to control viral latency. Most virus-
induced strategies to evade NK cell (and/or T cell) control may be
active during these “clinical escape” or reactivation phases. This
perspective, however, needs to be carefully reevaluated in view
of the overwhelming evidence showing that exit from latency
or virus reactivation routinely occurs for all Herpesviruses in
infected hosts at subclinical levels (Ling et al., 2003; Hadinoto
et al., 2009; Schiffer et al., 2009; Tronstein et al., 2011). Thus,
clinically latent Herpesvirus infection actually has a continuous

component of persistent immune stimulation due to virus
replication in part of the infected cells pool. In this context, virus
evasion mechanisms are likely to occur continuously, and are
quantitatively more frequent and relevant than during primary
infection. Indeed, the magnitude of the specific T cell response
during CMV clinical latency is surprisingly high, with 10–20%
of CD4 and CD8 CMV-specific circulating T cells, and 5–15% of
NKG2C+ memory-like NK cells during clinical latency (Guma
et al., 2004; Sylwester et al., 2005). For example, during latent EBV
infection 5–10% of peripheral CD8 T cells are specific for latent
or lytic epitopes (Tan et al., 1999; Hislop et al., 2002) and 20% of
tonsil lymphocytes are EBV-specific (Hislop et al., 2005).

In view of these considerations, and of the participation
of persistent Herpesvirus infection to the modulation of
autoimmune, allergic, atopic and atherosclerotic events,
Herpesviruses and the host may be regarded from an
evolutionary-ecologic perspective as co-evolved symbionts with
an evolutionary relationship (Virgin et al., 2009; Roossinck,
2011). It will be critical for future scientific focus to more
precisely dissect which NK cell evasion mechanisms are
functional to maintain this symbiontic equilibrium, from
those that actually determine more severe, clinically relevant
reactivations, particularly in immunosuppressed patients or in
those with virus-induced tumor (e.g., NHL and KS).
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