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Abstract: The benzimidazole ring of the heterocyclic pharmacophores is one of the most widespread
and studied systems in nature. The benzimidazole derivative synthesis study is a crucial point
for the development of a clinically available benzimidazole-based drug. Here, we report a simple
microwave assisted method for the synthesis of 1,2-disubstituted benzimidazoles. The combination
of the molar ratio of N-phenyl-o-phenylenediamine:benzaldehyde (1:1) using microwave irradiation
and only 1% mol of Er(OTf)3 provides an efficient and environmental mild access to a diversity of
benzimidazoles under solvent-free conditions. The proposed method allows for the obtainment of
the desired products in a short time and with very high selectivity.

Keywords: microwave; green chemistry; benzimidazoles; solvent free conditions; Er(OTf)3

1. Introduction

The use of classic solvents in organic synthesis, and their applications in the phar-
maceutical industry, is a strong limitation for environment and human health. In the last
years, green chemistry principles influenced the activities of drug industries, introducing
the use of new eco-sustainable solvents [1–3] and recyclable reagents and reducing in waste
production [4–8].

In this regard, numerous studies have been performed on the use of environmental
solvents [9–12], bio-sourced ingredient-based solvents [13,14], ionic liquids [15–17], deep
eutectic solvents [18–23], supercritical fluids [24,25], and water [26–33]. Furthermore,
solvent free reaction conditions contribute to the sustainability of the entire production
system by greatly reducing industrial waste. These reaction methods may be conducted
using the reactants alone, or they may involve the use of solid supports (clays, zeolites,
silica, alumina, or other matrices). The experimental procedures are easier and have a
faster-improving yield, considerably lowering the environmental impact [34,35].

The reactions in solvent-free conditions under ultrasonic [36] or microwave [37] irradi-
ation play a very important role in eco-sustainable extraction [38,39] and synthesis [40–44],
because they greatly prevent waste, and often only irradiation is useful for activating the
organic reaction.

Due to their properties and applications, benzimidazoles are a class of heterocyclic
compounds of great interest in the pharmaceutical chemistry area. The benzimidazole ring
constitutes the basic structure of important and different pharmaceutical agents [45–49],
such as the vitamin B12 [50]. For this reason, the synthesis of benzimidazole derivatives had
considerable interest in the development of organic synthetic processes that are applicable
on an industrial scale with a low environmental impact.

Recent research on the use of eco-sustainable solvents in organic chemistry for the
synthesis of benzimidazoles [51–53] has had great prominence in the scientific community,

Molecules 2022, 27, 1751. https://doi.org/10.3390/molecules27051751 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27051751
https://doi.org/10.3390/molecules27051751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6617-9320
https://orcid.org/0000-0003-0540-1025
https://orcid.org/0000-0002-1918-5813
https://doi.org/10.3390/molecules27051751
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27051751?type=check_update&version=2


Molecules 2022, 27, 1751 2 of 9

as well as the use of Lewis acid catalysis exploitation homogeneous catalysts [54–57] in mild
reaction conditions. At the same time, experimental reactions using solid supports in con-
ventional solvents [58,59], in green solvents [60,61], or under solvent-free conditions [62,63]
performed, as well as the use of heterogeneous catalysts under solvent-free conditions [64]
has been particularly important for the eco-sustainable synthesis of benzimidazoles.

However, the synthetic procedure for the synthesis of 1,2-disubstituted benzimidazole
derivatives requires the use of MK10 20% wt with a selectivity that is not always high.
Therefore, the synthetic method has often involved the use of purification systems to obtain
the desired 1,2-substituted benzimidazole derivative [64].

Considering our experience in Lewis acid catalysis and testing the catalytic activity of
Er (III) in reactions under microwave irradiation [65,66] in the benzimidazoles [22,67] and
benzodiazepine [68,69] derivative synthesis, we report the development of new, ecofriendly
and mild method MW-assisted for the synthesis of a variety of substituted benzimidazoles.
The synthetic method does not require the use of solvents, but requires the use of only 1%
Er(OTf)3 as a catalyst for the formation of benzimidazole derivatives.

2. Results

In our initial experiment, we chose N-phenyl-o-phenylenediamine (1 mmol) and
benzaldehyde (1 mml) as starting materials in the different green solvent at different
temperatures to obtain the respective disubstituted benzimidazole derivative 1a (Table 1).
The initial reactions were tested in environmentally friendly solvents different temperatures.
We tested the effect of temperature on the model reaction (Table 1, entry 1) using ethyl
lactate as the solvent. The reaction mixture was executed by monitoring the reaction by
thin layer chromatography (TLC) and gas chromatography/mass spectrometry (GC/MS)
analyses. After two hours, we did not observe any trace of the desired product.

Table 1. Optimization of the reaction conditions a.

c Solvent Temp
(◦C)

Time
(min)

Yield
(%) b

1 Ethyl lactate rt 120 0
2 Ethyl lactate 60 120 3.9
3 Ethyl lactate 100 120 15.3
4 Water rt 120 10.2
5 Water 60 60 20.9
6 Water 60 120 59.6
7 Water 100 120 89.6

8 c Water 60 10 71.9
9 - 60 60 61.4

10 c - 60 5 89.6
11 c,d - 60 5 99.9
12 c,f - 60 7 91.3
12 c,g - 60 7 99.9

a General reaction conditions: N-phenyl-o-phenylenediamine (1 mmol) and benzaldehyde (1 mmol) were stirred
for 5–120 min at different temperatures in appropriate solvent. b Percent yield calculated from GC/MS data of the
corresponding disubstituted benzimidazole derivative. c Reaction mixture under MW irradiation. d Er(OTf)3 (1%
mol). f Er(OTf)3 (0.5% mol). g Ce(OTf)3 (1% mol).
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The temperature effects showed that by increasing the reaction temperature to 100 ◦C,
yields are higher but insufficient (Table 1, entry 3).

At room temperature, using water as a solvent, the GC/MS analysis showed the
low conversion of the reagents within 2 h, even when increasing the temperature at 60◦

(Table 1, entries 4 and 5). The GC/MS analysis showed the presence of the 1,2-disubstituted
benzimidazole derivative with higher yields (an increase of 59.6%) at 60 ◦C in only 120 min
(entry 6 in Table 1) and, at a higher temperature in the same reaction time (100 ◦C, 120 min)
(Table 1, entry 7), the reaction yield increased considerably (89.7%). When the mixture
reaction was subjected to microwave irradiation, we obtained a good yield in only ten
minutes at 60 ◦C (Table 1, entry 8). Interestingly, the result was obtained when the reaction
was carried out (Table 1, entry 9). At this point, exploiting the activity of microwave
radiation for activating the organic reactions in the solvent free condition, a good conversion
of N-phenyl-o-phenilendiammine in the desiderated product was observed, obtaining the
reaction product with an increase in the yield (89.6%) after only 15 min (Table 1, entry 10).
The model reaction showed the complete conversion of N-phenyl-o-phenilendiammine
when the same reaction was performed in a solvent free condition at 60 ◦C in only 5 min,
adding only 1% Er(OTf)3 at the mixture reaction (Table 1, entry 10). If the mixture reaction
was performed using only 0.5% Er(OTf)3 we did not observe the complete conversion of
amine after 7 min (Table 1, entry 11). Considering our experience in the use of lanthanide
triflates and, in particular, of Er (III) and Ce (III) [70], using Ce(OTf)3 in the same molar
percentage (1% mol), the reaction showed the complete conversion of amine after 7 min.
Considering the higher cost of Ce (OTf)3 compared to Er (OTf)3, we continued with the
synthesis of different disubstituted benzimidazoles using only 1% of Er (III) under MW
irradiation. The product and catalyst are separated in two phases after the addition of
water and the simple extraction of the product with ethyl acetate.

The only reagents used to obtain the respective crude product in faster reaction times
are the aldehyde and N-phenyl-o-phenylenediamine. MW-activation for the benzimidazole
formation reduces the reaction times (from 60 min to 5 min) and enhances the yield as well
(from 61.4% to 99.9%).

At this point, the experimental procedure was applied to different aldehydes to obtain
the related disubstituted benzimidazoles, and quantitative yields superior to 96% were
obtained in all cases (Table 2).

The high-yield reaction was reported using different substituted benzaldehydes, such
as p-methyl, p-methoxy, and o-hydroxy benzaldehyde (entries 2, 3, and 4, Table 2). The
reactions performed with p-chloro, p-fluoro p-nitro benzaldehyde, aldehydes containing
electron withdrawing groups, (entries 5, 6, and 7, Table 2) afford the corresponding dis-
ubstituted benzimidazoles (4a–7a) in good yields (detected by GC/MS) but with longer
reaction times (after 15 min).

As shown in Table 2, this new method maintained high catalytic activity on various sub-
stituted benzaldehydes, alkyl aldehydes, and cinnamaldehydes (entries 8, 9, and 10). The
performed reactions using N-benzyl o-phenylenediamines as N-alkyl-o-phenylenediamines
allowed to obtain the desired benzimidazole under the same conditions with the same
reaction times and the same yield (Table 2, entries 12, 13, and 14).

The use of the irradiation microwave has made the reaction process even more green
than the previous methodologies, for faster reaction times and for the greater selectivity of
product formation. In the development of a green synthetic procedure, the isolation of the
product is an additionally significant point. In our method, the benzimidazole derivatives
could easily be isolated by the simple addition of water and the extraction with ethyl
acetate, a green solvent.

Then, we also found it necessary to demonstrate the potential industrial applicability
of this eco-friendly procedure. The preliminary reaction to give 1a was carried out in a
large scale (20 mmol of N-phenyl-o-phenylenediamine and 20 mmol of benzaldehyde).
The reaction was completed in 25 min with an excellent yield (93%) after a simple water
addition and an extraction with ethyl acetate.
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Table 2. Synthesis of 1,2-disubstituted benzimidazoles a.

Entry Aldehyde Product Time (min) Yield (%) b

1
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well (from 61.4% to 99.9%). 

At this point, the experimental procedure was applied to different aldehydes to ob-
tain the related disubstituted benzimidazoles, and quantitative yields superior to 96% 
were obtained in all cases (Table 2).  
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a General reaction conditions: The mixture reaction (1 mmol of N-phenyl-o-phenylenediamine, 1 
mmol of aldehyde, and 1% mmol of Er(OTf)3) conducted in a Syntos 3000 microwave oven (An-
ton–Paar) at 60 °C for 5–10 min. The reaction mixture gave the corresponding products 1a–8a. b 

Percent yield calculated from GC/MS data. c The mixture reaction conducted in the same reaction 
conditions using the N- benzyl-o-phenylenediamine as N-substituted-o-phenylenediamine. 

The high-yield reaction was reported using different substituted benzaldehydes, 
such as p-methyl, p-methoxy, and o-hydroxy benzaldehyde (entries 2, 3, and 4, Table 2). 
The reactions performed with p-chloro, p-fluoro p-nitro benzaldehyde, aldehydes contain-
ing electron withdrawing groups, (entries 5, 6, and 7, Table 2) afford the corresponding 
disubstituted benzimidazoles (4a–7a) in good yields (detected by GC/MS) but with longer 
reaction times (after 15 min).  

As shown in Table 2, this new method maintained high catalytic activity on various 
substituted benzaldehydes, alkyl aldehydes, and cinnamaldehydes (entries 8, 9, and 10). 
The performed reactions using N-benzyl o-phenylenediamines as N-alkyl-o-phenylenedi-
amines allowed to obtain the desired benzimidazole under the same conditions with the 
same reaction times and the same yield (Table 2, entries 12, 13, and 14)  

The use of the irradiation microwave has made the reaction process even more green 
than the previous methodologies, for faster reaction times and for the greater selectivity 
of product formation. In the development of a green synthetic procedure, the isolation of 
the product is an additionally significant point. In our method, the benzimidazole deriv-
atives could easily be isolated by the simple addition of water and the extraction with 
ethyl acetate, a green solvent. 

Then, we also found it necessary to demonstrate the potential industrial applicability 
of this eco-friendly procedure. The preliminary reaction to give 1a was carried out in a 
large scale (20 mmol of N-phenyl-o-phenylenediamine and 20 mmol of benzaldehyde). 
The reaction was completed in 25 min with an excellent yield (93%) after a simple water 
addition and an extraction with ethyl acetate.  

In conclusion, a fast, cheap, green, and simple procedure has been developed for the 
synthesis of benzimidazoles. All reactions were performed in short reaction times (5–10 
min) and with reaction yields of 86 to 99% (Table 2). The microwave assistance was fun-
damental to obtain the product in a quantitative yield. 

Unlike the method reactions reported in the literature, the procedure described does 
not require for the use of solvents but only microwave irradiation to perform the complete 
reaction process. The proposed method reduces the reaction time and energy consump-
tion, making developing the process industrially appropriate. 

3. Materials and Methods  
3.1. General Methods 

All reactions were monitored by gas chromatography/mass spectrometry (GC/MS, 
Shimadzu workstation). It was constituted by a GC 2010 (equipped with a 30 m-QUAD-
REX 007-5MS capillary column, operating in the “split” mode, with 1 mL min-1 flow of 
He as carrier gas). 

1H-NMR and 13C-NMR spectra were recorded at 300 MHz and at 75 MHz, respec-
tively, using a Bruker WM 300 system. The samples were solubilized in CDCl3 using tet-
ramethylsilane (TMS) as a reference (δ 0.00). Chemical shifts are given in parts per million 
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a General reaction conditions: The mixture reaction (1 mmol of N-phenyl-o-phenylenediamine, 1 mmol of
aldehyde, and 1% mmol of Er(OTf)3) conducted in a Syntos 3000 microwave oven (Anton–Paar) at 60 ◦C for
5–10 min. The reaction mixture gave the corresponding products 1a–8a. b Percent yield calculated from GC/MS
data. c The mixture reaction conducted in the same reaction conditions using the N-benzyl-o-phenylenediamine
as N-substituted-o-phenylenediamine.

In conclusion, a fast, cheap, green, and simple procedure has been developed for
the synthesis of benzimidazoles. All reactions were performed in short reaction times
(5–10 min) and with reaction yields of 86 to 99% (Table 2). The microwave assistance was
fundamental to obtain the product in a quantitative yield.

Unlike the method reactions reported in the literature, the procedure described does
not require for the use of solvents but only microwave irradiation to perform the complete
reaction process. The proposed method reduces the reaction time and energy consumption,
making developing the process industrially appropriate.

3. Materials and Methods
3.1. General Methods

All reactions were monitored by gas chromatography/mass spectrometry (GC/MS,
Shimadzu workstation). It was constituted by a GC 2010 (equipped with a 30 m-QUADREX
007-5MS capillary column, operating in the “split” mode, with 1 mL min-1 flow of He as
carrier gas).

1H-NMR and 13C-NMR spectra were recorded at 300 MHz and at 75 MHz, respectively,
using a Bruker WM 300 system. The samples were solubilized in CDCl3 using tetramethyl-
silane (TMS) as a reference (δ 0.00). Chemical shifts are given in parts per million (ppm)
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and coupling constants (J) are given in hertz. For 13C-NMR, the chemical shifts are relative
to CDCl3 (δ 77.0).

The Synthos 3000 instrument from Anton–Paar, equipped with a 4 × 24MG5 Rotor,
was used for the MW-assisted reactions. An external IR sensor monitored the temperature
at the base of each reaction vessel.

3.2. General Procedure for the Synthesis of 1-phenyl-2-Aryl(alkyl) Benzimidazoles 1a–11a

To the N-phenil-o-phenilendiammine (1 mmol) and Er(OTf)3 (1% mol) in a 3 mL glass,
aryl o alkyl aldehyde (1 mmol) was added. The mixture reacted for 5 min in a Synthos
3000 microwave instrument, fixed on a temperature value of 60 ◦C (IR limit). The reaction
was monitored by TLC and GC/MS analyses. After the completion of the conversion
of N-phenil-o-phenilendiammine, the Er(OTf)3 was separated from the reaction mixture
by adding water (to separate the catalyst from the reaction mixture) and extracting the
organic product with ethyl acetate (4 × 3 mL). The products were isolated after its organic
phases and was dried over Na2SO4, followed by evaporation under reduced pressure
(1a–10a in 91–99% yields). Spectral data were in accordance with the literature [71]. See
Supplementary Materials.

3.3. General Procedure for the Synthesis of 1-benzyl-2-Aryl-Benzimidazoles 1b–3b

To the N-benzyl-o-phenilendiammine (1 mmol) and Er(OTf)3 (1% mmol) in a 3 mL
glass, benzaldehyde or p-substituted-benzaldehyde (1 mmol) was added. The mixture reac-
tion was reacted in the same reaction conditions that have been previously reported (MW ir-
radiation for 5 min). After the completion of the conversion of N-phenil-o-phenilendiammine,
the Er(OTf)3 was separated from the reaction mixture adding water and extracting the
organic product with ethyl acetate (4 × 3 mL). The products were isolated after organic
phases dried over Na2SO4, followed by evaporation under reduced pressure. Spectral data
were in accordance with the literature [72–74]. See Supplementary Materials.

4. Conclusions

In summary, the current research shows a rapid, cheap, clean, and environmentally
sustainable method of the microwave-assisted synthesis of 1,2-bisubstituted benzimidazoles.
The procedure does not require the use of a solvent and has a simple product recovery.

The use of the Lewis catalyst Er(OTf)3 (1% mmol) provides a synthetic procedure
which considerably reduces reaction times and waste reactions, further promoting the
green chemistry principles and industrial applications.

Supplementary Materials: The following supporting information can be downloaded online. Ex-
perimental Section, General Procedure for the Synthesis of 1-phenyl-2-Aryl(alkyl) Benzimidazoles
1a-11a, General Procedure for the Synthesis of 1- benzyl-2-Aryl-Benzimidazoles 1b-3b, 1H NMR and
13C NMR of compounds 1a–3a, 6a–8a, 1H NMR and 13C NMR of compounds 1b–3b.
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