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Abstract: Early successful conception of postpartum dairy cows is crucial in determining the opti-
mum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high
production potential of modern dairy cows, the extra stress burden of peri-parturient events, and
associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum
cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-
esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of
ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated
with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis,
and high protein metabolism in postpartum cows presents further consequences for health and
reproductive performance of postpartum dairy cows. This review intends to comprehend these major
nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and
relevant mitigation strategies.

Keywords: dairy cow; parturition; fertility; metabolic disorders; reproductive performance; ketosis;
milk fever; fatty liver

1. Introduction

Modern large-scale dairy farming has emerged during recent decades. There is a gross
improvement in milk production, mainly attributed to intensive selection and improved
nutrition. However, a constant downward trend is observed for these high-yielding cows’
reproductive performance (RP) [1–3]. This decline in RP may be due to increased time to
the first insemination, poor exhibition of estrus behavior, increased days open, decreased
success rate of artificial inseminations (AIs), and high culling rates due to poor RP [4,5].

There are several factors contributing to the decline in RP, including genetic factors,
heat stress, and disease-related causes, to name a few [6–9]. There exists a negative correla-
tion between milk production and reproduction, as high milk production is maintained
at the expense of reproductive health [10]. Enormous nutritional consumption by the
mammary system causes an alteration in the physiology of reproduction. A lactating high-
yielding cow consumes a great deal of glucose and suffers from a state of negative energy
balance (NEBAL) during the early postpartum period [11,12]. With the selection for high
milk yield in sires used for breeding, we see a narrowing of the genetic base of major breeds
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throughout the world and resultant inbreeding and, together with the intensification of
dairy farming, difficulties of postpartum care increased. During the post-parturient period,
severe NEBAL is manifested by clinical or subclinical metabolic diseases [13]. Hence, the
disease factor is the single most common cause of RP decline in dairy cows. Besides a
number of infectious diseases [14], milk fever, ketosis, and other nutritional alterations
contribute to RP decline [15]. Nutritional metabolic alterations during the post-parturient
period affect the development and dominance of follicles on the ovaries and subsequent
ovulation, while reproductive tract diseases can directly affect fertilization, embryo/fetal
development, implantation, and placental development [9,16].

Thus, maintaining reproductive efficiency is an obvious challenge presented through
a longer post-parturient recovery period, silent estrus, lower conception rates, and early
pregnancy (within 60 d) loss [2,4,5]. These conditions and alterations mechanistically
affect the body’s three major regulatory systems: the nervous system, endocrine system,
and circulatory and immune system. About two thirds of reproductive disorders are
encountered in the first month postpartum. Collectively, these factors directly or indirectly
affect the development of follicles, the embryo/fetus, and placenta, which in turn affect
cows’ RP [17–19]. This review aims to comprehend all these events, their interrelationships,
and consequences towards fertility decline and poor reproductive performance. The main
focus will be the major nutritional metabolic disorders and their complex relationship
with the fertility outcomes in dairy cows. Additionally, it will elaborate on various dietary
mitigation strategies helpful to improve the postpartum welfare and RP of cows.

2. Nutritional Characteristics, Metabolic Diseases, and Reproduction

Ruminants such as cattle ferment feed to fulfill their energy requirement and glu-
coneogenesis in the liver is central to lactose synthesis in the mammary gland. During
the peri-parturient period, there are fluctuations in the dry matter intake (DMI). A pro-
nounced decline in DMI is observed in the last 10 days of parturition, followed by a
marked increase afterwards, but this is presumably not sufficient to fulfill the increased
nutrient and energetic demand of postpartum dairy cows [20–22]. The post-parturient
lactation peak is generally observed after 4 to 6 weeks, while the DMI peak arrives at
8 to 10 weeks. Hence, cows are in NEBAL at least 50 d postpartum. A recent study has
related low prepartum DMI and energy balance with postpartum indigestion and metabolic
disorders [23]. The same group of researchers associated low prepartum DMI with post-
partum reproductive disorders, while postpartum reproductive problems were associated
with low postpartum DMI [24]. Therefore, the phenomenon of adequate feed intake and
body energy balance during the perinatal period is of immense importance for health and
reproductive processes.

In addition to DMI, the body condition score (BCS) is widely used to assess the en-
ergy balance, health, and reproductive outcomes in postpartum dairy cows [25]. High
prepartum BCS is associated with increased risk of postpartum metabolic problems [23],
while other studies show that low prepartum BCS is responsible for prepartum metabolic
and reproductive disorders [26]. The reason for this conflict in studies is essentially due
to the postpartum energetic metabolism changes related to fat mobilization [27], where
higher prepartum BCS (obesity) is associated with postpartum metabolic disorders and
low reproductive efficiency [28,29]. Additionally, a prepartum BCS loss of 0.5 points or
more could negatively affect perinatal blood Ca levels and predispose cows to the risk of
ketosis and delayed conception [30]. Furthermore, high prepartum BCS was associated
with lower calf body weights [31]. It is concluded that prepartum low BCS and over-
conditioning (higher BCS) are both unfavorable for postpartum reproductive efficiency.
The over-conditioned cows had lower mRNA levels of TNFα and higher mRNA levels
of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose tissues during
postpartum, while the phosphorylated protein kinase B (AKT) pathway related to extensive
metabolic shifts through downstream signaling of insulin in adipose tissue was also upreg-
ulated [27]. The phenomenon of high inflammatory cytokine signaling and AKT signaling
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pathway upregulation synergistically enhance the energetic metabolism [32–34]. It can be
proposed that energy balance monitoring through serum metabolites can help to predict
the postpartum nutritional physiology and its ultimate repercussions on reproductive
performance [30,35].

Postpartum NEBAL is characterized by low blood glucose and insulin and high ketone
bodies and non-esterified fatty acid (NEFA) concentrations [36–39]. However, NEBAL
combined with nutritional metabolic diseases such as ketosis will delay the recovery of
the uterus and normal reproductive process, leading to prolonged time to first service and
increased calving intervals. In the presence of NEBAL, there is an increased incidence of
nutritional metabolic disorders [40]. The literature confirms that postpartum nutritional
metabolic diseases are the major causes of post-parturient reproduction disorders in dairy
cows [41]. Nutritional metabolic diseases are complex “production diseases”, with a
high incidence rate in modern dairy cows. In addition to the direct economic losses
caused by reduced milk production, they can also have a long-term negative impact on the
physiology of cows, especially their reproductive efficiency [42–44]. A retrospective study
of 7500 perinatal Holstein cows showed that within 21 d after parturition, about 1/3 of the
cows presented with at least one subclinical or clinical metabolic disease. Furthermore,
the 45 d fertilization rate decreased by 7%, milk yield decreased by 14%, and the culling
rate increased from 22.6% (no clinical disease) to 35.7% (one clinical incidence) and 53.8%
(more than three clinical incidences) for the cows suffering with metabolic diseases [45].
Another study indicated a 26% incidence rate of ketosis during the observation period of
60 days postpartum [46]. A study covering 12 countries from four continents found that the
average subclinical ketosis prevalence in the first 21 days postpartum was 24.1%, ranging
from 8.3% to 40.1% [47]. Another study based on commercial dairy farm data reported
a higher incidence of 56% for clinical or subclinical metabolic and reproductive diseases
(ketosis, hypocalcemia, metritis, and mastitis) in the first 3 weeks postpartum [48].

Initial post-parturient lactation is maintained at the expense of a decline in reproduc-
tive performance [10]. The mechanism involving underlying NEBAL can be explained
by low insulin levels causing an abundance of growth hormones (GHs), which in turn
mobilize NEFAs. However, at the same time, there is a decrease in hepatic GH receptor
abundance, preventing negative feedback through IGF-1 [38,49], while the presence of
NEFAs is consistently behind the low insulin via catecholamines [50]. As lipolysis helps
the lactation demand, this is also the major cause of low BCS in postpartum cows. Thus,
postpartum BCS is an indirect measurement of fat metabolism and correlates with the
energy balance of cows [51]. These aforementioned metabolic alterations mediated by com-
plex endocrine changes have further consequences for ovulation, oocytes, and the corpus
luteum [38,49,52–54]. Further connections of these changes with reproductive performance
include low concentrations of insulin and insulin growth factor 1 (IGF-1) causing follicular
biochemical changes in ovaries and thus influencing luteinizing hormone (LH) and estra-
diol (E2) secretion [52,53,55]. This decrease in LH and E2 secretions in turn ultimately leads
to delayed resumption of the estrus cycle [56]. On the other hand, NEBAL is also shown
to be associated with low progesterone concentrations, which negatively influence the
early pregnancy outcome [57,58]. Carrying the discussion further, a high concentration of
blood NEFAs is shown to be negatively associated with the developmental competence of
fertilized oocytes [59,60]. Generally, an increase above 0.55 mmol/L of plasma NEFA levels
is regarded as a manifestation of serious postpartum NEBAL [61,62]. Postpartum NEBAL
and high NEFA concentrations have shown evidence for higher levels of inflammation
characterized by cytokines and Toll-like receptor (TLR) expression leading to alterations in
uterine functions [63–65]. Furthermore, NEFA exerts cytotoxic effects at cellular levels and
is attributed to immunosuppression [66,67]. As NEBAL in itself possesses implications for
early reproductive recovery, it is also obvious that postpartum NEBAL can be regarded as
a root cause of various postpartum production diseases. Based on the discussions in this
review, Figure 1 summarizes various metabolic and endocrine mechanisms contributing to
the decline in post-parturient reproductive efficiency of dairy cows. A score of mitigation
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strategies have been advised to minimize extreme postpartum NEBAL incidence. Dry
cow management should be oriented at the feeding of energy-rich diets over the duration
of 3–4 weeks prepartum, in order to support fetal growth, the decline in DMI, and peri-
parturient events [68]. This phenomenon of increasing the energy content of the diet can
also be supported by the facts of decreased DMI intake and rumination time during the
last 3 weeks of gestation [21,24,69]. However, over-conditioning of prepartum cows is not
desirable and leads to postpartum metabolic disorders [41,70]. A prepartum controlled
energy diet near the calculated requirements essentially averted the risk of postpartum
NEBAL [70,71]. An increased energy prepartum diet is shown to enhance fat accumulation,
decrease DMI, and increase the risk of health problems in postpartum dairy cows [68,70,72].
Similarly, others have shown that an increased energy diet prepartum can lead to increased
NEFA mobilization and triglyceride (TG) accumulation in the liver of postpartum cows [73],
while a controlled energy diet prepartum is shown to improve the immune function of
postpartum dairy cows [74]. Therefore, careful feeding management through monitoring
of feed energy content and BCS assessment of prepartum cows constitute an essential key
to perinatal transition success.
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The postpartum dairy cow is over-stressed due to parturition labor, lactation demands, possible
exposure to heat stress, reduced dry matter intake (DMI), uterine involution, and initiation of
the reproductive cycle. Due to these problems, post-parturient dairy cows usually suffer from a
negative energy balance (NEBAL). NEBAL leads to endocrine and metabolic alterations initiated by
low insulin, high glucose consumption, decreased insulin growth factor (IGF-1), and high growth
hormone (GH) activity, leading to high non-esterified fatty acid (NEFA) response. NEFA is oxidized
in the liver for energy support, leading to ketosis, and ultimately results in the development of
fatty liver due to the accumulation of triglycerides (TGs). A higher prepartum body condition
score (BCS) is determined as a predisposing factor for extensive mobilization of body fat reserves
in the form of NEFA. Fat mobilization and protein metabolism lead to the depletion of the most
required fatty acids and amino acids for reproduction and body well-being. These changes are
the primary cause of secondary metabolic diseases such as hypocalcemia, ruminal acidosis, and
displaced abomasum. Furthermore, they ultimately cause changes in the biochemical profile of
the ovarian follicles, contained oocyte, developing embryo, corpus luteum (CL), and uterus, which
ultimately result in low conception rates (CRs), whereas they also trigger endocrine changes at the
pituitary–hypothalamus-ovary axis, including changes in estrogen (E2), gonadotrophins (GnRH),
luteinizing hormone (LH), and progesterone (P4). Additionally, these aforementioned changes also
influence the immune system of postpartum dairy cows through activation of LPS, cytokines, and
Toll-like receptors (TLRs). These phenomena predispose the cows to infections and inflammatory
conditions and thus contribute to the decline in CRs.

3. Fatty Liver

Fatty liver (liver lipidosis) is a secondary peri-parturient metabolic disorder with high sub-
clinical prevalence characterized by high TG accumulation in the liver [75,76]. Behind the
backdrop of a variety of peri-parturient events and NEBAL, excessive NEFA mobilization is
the major cause of fatty liver, mainly due to obesity and decreased DMI of parturition dairy
cows [76,77]. The liver serves as the destination for NEFAs derived from fat mobilization,
where they are oxidized into acetyl-CoA, which then condenses with oxaloacetate in the
TCA cycle. During states of high NEFA delivery, much acetyl-CoA diverts from the TCA
cycle to ketogenesis, producing β-hydroxy-butyric acid (BHBA), acetyl-acetic acid, and
acetone. Fatty liver develops when the liver uptake of NEFA exceeds the oxidation and
secretion capacity of the liver, where excess NEFAs are re-esterified to form TGs in the liver
and are associated with decreased metabolic functions of the liver [75,78]. High TGs are
shown to alter glucose metabolism in early pregnancy and can cause pre-eclampsia [79,80].
A postpartum fatty liver incidence rate of 56% has been reported in previous studies [79,80],
while the probability of pregnancy is shown to be 30% lower for cows with higher contents
of liver TGs [80]. The presence of inevitable NEBAL-associated metabolic changes and
inflammatory condition-associated increases in cytokine levels are the major culprits behind
the development of fatty liver [27,81,82]. As a direct outcome of NEBAL, fatty liver causes
inhibition of gluconeogenesis, promotes ketosis, and decreases immune functions [77,83].
As fatty liver compromises liver function, it directly influences the reproductive system
through the decline in NEFA oxidation as an energetic source, and indirectly influences the
RP through the disposition of postpartum cows to ketosis and allied complications.
Regarding the occurrence of NEBAL and mobilization of NEFA, a manifestation of the
fatty liver leading to ketosis, it is important to discuss ameliorating approaches. A variety
of fatty acid supplementations have been used to try to modulate high NEFA responses
during postpartum NEBAL [84]. Dietary supplementation of 3% to 4% vegetable oil has
been associated with the improvement of postpartum reproductive performance [85,86].
A study shows that feeding saturated fatty acids increased the risk of fatty liver, while
feeding unsaturated fatty acids sources such as flaxseed (3.3% and 11.0% of the dry matter
in prepartum and postpartum diets, respectively) during the transition period could be a
useful strategy to increase liver concentrations of glycogen and decrease liver TGs after calv-
ing [87]. Prepartum feeding of canola and sunflower (8% of DMI) is shown to have positive
effects on energetic metabolism in postpartum cows, however, the transition from prepar-
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tum to lactation appeared to be the main driver of changes in energetic metabolism [88].
An interesting study shows that postpartum hydrogenated TG supplementation exerted
more positive effects on hepatic lipid and glycogen metabolism than palm oil supple-
mentation [89]. Contrary to high prepartum fat supplementation, postpartum high fat
feeding is shown to increase TGs and decrease cholesterol levels, while switching from
high prepartum fat to low postpartum fat supplementation increased cholesterol levels,
feed intake, and milk production [90]. Feeding of unsaturated fatty acids (UFAs) is shown
to improve the ovarian follicle biochemical profile, improve progesterone (P4) during the
luteal cycle, and modulate prostaglandins during early pregnancy [5,91,92]. Polyunsatu-
rated fatty acids (PUFAs), such as fish oil-based rumen protected supplementation, are
the best in the class of dietary fats, which are shown to improve ovarian follicle growth,
increase insemination success, and are helpful in the prevention of pregnancy losses [93,94].
Peroxisome proliferator activated receptors (PPARs) have an integral role in embryonic
development and early pregnancy through lipid metabolism support. Due to their re-
ported activation through NEFA and other fatty acids of dietary origin and subsequent
coordination of lipid metabolism, studies have tried to enhance their expression and found
that dietary fatty acids are helpful in this regard [33,95,96]. In conclusion, several nutri-
tional supplementation-based mitigation strategies have been devised to avert the risk of
fatty liver. However, a clear direction of the type of fat supplementation, its timing, and
the duration of supplementations may constitute a future avenue of studies in complex
in vivo trials.

4. The Impact of Ketosis on Reproductive Efficiency of Dairy Cattle

Ketosis refers to a nutritional metabolic disease of the blood circulation in which ketone
bodies exceed normal physiological levels, and the excessive accumulation of fatty acids
in the liver is the main cause of ketosis. Ketosis is a common metabolic disease around
the post-parturient period [97], and later parity cows are more susceptible to the incidence
of ketosis [98]. Predisposing factors of ketosis are similar to the ones causing postpartum
NEBAL, NEFA mobilization, and hepatic lipidosis, discussed in the earlier sections. The
liver oxidizes this NEFA and produces ketone bodies, and circulating NEFA and ketone
bodies assist in overcoming the dairy cows’ energy requirements when suffering from
NEBAL [39,53,99,100]. The more severe the NEBAL in the post-perinatal period of cows,
the more NEFAs are transferred to the liver, leading to rapid increases in concentrations of
ketone bodies such as BHBA, and eventually leading to different degrees of ketosis in cows.
Since BHBA concentrations in the serum can directly reflect the extent of ketosis, they are
often used as an important indicator for the diagnosis of ketosis.
Studies have found that the incidence of ketosis in the first 2 postnatal months is 2% to 15%.
However, the incidence of subclinical ketosis during the same period could be as high as
40% to 60%. In addition, studies show that high-yielding cattle may have higher incidences
of ketosis, due to more severe NEBAL in the post-parturient period [13,101,102]. Ketosis
causes a decrease in the quantity and quality of milk, besides a decline in fertility in dairy
cows. In one study, the economic losses of each cow with subclinical ketosis were averaged
to be about USD 51, and the economic losses of clinical ketosis were about USD 232 per cow,
while the long-term economic losses of subclinical ketosis in later parity cows can even
reach USD 213 per head [103,104]. It affects the ovarian activity, the uterus and fallopian
tubes, fertilization, and early and late embryo development [105–109]. A study considering
the prenatal NEFA concentration and its relationship with metabolic hormones showed
that cows in the prenatal high NEFA group were less likely to resume the estrus cycle than
cows in the low NEFA group, suggesting that high concentrations of NEFA inhibited the
recovery of postpartum ovulation [15].

4.1. Ketosis and Ovarian Dynamics

Postpartum ovarian follicle recovery or the initiation of development is the basis of the
cow’s normal reproduction resumption. With the development of follicles, the amount of
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E2 secretion is increased, causing signs of estrus and triggering the LH surge for ovulation.
Therefore, it directly determines the first postpartum service and the fertilization rate.
Studies show that cows with subclinical ketosis delayed the exhibition of estrus and the
duration was relatively shorter when compared to healthy cows. This suggests that ketosis
affects the development of follicles and the normal synthesis and secretion of E2 in cows
after calving [110]. NEFA accumulates in the follicle fluid, changing the composition of its
metabolite profile, directly affecting the energy metabolism level of granulosa cells and
causing apoptosis [111]. Studies show that, when compared with healthy cows, there is a
decrease in time to first ovulation and 60 d postpartum conception rates in the cows with
postnatal high blood NEFA and postpartum subclinical ketosis, respectively [105,112]. The
high concentration of NEFA and BHBA in the blood circulation of diseased cows decreases
and degrades the insulin-like growth factor (IGF-1) [113]. IGF-1 has a direct impact on
the GnRH activity and LH activity, causing reduced E2 secretion. This phenomenon
leads to failure of the follicular dominance and subsequent ovulation, delaying the time
to first ovulation. In contrast, studies show that if follicles ovulate, the embryo quality
remains poor. A decrease in IGF-1 concentration also leads to a decrease in progesterone
secretion, and in that case, if initial pregnancy is confirmed, there is a greater chance of
early embryonic death. Therefore, ketosis has long-lasting effects on follicles, ova, and
embryonic development [59,112]. In conclusion, ketosis has a longer cycle of effects on cow
reproduction and may involve follicle development to embryonic implantation.

4.2. Ketosis Association with Oocyte Maturation and Implantation

Metabolic disorders are manifested through changes in metabolites in blood circulation;
therefore, the composition of follicle fluid is altered. Studies have confirmed a significant
increase in BHBA and NEFA concentrations in ketosis cow follicle fluid [111]. A compre-
hensive study found high NEFA and BHBA, but lower glutathione, in the ovarian follicle
fluid of cows suffering from liver diseases. Moreover, BHBA supplementation affected the
concentration-dependent decrease in oocyte maturation, while the effect on blastocyst rate
was significant [114]. In the presence of high NEFA, similar results are shown in cattle and
human studies, where the follicular dominance and time to ovulation and blastocyst rate
were reduced, respectively [115,116].
Early embryo development and implantation are the most complex events in develop-
mental biology. Fertilized oocytes journey through the development and blastocyst stage
towards the preimplantation stage. The development of a preimplantation embryo is of
paramount importance, as it is a prerequisite for maternal identification, uterus implan-
tation, and gestation. Studies have shown that the lipids nourish the embryo, which is
regulated by PPARγ. In this context, PPARγ activity is essential for the extension and
survival of embryos, and changing the concentration or composition of fatty acids in tissue
fluids can potentially alter the development of fertilized oocytes [117]. An increase in the
concentration of NEFA in blood, follicles, and in the uterus during ketosis may affect the
elongation and survival of preimplanted embryos by affecting the metabolism of fatty
acids [44,118]. A correct balance between inflammatory and anti-inflammatory reactions
in the uterus is required for early embryo attachment and implantation, and an active
immune system regulates this delicate balance [119,120]. Immune suppression in cows
suffering from ketosis is also an important factor affecting embryo implantation. It can
increase postpartum cows’ susceptibility to bacterial pathogens due to low resistance and
thus increase the risk of uterine inflammation and endometritis [121,122]. Therefore, ketosis
may affect the implantation of early embryos through alteration of the endometrial fatty
acid metabolism and immune suppression, resulting in decreased fertility in cows. Given
the importance of ketosis, feeding high-quality concentrates accompanied with prevention
of over-feeding in later gestational stages can avert the occurrence of NEBAL and associ-
ated metabolic diseases [68,123]. Feeding of a glucogenic diet comprising starch in early
lactation stages and lipogenic diets in later stages of breeding can improve the reproductive
process [124].
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5. The Impact of Hypocalcemia (Milk Fever) on Reproductive Efficiency of
Dairy Cattle

Postpartum cows face the challenge of increasing demand for minerals, especially calcium,
to support early lactation [125,126]. Increased prolactin, parathyroid hormone (PTH),
and calcitriol levels are mainly involved in calcium homeostasis during the perinatal
period [127–129]. Studies have shown that serum calcium drops by 9 h before and returns
to the normal range by about 72 h after birth [130]. Lactation is the main cause of low
blood calcium in cows after parturition, as the demand increases rapidly and calcium
consumption is higher than the absorption, so hypocalcemia occurs. The incidence of
hypocalcemia is high in smaller breeds with high milk production such as Jerseys [127].
BCS ≥ 3.00 and summer calving have been associated with higher risk of subclinical
hypocalcemia on day 1 of parturition, where day 1 incidence cows took 32 days longer to
get pregnant than normo-calcemic cows [131]. Most high-producing cows develop some
degree of hypocalcemia (SCH) on the first day after calving, but only if the blood calcium
concentration drops to a certain level, which can disrupt neuromuscular function and is
detrimental. Hypocalcemia is divided into subclinical (total calcium concentration of 1.4 to
2.0 mmol/L) or clinical (total calcium concentration < 1.4 mmol/L), accompanied by mental
restlessness, anorexia, mild paralysis, and even death. Compared to primiparous cows,
later parity cows are relatively more susceptible to developing clinical symptoms of milk
fever [132,133]. Hypocalcemia is a risk factor for causing ketosis, displaced abomasum,
mastitis, retained placenta, and uterine prolapse [134] and thereby presents a greater chance
of culling. The variable average incidence of milk fever is reported by different studies,
ranging from 7.2% [135] to 21% [136].
Studies show that hypocalcemia negatively affected the recovery of ovarian function
during the voluntary waiting period, reduced the rate of pregnancy after the voluntary
waiting period, and reduced the pregnancy rate after first service [137]. Cows with chronic
subclinical hypocalcemia are shown to have even more pronounced impaired reproductive
function [137]. Subclinical hypocalcemia diagnosed on postpartum day 1 is shown to be
responsible for low fertility rates, while diagnosis at both day 1 and day 7 was related to
health issues in dairy cows [131]. Retained fetal membranes and uterine inflammation
are typically associated with subclinical hypocalcemia [138,139]. Similarly, another study
found that hypocalcemia had a negative effect on reproductive performance through a
significant increase in the time to the first conception after birth and a higher risk of culling.
However, they found that hypocalcemia had no effect on first postpartum service; this could
be attributed to the husbandry practices [135]. Contrary to this, higher postpartum serum
calcium concentrations are associated with higher serum total cholesterol, albumin, and
glucose concentrations, a lower rate of placental retention, and clinical endometritis [140].
Abnormality in calcium homeostasis is also determined as a contributing factor towards
arrested follicular development and acyclic ovaries [141]. About 50% of freshly calved
multiparous cows are believed to suffer from hypocalcemia [142,143]. Together with blood
fatty acid profile, serum calcium levels are useful to predict the incidence of displaced
abomasum [144]. Given its association with the incidence of other reproductive diseases,
the post-parturient blood calcium level is of paramount importance. Several studies show
that blood calcium levels after 24 h of calving are positively associated with metritis [145].
Clinical milk fever cases should be treated with an intravenous infusion of calcium glu-
conate (23%, 500 mL = 10.8 g of calcium) [146]. Prepartum feeding of a diet with a negative
dietary cation–anion difference (DCAD) produces a mild metabolic acidosis in prepartum
cows which is demonstrated to be helpful to avert the risk of developing milk fever [134].
From −21 d prepartum, reducing DCAD (starting from −7.4 mmol/100 g to −16 mmol/100
g of dry matter) is shown to avert the risk of hypocalcemia and associated reproductive
problems [147–150]. An alternative to negative DCAD is the feeding of low-calcium diets
(<20 g per day) prepartum, which can improve calcium homeostasis [127,151]. Low cir-
culating magnesium concentrations are associated with low blood calcium levels in dairy
cows [152,153]. Phosphorous status also influence a cow’s ability to regulate calcium con-
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centrations in the blood around parturition, where reduced prepartum dietary phosphorus
intake can increase perinatal circulating calcium concentrations [154]. High-calcium forage
such as alfalfa should be exchanged for low-calcium forages such as corn silage to improve
calcium levels postpartum [155]. Dietary zeolite (sodium aluminum silicate) during the
last 2 weeks prepartum improved the circulatory calcium levels [134,156]. Serotonin (5-
hydroxytryptamine, 5-HT) has been shown to improve calcium homeostasis in postpartum
dairy cows [157]. The combined use of negative DCAD (−55 v. +14 mmol/kg DM) with
the supplementation of 1 mg/kg body weight of 5-hydroxy-l-tryptophan (5-HTP) prior to
parturition resulted in additional increases in calcium concentrations compared to negative
DCAD or 5-HTP alone [158]. These major mitigation approaches discussed here can be
effectively employed to decrease the risk of hypocalcemia in dairy cows.

6. Ruminal Acidosis and Reproductive Efficiency of Dairy Cattle

The rumen contains a dense and diverse microbiota involved in digestion, and dietary
organic compounds are hydrolyzed and fermented into volatile fatty acids (VFAs) and
gases. These VFAs are absorbed into circulation and support around 70% of the energy
supply. The concentrate ratio of the feed is increased to overcome postpartum lactation
demands and NEBAL; the irrational increase in this concentrated feed can easily lead to ru-
men acidosis in postpartum cows. Ruminal acidosis is a nutritional metabolic disease in the
high-yielding dairy cow that affects normal fermentation due to the decline in rumen pH,
caused by feeding energy-rich diets. The post-calving period is high metabolic activity time,
and cows’ ability to adapt is over-stressed [39]. In general, ruminal acidosis can be divided
into subacute acidosis (pH is 5.2 to 5.6) and acute acidosis (pH below 5). Subacute acidosis
is characterized by repeated bouts of pH decline, while acute ruminal acidosis is mainly
characterized by lactic acid accumulation with a persistent pH drop and clinical manifesta-
tions [159,160]. The incidence rate of subacute acidosis ranges from 11% to 26% [161], and
it can severely impact feeding behavior and DMI, milk quality and yield and cause indiges-
tion and reproductive incapacity due to nutritional deficiency [162–164]. Ruminal acidosis
affects the ruminal microbiome and causes endotoxemia, having negative consequences
for the whole body system. Circulating lipopolysaccharides (LPSs) can reach the ovarian
follicular fluid and can affect the ovaries’ neuroendocrine axis, both of which have negative
consequences for the RP of dairy cows [11,165]. Circulatory LPSs are shown to suppress
the GnRH and LH activity, and can also reduce the synthesis of PGF2 alpha [166–168].
Fluctuations in feeding behavior characterized by low feeding time and high intake per
feeding are the contributing factors in the occurrence of ruminal acidosis [169]. Since main-
taining proper nutritional support and gut health is very important in the speedy recovery
of postpartum reproductive health and ovarian cyclicity, ruminal acidosis should be a
greater concern for the postpartum cow. Earlier we discussed that feeding UFAs is helpful
for postpartum energy balance and reproduction, and their feeding can have negative
impact on rumen microbiota [170]. This negative impact can be minimized in diets with the
inclusion of high forage content, which maximizes ruminal biohydrogenation [171]. On the
other hand, essential consumption of a concentrate-rich diet acts conversely by decreasing
biohydrogenation [171,172]. Therefore, prepartum feeding adjustments to incorporate all
the ingredients contained in the postpartum feed is advised to avoid ruminal acidosis and
successful energy-rich feed adaptation of postpartum cows [173]. Probiotics of yeast origin
(Saccharomyces cerevisiae and Aspergillus orizae) are shown to modulate rumen function, avert
risk of acidosis, and improve fertility in postpartum cows [173,174]. In conclusion, a careful
increase in concentrates with due vigilance for the risk of acidosis and feeding dietary
bicarbonates seem to be important in overcoming the problem of ruminal acidosis [175,176].

7. Effect of High-Protein Diet on Reproductive Performance

Modern dairy cows produce high milk quantities due to continuous genetic improvement.
In order to fulfill the high energy and protein demand of lactation, the protein levels in
the cow diet are also increasing. A high proportion of dietary protein, though helpful for
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lactation yield [177,178], is negatively associated with RP [179]. The proteins in the diet are
divided into rumen degradable and non-degradable proteins. Higher rumen degradable
protein feeding can disturb the nitrogen cycle, leading to high ammonia and subsequent
increases in the blood urea content. Indeed, a high level of rumen non-degradable protein
cannot be completely digested in the jejunum and thus should be degraded by microbial
flora in the large intestine and transformed into ammonia. The phenomenon could be
further promoted by a low level of non-structural carbohydrates in the diet [180]. A
meta-analysis found 43% lower odds of reproduction success in cows where plasma urea
nitrogen was 19.3 mg/dL or where urea was ≥420 mg/L in the milk compared with lower
urea values, where high concentrations of urea nitrogen were negatively associated with
reproductive capacity and affect the pituitary and ovarian function of cows and uterine
physiology [181]. Studies report a negative correlation of milk urea content of postpartum
cows with first postpartum service and conception rates. Another study showed that an
increase in milk urea content from 12.5 mg/dL to 13.5 mg/dL caused a 5% decrease in
the fertility rate of cows [182]. A high-protein diet and its metabolism generate oxidative
stress in the body, affecting reproductive performance [183,184]. Oxidative stress, immune
response, heat stress, and changes in gluconeogenesis deplete amino acids, decreasing
the availability of essential amino acids [185–187]. Extensive protein metabolism may
possess negative implications for reproductive performance and lead to depletion of amino
acids for oxidative purposes but certain amino acids are essential for reproductive health
and pregnancy [188,189]. Therefore, a balanced protein diet and supplementation of
certain amino acids such as lysine, arginine, phenylalanine, and tyrosine may be useful for
enhancing metabolic status and fertility outcomes of postpartum cows [185,190,191]. Hence,
in this context, feeding controlled crude protein and supplementing cotton seed in feed can
have better impacts on fertility [192]. Controlled rumen degradable and non-degradable
proteins help to provide essential amino acid support and prevent their catabolism [193].
Before concluding this review, a summary chart comprising the nutritional mitigation and
postpartum reproductive performance enhancement approaches is presented in Figure 2.
This chart is based upon the recommendations discussed in this study and our previous
studies [9,187]. Prepartum feeding of a controlled energy diet can help to avoid postpartum
NEBAL and improve fertility [68,70], where the inclusion of short-chopped wheat straw
or low-quality grass hays can be helpful in this regard [71,194]. The supplementation of
the most limited methionine and lysine through rumen-protected means is shown to im-
prove postpartum protein metabolism, improve ovarian follicular biochemical profile [195],
conception rate [196,197], and embryonic development [198]. Dietary fat and trace mineral
supplementations are also helpful in this regard [199,200]. Monensin supplementation
significantly reduces the incidence of subclinical ketosis [201]. Injections of growth hor-
mones such as recombinant bovine somatotropins (rbSTs) are also helpful in improving
the metabolic profile and immunity of postpartum dairy cows [202,203]. Besides these
nutritional support strategies, the practice of timed AI protocols is demonstrated to be
helpful in improving the reproductive outcome of postpartum cows [204,205]. Adoption
of synchronized AI protocols effectively makes up for the endocrine alterations and im-
proves follicular ovarian dynamics and thus is effective for breeding success. Employment
of embryo transfer technology can effectively bypass the initial reproductive processes
and is helpful for enhanced reproductive outcomes [206]. Furthermore, injecting post-AI
GnRH and progesterone is also helpful to support the corpus lutea and increase conception
rates [207,208].
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Figure 2. This summary chart encompasses nutritional mitigation and postpartum reproductive
management support strategies. Postpartum management should be based upon the advice of
dairy extension workers and/or veterinarians, with special care for appropriate feeding practices.
(Abbreviations: DCAD, dietary cation–anion difference; DMI, dry matter intake; BWT, body weight;
UFA, unsaturated fatty acid; PUFA, poly-unsaturated fatty acid; CP, crude protein; RDP, rumen-
degradable protein; inj., injection; rbST, generic somatotropin; AI, artificial insemination; GnRH,
gonadotrophin.) This figure is based upon the mitigation charts of our previous studies [9,187] and
the recommendations given in this study.

8. Conclusions

Postpartum metabolic disorders debilitate dairy cows and predispose them to a decline
in postpartum reproductive efficiency. Perinatal NEBAL appears to be the major culprit
behind the occurrence of post-parturient metabolic diseases and related conditions. Prepar-
tum BCS and postpartum lipid mobilization are the two factors closely associated with
NEBAL. A controlled energy diet starting from −21 d is helpful in successful perinatal
transition of dairy cows. While doing so, attention must be paid to avoid over-conditioning
during the prepartum period. There is enough literature about the management of perinatal
cows to avoid the occurrence of NEBAL and excessive NEFA mobilization. However, contro-
versy still exists about the supplementations of fats, their type, and quantity fed. Therefore,
further research involving complex farm trials about fat supplementation would help move
in the right direction. NEFA and ketone interactions with the ovarian–hypothalamus–
pituitary axis, oocytes, and developing embryos at the system biology level can bring up
exciting knowledge and insights. A score of nutritional mitigation strategies are available
and future discoveries will help to maximize the welfare and reproductive efficiency of
postpartum dairy cows.
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