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Inferring experimental procedures from text-based
representations of chemical reactions
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The experimental execution of chemical reactions is a context-dependent and time-

consuming process, often solved using the experience collected over multiple decades of

laboratory work or searching similar, already executed, experimental protocols. Although

data-driven schemes, such as retrosynthetic models, are becoming established technologies

in synthetic organic chemistry, the conversion of proposed synthetic routes to experimental

procedures remains a burden on the shoulder of domain experts. In this work, we present

data-driven models for predicting the entire sequence of synthesis steps starting from a

textual representation of a chemical equation, for application in batch organic chemistry. We

generated a data set of 693,517 chemical equations and associated action sequences by

extracting and processing experimental procedure text from patents, using state-of-the-art

natural language models. We used the attained data set to train three different models: a

nearest-neighbor model based on recently-introduced reaction fingerprints, and two deep-

learning sequence-to-sequence models based on the Transformer and BART architectures.

An analysis by a trained chemist revealed that the predicted action sequences are adequate

for execution without human intervention in more than 50% of the cases.
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In recent years, chemistry has witnessed several successful
applications of artificial intelligence (AI) algorithms. Among
others, generative models can help design molecules with

potentially relevant properties for specific applications1, while
retrosynthetic models suggest potential routes to synthesize these
molecules2,3.

Reaction prediction algorithms assist chemists in prioritizing
the synthetic strategy and in selecting effective routes. However, a
synthetic route is insufficient to assemble the experimental pro-
cedures required for each synthetic step. The planning of a che-
mical synthesis requires the knowledge of the precise sequence of
operations (addition of chemicals, stirring, filtration, solvent
extraction, preparation of intermediate solutions, etc.) and the
definition of their optimal parameters (temperature, solvents,
atmosphere, etc.). The assembly of these operational tasks is left
to happenstance, mostly guided by the chemist’s experience, and
characterized by trial and error. It often requires extensive lit-
erature search and the use of homology strategies, in which one
identifies one or more reported chemical procedures likely to
resemble the target chemical transformation, to provide the best
initial guess for the experimental protocol. The reasoning behind
this approach is that the execution of a chemical reaction should
be successful if one follows procedures for known similar reac-
tions. Additional iteration cycles are often required to improve
the reaction protocol after inspection of the experimental results.

Hence, in practice, despite the potential benefits provided by
AI algorithms, synthesizing the suggested molecules in the
laboratory remains an important bottleneck. This is even more
relevant if one considers the revived interest in using robotic
systems to automate and scale the execution of chemical
reactions4–12. In fact, while automation is widely present in
chemistry13, the programming of the robotic systems remains a
major impediment towards its wider adoption for general
chemistry works due to the need for personnel with both che-
mical domain expertize and programming skills.

A large-scale adoption of automated synthesis platforms for
general purpose chemistry will require virtual assistants to help
create specific execution programs for individual chemical reac-
tions. This entails the ability to recommend a precise sequence of
operations for the execution of a suggested reaction step,
depending on the nature of the substrates, solvents and target
products. Concretely, starting from a chemical equation suggested

by an AI model, the goal is to determine the series of steps needed
to successfully execute that reaction in a laboratory setup.

The use of AI technologies to predict experimental procedures
covers, to date, few works focusing on predicting solvents or
reaction conditions. For instance, Walker et al. designed a
machine learning model to predict adequate solvents for five
selected reaction classes14. Maser et al. formulated the prediction
of reaction conditions as a multiclass prediction problem for four
classes of cross-coupling reactions15. Their models select cate-
gorical values for the categories metal, ligand, base, solvent,
additive, temperature, activator, as well as the presence and
pressure of a carbon monoxide atmosphere. Nicolaou et al.8

coupled a retrosynthetic analysis tool to a nearest-neighbor search
in a database of previously executed reactions in order to suggest
procedures for the automated synthesis of new molecules. Gao
et al.16 trained a neural network to predict reagents, solvents,
catalysts, and temperatures for any reaction class. Their model
has been combined with retrosynthetic tools to plan syntheses on
a robotic platform5. However, the chemical procedures had to be
revised and complemented manually. The domain complexity
and lack of sufficiently curated data hindered further technolo-
gical developments of AI models predicting entire reaction pro-
cedures with limited human intervention.

Here, we present Smiles2Actions, the first AI model to convert
chemical equations to fully explicit sequences of experimental
actions. We demonstrate it for the realm of batch organic
synthesis. The chemical equations, generated by AI algorithms or
input by humans, are represented in a text-based format
(SMILES). Using a natural language processing model17, we
generate a data set of 693,517 chemical equations and associated
action sequences necessary for training three different data-driven
models: a nearest-neighbor model, and two transformer-based
sequence-to-sequence models, the original architecture as intro-
duced by Vaswani et al.18 and the bidirectional and auto-
regressive transformer (BART) by Lewis et al.19. An overview of
our approach is illustrated in Fig. 1. When comparing the original
and predicted chemical procedures as a whole, the best per-
forming model achieves a normalized Levenshtein similarity of
50% for 68.7% of reactions, a 75% match for 24.7% of reactions,
and a 100% match for 3.6% of reactions. The models are able to
estimate the solubility of products in different solvents (phase
separation, extraction) and to anticipate the formation of

Fig. 1 Overview of the data set generation and Smiles2Actions model. The data set is generated in a sequence of processing and filtering steps, starting
from information available in patent reaction records (on the left). The Smiles2Actions model is trained on this data set, after which it can predict the action
sequences to execute arbitrary chemical equations (on the right).
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precipitate (filtration), or when to heat or cool the reaction
mixture (endothermic or exothermic reactions), without ever
making those concepts explicit. Finally, an academic chemist
expert analyzes and assesses 500 predicted action sequences
among different chemical reaction classes, finding that the pre-
dicted action sequences are adequate for execution without
human intervention for more than half of the predicted reactions.

Results
Prediction task. We formulate the task of inferring experimental
procedure steps as the prediction of an action sequence starting
from a chemical equation. The prediction task relates to single
reaction steps. For a multi-step synthesis, the experimental pro-
cedure steps are predicted separately for each individual reaction.

As in previous works3,20,21, we do not distinguish between
reactants and reagents, as the attribution to one class or the other
may be subtle or ambiguous22. Hence, the chemical equations in
the input consist of a set of precursors (reactants+ reagents) and
a set of product molecules. Figure 2 shows an example for a
condensation reaction.

We depict chemical equations using a text-based representa-
tion of the entire set of molecules involved in the corresponding
transformation. Without loss of generality, we use the
SMILES23,24 format, which for the example reported in Fig. 2 is
equivalent to:

C(=NC1CCCCC1)=NC1CCCCC1.ClCCl.CC1(C)CC
(=O)Nc2cc(C(=O)O)ccc21.Nc1ccccc1>>CC1(C)CC
(=O)Nc2cc(C(=O)Nc3ccccc3)ccc21

When processing the SMILES representation of a chemical
equation, the generated output is a sequence of synthesis actions.
The actions follow the format introduced by Vaucher et al.17 and
each consist of a type with associated properties (specific to the
action type). A summary of the action types is given in the
Supplementary Note 1. These actions cover the most common
batch operations for the synthesis of organic molecules, and were
designed to contain all the required information to reproduce a
chemical reaction in a laboratory. A thorough discussion about
the action format is available in the original publication17.

In order to improve the training performance of the
computational models, we restrict the allowed values for two
types of properties. The first property relates to the specification
of compound names in action sequences. Whenever possible, we
use tokens representing the position of the corresponding
molecule in the reaction input, allowing the computational
models to focus more on relevant instruction patterns instead of
trying to learn the naming conventions of molecules. We allow
the use of reagents that do not appear in the chemical equation
only when they are part of a list of commonly used reagents
(reported in the Supplementary Data 1). The second property
relates to numerical values for temperatures and durations. The
success of reactions does not depend on the exact values for these
experimental conditions, as long as they lie within adequate
ranges. As a consequence, these values are often reported

inaccurately. An example is the commonly reported reaction
duration overnight. The term has little meaning from a
quantitative perspective and only indicates the execution of an
unattended reaction outside of working hours. The same applies
when reporting reaction temperatures. The specification of wide
intervals is often a sign of an uncontrolled process, putting aside
the systematic errors connected to the use of different measuring
devices. Therefore, we tokenized predefined ranges for tempera-
tures and durations and used these tokens during the training
process instead of the exact (noisy) reported values. The predicted
procedure steps will contain the optimal tokens corresponding to
predefined ranges. At inference time, the tokens can be replaced
by actual numerical values in a straightforward manner. These
two modifications simplify the design and improve the perfor-
mance of all computational models, as they remove the necessity
to learn the vocabulary and syntax of compound names,
durations, or temperatures. Also, they reflect the fact that ranges
of durations and temperatures are usually as adequate as precise
values.

Another important aspect is the mass scale of the chemical
transformation. In fact, compound quantities affect chemical
procedures and the format designed by Vaucher et al.17 is general
enough to make this relationship explicit. Hence, it may be
possible to introduce a functional dependency with respect to
mass quantities by specifying an additional reaction token.
However, the information extracted from patents lacks a proper
coverage across different mass scales to capture the typical
patterns of the operational changes when using production
quantities compared to laboratory scale25,26. Therefore, we
removed compound quantities from action sequences, leading
to optimal processes that are averaged across the different mass
scales.

Taking these points into account, Table 1 shows a possible
action sequence for the reaction depicted in Fig. 2.

Data. The design of models predicting experimental steps
requires a data set of chemical equations and associated experi-
mental procedures. Because of the unavailability of open and
large-scale ready-to-use options, we created our own data set of
chemical reaction procedures from scratch.

The data set was generated in multiple consecutive steps
starting from the Pistachio database27, which contains 8,377,878
records of reactions published in patents, each including the
reaction SMILES string, the experimental procedure, and a
mapping of molecular SMILES strings with associated
compound names.

Excluding records with no experimental procedure text
(2,140,782) and duplicate reaction records (2,772,432), we
extracted the action sequences corresponding to the remaining
3,464,664 reactions using a state-of-the-art natural language
model (Paragraph2Actions) recently published by our group17.

The extracted action sequences underwent a series of
postprocessing steps to produce a standardized data set of higher
quality. We ignored the reaction records reported in languages
other than English, records referring to other procedures, and
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Fig. 2 Illustration of a chemical equation. To the left of the arrow, one can identify all the precursor molecules, while the product molecule is shown to its
right. On the left-hand side of the reaction, we also include molecules that play a role as reagents or solvents only, such as the first two entities:
N,N′-dicyclohexylcarbodiimide and dichloromethane.
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records containing invalid actions upon processing by the
Paragraph2Actions model. We used a few heuristics to normalize
the action representation and to add implicit actions. We replaced
temperatures, durations, and pH values with tokens correspond-
ing to predefined intervals. We matched compound names to
molecules present in the corresponding chemical equation,
replacing the chemical names with the respective positional
tokens. In cases where we were not able to process the chemical
records to meet predefined quality standards the entire record
was removed from the data set. For records with identical
reaction SMILES we retained only one copy. In the Methods
section, we report a more detailed description of all the
postprocessing steps. The standardization protocol produced a
data set consisting of 693,517 reaction SMILES with associated
action sequences, a mere 20% of the intermediate set of 3,464,664
records, or 8% of the initial Pistachio database.

In Table 2, we list the leading factors responsible for the
decrease of the size of the data set compared to the original
number of reaction records. More than one fourth of the initial
reaction records is connected to unsuccessful mapping of
molecules between the chemical equation and the extracted
action sequence. This occurs when a molecule is present in the
chemical equation but not in the extracted actions, or vice
versa. A similar portion of reaction records was ignored because
the corresponding experimental procedures do not contain
relevant action sequences upon processing by the Paragraph2Ac-
tions model, such as records referring to other procedures,
very short action sequences, action sequences with invalid

actions, and action sequences that are likely to describe multiple
reaction steps. Other errors include flaws in the conversion of
extracted duration or temperature strings to actual numerical
values.

The last processing step described above, involving the
identification/removal of duplicate entries, revealed the presence
of 326,929 duplicate reaction SMILES in 871,112 reaction records.
Out of these, 47,299 contained non-identical action sequences.
The inspection of the corresponding action sequences showed
that experimental procedures occasionally describe identical
operations using different linguistic terms (for instance, a
quenching operation described in terms of addition). The analysis
also showed that patent records report identical reactions equally
successful under different procedure parameters, such as different
temperatures, duration, or the order of the added compounds.
While this may be a sign of robustness of some chemical
processes when exposed to different conditions, there is no
possibility to rule out these records as inaccurate, misleading, or
even false reporting. In the Supplementary Data 4, we list all the
reaction SMILES and associated action sequences with five or
more such sequences. Among the entries with duplicate reaction
SMILES, one was picked at random and kept in the data set.

To verify that the data set covers a similar chemical space as
the original records, we studied the reaction classes’ coverage in
the obtained reaction procedure data set. While it is reasonable to
observe changes in relative class frequency due to different
statistical samplings, it is essential to ensure the absence of
systematic bias in our processing protocol. Figure 3 shows the
differences in class frequency between the original reaction data
with 3,464,664 entries and the final data set of 693,517 reaction
records. Most of the reaction classes have a frequency similar to
the initial reaction records: out of 944 reaction classes, in 336
cases, the class prevalence changes by <25%, and in 607 cases by
<50%. 66 reaction classes, all with a population of fewer than 100
records in the original set, disappeared in the final data set. More
than 88.7% of the reaction classes with a size of 100 entries or
more in the original data set did not decrease their prevalence by
more than 50%. This analysis comprises the class for unrecog-
nized reactions, the frequency of which changes from 30.7% in
the original reaction data to 26.2% in the produced data set.
Therefore, we consider the generated data set adequately
representative of the original reaction data.

In the rest of the work, we use the resulting data set split
randomly into 554,813, 69,352, and 69,352 reaction records for
training, validation, and testing, respectively. We discuss the class
distribution of the different splits in the Supplementary Note 2.

Models. We used different architectures to design three compu-
tational models for inferring action sequences, given a text-based
representation of a chemical equation as input. The first model is

Table 1 Possible action sequence for the chemical equation of Fig. 2.

Action sequence Equivalent human-readable sequence

1 ADD $1$ ADD N,N′-dicyclohexylcarbodiimide
2 ADD $4$ ADD aniline
3 ADD $2$ ADD dichloromethane
4 ADD $3$ ADD 4,4-dimethyl-1,2,3,4-tetrahydro-2-oxo-7-quinolinecarboxylic acid
5 STIR for @3@ at #4# STIR for 8 h at 25 °C
6 FILTER keep precipitate FILTER keep precipitate
7 RECRYSTALLIZE from ethanol RECRYSTALLIZE from ethanol
8 YIELD $-1$ YIELD 4,4-Dimethyl-1,2,3,4-tetrahydro-N-phenyl-2-oxo-7-quinolinecarboxamide

The tokens $1$, $2$, $3$, and $4$ refer to the compounds present in the chemical equation. Since ethanol is not part of the chemical equation, it is not replaced by a token. The token @3@ refers to the
third duration range and corresponds to durations between 3 and 10 h. The token #4# refers to the fourth temperature range and corresponds to temperatures between 10 °C and 40 °C. More details
about the token substitution can be found in the Methods section.

Table 2 Reaction records ignored during the generation of
the data set.

Category Number of reaction
records

Incomplete mapping of molecules 995,674
Refers to other procedure 690,484
Contains InvalidAction 131,461
Error in duration extraction 127,598
Likely to contain multiple reaction steps 120,073
Too short action sequence 67,631
Error in action sequence extraction 38,516
Error in temperature extraction 37,485
Molecule present both in the precursors and
the products

6612

Invalid molecule SMILES 6280
Invalid reaction SMILES 1606
Other errors 3544
Removed due to duplicate reaction SMILES 544,183
Final data set 693,517
Total 3,464,664
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Fig. 3 Differences in class prevalence between the original data and the generated data set. As an example, this figure can be read in the following
manner: a total of 60 reaction classes, each occurring between 100 and 999 times in the original reaction data set, are represented between 25% and 50%
more frequently in the data set of 693,517 reactions.

Table 3 Metrics for the prediction of synthesis actions.

Model Validity BLEU
score

100%
accuracy

90%
accuracy

75%
accuracy

50%
accuracy

Random (among all reactions) 61.6 35.1 0.00 0.04 0.76 24.07
Random (compatible pattern) 100.0 38.5 0.01 0.18 1.51 30.01
Nearest neighbor 99.6 53.2 6.65 12.50 20.30 55.46
Transformer 99.7 54.7 3.60 10.10 24.74 68.73
BART 99.6 54.5 0.98 5.00 17.57 66.04

All values are given in percentage, and the best values are indicated in bold. The ground truth is considered to be the only correct solution during the evaluation of the different metrics.

Table 4 Action sequences predicted for a reaction from the test set.

Ground truth Transformer model BART model Nearest-neighbor model

ADD $2$ ADD $2$ ADD $2$ ADD $4$
ADD $4$ ADD $4$ ADD $4$ ADD $3$
ADD $3$ ADD $3$ ADD $3$ ADD $5$ at #4#
ADD $1$ ADD $1$ ADD $1$ ADD $1$ at #4#
ADD $5$ STIR for @2@ at #4# STIR for @1@ at #4# STIR for @1@ at #4#
STIR for @4@ at #4# ADD $5$ ADD $5$ ADD $2$
CONCENTRATE STIR for @4@ at #4# STIR for @4@ at #4# STIR for @4@
PURIFY CONCENTRATE CONCENTRATE QUENCH with water
YIELD $-1$ PURIFY PURIFY CONCENTRATE
– YIELD $-1$ YIELD $-1$ EXTRACT with ethyl acetate/THF
– – – WASH with brine
– – – DRYSOLUTION over Na2SO4
– – – FILTER keep filtrate
– – – CONCENTRATE
– – – ADD THF
– – – PURIFY
– – – YIELD $-1$

The considered reaction is a reductive amination of compound $2$ with the amine $4$. The other precursors are acetic acid ($1$), ethanol ($3$), and sodium cyanoborohydride ($5$). The remaining
tokens refer to the product ($-1$), to a temperature of 25 °C (#4#), and to durations of 10 min (@1@), 1 h (@2@), and 1 day (@4@).
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a nearest-neighbor model using novel reaction fingerprints21 to
identify related reactions in the training set and to provide
an action sequence adapted from the closest neighbor with a
compatible number of molecules in the chemical equation.
The second model has a transformer-based encoder-decoder
sequence-to-sequence architecture18 that formulates the proce-
dure prediction task as a translation from reaction SMILES
strings to sequences of actions. This model architecture proved
successful in earlier work pertaining to SMILES strings3,20

and synthesis actions17. The third model is a bidirectional and
auto-regressive transformer model (BART), which builds on the
standard transformer architecture and uses recent advances to
optimize the pre-training of transformers19. The models and their
implementation are discussed in the Methods section.

Model evaluation and comparison. We evaluate all of the
models on the test set containing 69,352 chemical equations and
the associated action sequences. In Table 3, we show six metrics
for the three models studied in this work. The validity measures
the syntactical correctness of the predicted action sequences. It is
given by the fraction of predictions that can be converted back to
actions (as defined in the Supplementary Note 1) without error,
and that contain a reference to all the molecules present in the
chemical equation. The BLEU score28 is an indicator of the
similarity between two strings and is a commonly used metric to
evaluate models for machine translation. The 100% accuracy
refers to the fraction of sentences for which the full action

sequence is identical in the ground truth and in the prediction,
including the associated properties. The 90%, 75%, and 50%
accuracies are the fractions of sentences that have a normalized
Levenshtein similarity of 90%, 75%, 50% or greater, respectively.
The Levenshtein similarity is calculated by deducting the
Levenshtein distance29 from one, as implemented in the text-
distance library30. We also include two baselines that ran-
domly pick action sequences, the first one among all reactions
from the training set, and the second one among reactions that
have the same number of precursors and products.

All three models perform better than the random baseline,
which indicates that all of them are able to learn characteristic
reaction patterns. The evaluation of the metrics reported in
Table 3 requires extreme care as it assumes that the ground truth
is the only correct solution to match. However, this is a weak
assumption due to possible ground truth errors as well as the
multiple possible ways to achieve the desired chemical transfor-
mation in the laboratory or to formulate equivalent action
sequences. It is a rigid evaluation scheme that penalizes predicted
action sequences that may be chemically equivalent but
linguistically different. Still, it is the most reliable scheme to
provide a statistically meaningful comparison across the different
models.

As an example, we report the actions predicted by the different
models for a reductive amination reaction in Table 4. The deep-
learning models predict a sequence identical to the ground truth
except for an additional Stir action before the addition of
sodium cyanoborohydride. The nearest-neighbor model predicts

Fig. 4 Distributions of the lengths of predicted action sequences. a Comparison of the lengths of predicted action sequences for the different models. b
Comparison of the lengths of predicted action sequences for different levels of accuracies.
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a longer action sequence including quenching and a more
involved work-up. It is noteworthy that all the models predict an
identical stirring duration. In the Supplementary Data 2, we
report a selection of 100 reactions and associated predictions,
including the one from Table 4.

Figure 4a shows the distribution of the number of actions
predicted by the different (non-random) models. The sequence
lengths of the nearest-neighbor model closely follow the
distribution of the ground truth. The transformer model has a
pronounced preference for shorter sequences, while the BART
model is biased towards middle-length sequences. Both transfor-
mer and BART models predict fewer sequences that include 15 or
more actions.

Figure 4b shows the distribution of the lengths of action
sequences predicted with accuracies of 100%, 75% and 50% using
the transformer model. The correct (100%) predictions cover a
similar range of sequence lengths as the full data set and are not
limited to short sequences. Short sequences are only slightly
overrepresented, which is consistent with the higher probability
of predicting short sequences correctly.

The fact that the proportion of chemical equations for which
the prediction matches the ground truth 100% is under 10% for
all models does not mean that their quality is poor. The low
percentage of exact matches can be explained, in part, by the
presence of sequences with a large number of steps negatively
affecting the percentage of entirely correct sequences (multi-
plicative reduction of the probability if the events were
independent), by the noise in the underlying data set (multiple
correct ways of doing a reaction, multiple ways of describing the
same action sequence) and by errors in the data set (errors in
the action sequence extraction from the experimental procedure
text). For similar reasons, the differences in the distribution of
action sequence length in Fig. 4a are not a valid argument to
judge the quality of the deep-learning models compared to the
nearest-neighbor scheme.

In an endeavor to rationalize the model predictions for single
actions, one can assume, for illustration purposes, that the
prediction of each action is an independent event. We used
the average value of the accuracy for the 100% match and the
distribution of the sequences’ length to calculate the accuracy of a
single action prediction by solving the polynomial equation that
sums the probabilities of exactly matching each sequence length
to a total value of 3.6%. We found an accuracy of 72.7% for the
average single action prediction, which would correspond to the
average probability of the model predicting a single action with
correct type and associated properties if the action predictions
were independent events.

Despite the intrinsic difficulties to assess and compare the absolute
performance of the models, it appears that all three schemes are
viable options for inferring action sequences from chemical
equations. In general, the transformer model performs slightly better
than the BART model. The nearest-neighbor model has a better
100% accuracy value (see Table 3) than the deep-learning models.
The deep-learning models, however, rely on a learned representation
rather than on similarities with data points in the training set. As
such, they automatically take different aspects of the input into
account, such as the type of transformation and presence or absence
of functional groups. This makes them more general and more
interesting in the context of experimental procedure prediction. For
this reason, we will consider only the transformer-based model for
further analysis.

In Table 5, we categorize the differences in the actions predicted by
the transformer model compared to the ground truth. In addition to
the 3.6% exact predictions, roughly 0.9% represent actions predicted
in different orders, with the Add action being the main entity affected
by incorrect orderings. In 5.4% of the action sequences, the
differences are limited to properties associated with the action types.
For 1.4% of reactions, one action is predicted instead of another one -
and for 3.9% other cases, some properties of other actions are
different in addition to the swap. The swap between similar entities

Table 5 Categorization of differences of predictions and ground truth.

Category All properties
of other actions
are identical

Some properties
of other actions
are different

Exact match 2498 –
Actions in different order 620 –
Properties of one action are different: Stir 1935 –
Properties of one action are different: Add 262 –
Properties of one action are different: Reflux 163 –
Properties of another action type are different 234 –
Properties of multiple actions are different 1123 –
Actions are swapped: Stir and Reflux 319 113
Actions are swapped: Stir and Microwave 99 11
Actions are swapped: Stir and Wait 70 64
Actions are swapped: Add and MakeSolution 118 277
Other swap of a single action 442 2207
Action without counterpart: Purify 286 747
Action without counterpart: Wash 154 737
Action without counterpart: Set Temperature 175 579
Action without counterpart: Filter 121 462
Action without counterpart: Concentrate 173 404
Action without counterpart: Stir 154 313
Action without counterpart: Add 117 308
Action without counterpart: Collect Layer 48 207
Another action type without counterpart 191 550
Multiple actions only in the ground truth 2027 8475
Multiple actions only in the prediction 401 2161
Remaining cases 7280 32,727

The differences are computed for the test set containing 69,352 reaction records.
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(such as Stir and Reflux) may indicate the minor importance of
the use of a specific action type for a reaction success. In 8.3% of the
reactions, an action is missing either in the ground truth or in the
predictions. Most often, the extra action is related to work-up or
purification. In 18.8% of cases, more than one action is missing in
either the ground truth or in the predictions. The remaining 57.0% of
the reactions show a combination of multiple types of differences.

For a set of 500 reactions, we did a blind human assessment of
the action sequences reported in the ground truth and predicted
by the transformer model. For each reaction, we showed a trained
organic chemist a chemical reaction diagram together with the
ground truth and the predicted action sequences, in a random
order. The domain expert, without any possibility to distinguish
the predicted sequence from the ground truth one, was asked to
judge whether the experimental procedures were adequate or not
by selecting among the following options: consider both of them
experimentally valid, consider one to be adequate and the other
one inadequate, or reject both as experimentally inadequate.
Often, the expert labeled sequences as inadequate even if only a
single action was considered to be incorrect. We report the
collected preferences in Table 6. While this test cannot be
considered statistically significant to assess the quality across
different chemistry areas, it is unquestionable that for an
academic level expert the predicted procedures are, on average,
of equivalent quality to the ground truth. For more than half of
the reactions, the chemist considered the predicted action
sequence to be adequate. For about two fifths of the reactions,
the chemist considered them inadequate. Moreover, the human
assessment indicates that the predictions contain slightly fewer
inadequate sequences than the ground truth. Therefore, it is
reasonable to assume that improving the quality of the ground
truth will result in an improvement of the model predictions. We
report the human assessment and corresponding analysis of the
500 reaction records in the Supplementary Data 3.

The Supplementary Information contains additional evaluation
information for the transformer model. In the Supplementary
Note 3, we report the effect of shuffling the molecules in the
reaction SMILES given as input. We illustrate the performance of
the model with respect to the reaction class in the Supplementary
Note 4, and present the class distribution of the reactions assessed
by the expert chemist in the Supplementary Note 5.

Discussion
In this work, we address the prediction of experimental steps
starting from a text-based representation of a chemical equation.
We generated a data set beginning with a database of patent
reactions to train three predictive models: a nearest-neighbor
scheme, and two deep-learning sequence-to-sequence models based
on the Transformer and BART architectures. Despite the mathe-
matical differences, the three models exhibit a similar performance.

For most reactions in a random selection of the data set, the
predicted action sequences are considered experimentally adequate

(313 out of 500) by an expert chemist in a blind assessment. The
remaining 187 predictions out of 500 are considered inadequate.
The same assessment reveals the presence of 201 inadequate pro-
cedures in the ground truth. We demonstrated that it is possible to
construct effective deep-learning schemes to learn the characteristic
patterns in chemical reaction procedures and, at the same time, we
showed that quality issues within the information extracted from
patents limit their potential. An inspection of the inadequate pro-
cedures in the ground truth highlights some shortcomings in the
underlying patent data, such as incorrect chemical equations, but
also hint at improvable weaknesses in the generation of the data set.
A reduction of the number of inadequate data procedures could for
instance be achieved by an improved detection of inexact reaction
data, and by further improving the action extraction procedure
from experimental reports. Seeing that the transformer model is
performing on par with the ground truth, we expect that the model
performance will strongly benefit from such quality improvements
in training data.

Without loss of generality, we simplified a few aspects of the
reaction procedures. We did not include any information about
the state or concentration of compounds, as this is not commonly
specified in chemical equations. However, the current models
could easily be broadened with the availability of higher quality
data sets and an extension of the current text-based representa-
tion to include the compound state or concentration. The same is
true for the relative quantities of precursors and solvents, char-
acterizing the reaction scale, and for the atmosphere under which
reactions are executed. These pieces of information are not
reported uniformly in the experimental procedures and their use
would degrade the overall performance of deep-learning schemes.
Therefore, we decided to remove this information during the data
standardization process. This decision led to some incomplete
action sequences, especially for hydrogenation reactions that take
place under hydrogen atmosphere.

We note that action sequence prediction models require che-
mical equations to include not only reactants and products, but
also solvents and reagents. Recently developed retrosynthetic
schemes3 are capable of predicting optimal solvents and catalysts
and thus automatically provide the chemical equation in the
required format. A recently reported algorithm can be used to
infer common reagents and solvents automatically if they are not
present in the chemical equation31.

Interestingly, a chemical procedure is the equivalent of a com-
puter program for experimental chemists: a series of instructions
specified in a human-readable format that unambiguously codifies
the operations to execute the chemical experiment17, which could
either be executed by human operators or by automation hardware.
Accordingly, the Smiles2Actions model can be considered to write
code for chemical synthesis, and therefore has similarities with
machine programming32, where the core idea is software creating
its own software. The use of artificial intelligence technologies for
inferring experimental procedures will reduce the amount of trial
and error in a traditional laboratory setup. When coupled with an
automation system, this technology will contribute to a wider
adoption of automation technologies, laying the foundations for a
fully automated synthesis starting from only chemical equations. In
fact, we strongly believe that the mathematical architectures pre-
sented in this paper will become an essential component to auto-
matize general purpose synthetic chemistry on robotic systems. AI
will not replace chemists, and the action sequences predicted by the
model introduced in this work should always be verified for safety
prior to the actual synthesis. But AI will soon reach a level where
the predicted experimental procedures will be production-worthy,
without requiring human intervention, and will directly be usable to
drive automation hardware in a chemical laboratory or to reduce
the amount of trial and error in a traditional laboratory setup.

Table 6 Result of the chemist’s assessment of action
sequences.

Decision Number of reactions

Both sequences are adequate 191
Predicted action sequence is adequate,
ground truth is inadequate

122

Predicted action sequence is inadequate,
ground truth is adequate

108

Both sequences are inadequate 79

Out of the 500 analyzed reactions, 19 had an identical action sequence in the ground truth and
in the prediction, 16 of them were considered adequate and 3 were considered inadequate.
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Methods
Action sequence extraction. We used the pristine natural language processing
model trained in ref. 17 (Paragraph2Actions) for the extraction of action sequences
from experimental paragraphs.

Handling of compound names. The identification of the compounds present in
the action sequences extracted from experimental procedures requires the mapping
of the compound names to chemical structures. In the next paragraphs, we
document the detailed procedure.

Compound name stripping. In Vaucher et al.17, the action sequence extraction
model was trained to extract explicit compound names. For instance, the sentence
“The solution was acidified with 12 mL of a saturated solution of sulfuric acid”
contains the extracted compound name “saturated solution of sulfuric acid”. The
mapping of extracted names to SMILES strings includes the identification of the
root compound name, in this case “sulfuric acid”. Also, in several cases, the
extracted compound names refer to multiple chemical compounds, as in “5 mL of a
1.0 M DCM solution of boron tribromide” or “80 mL of 1:1 dioxane-water”.

To obtain the root compound names, we built a series of data-cleaning steps
based on heuristics (https://git.io/JYWDY) to trim the compound name entities by
removing, among others, information about physical state (“solid”, “gaseous”,
“(s)”), concentrations (“1.0 M”, “10 wt%”, “saturated”, “concentrated”),
temperatures (“cold”, “hot”), or composition ratios (“1:1”, “2/1”, “(80:10:10)”).

Compound name normalization. Chemical compounds often have multiple names.
In addition to common synonyms (for instance: “isopropanol”, “2-propanol”, and
“propan-2-ol”), the differences among extracted entities are commonly limited to
single characters, often as a side-effect of the use of optical character recognition
tools in scanned documents. Normalizing compound names with respect to such
small differences simplifies the attribution of SMILES strings to compound names.

We implemented a pipeline (https://git.io/JYWMt) for the normalization of
compound names, in which they undergo several subsequent modifications:

● subscript digits are replaced by their ASCII equivalent: H2SO4→H2SO4.
● visually similar characters are unified to avoid common optical character

recognition pitfalls: I (uppercase i)→ l (lowercase L), 1 (one)→ l
(lowercase L), 0 (zero)→O (uppercase o).

● uppercase characters are converted to lower case.
● dash and prime characters are unified or removed.
● spelled-out Greek letters are replaced by the Greek letter: alpha-glucose→

α-glucose.
● spaces are removed: dimethyl sulfoxide→ dimethylsulfoxide
● a selection of special characters are removed: NiCl2 ⋅ 6H2O→

NiCl26H2O, NiCl2 × 6H2O→NiCl26H2O

Note that the resulting names may not be existing compound names. However, the
purpose of the compound name normalization is to have a common representation
language for names that may differ due to spelling errors.

Name-to-SMILES and SMILES-to-name. In order to match the molecules between
the text-based representation of the chemical reaction and the extracted experi-
mental procedure, we implemented a mapping scheme between compound names
and SMILES strings.

We built two mappings using pairs of compound names and SMILES strings
available in the Pistachio database with hash tables (Python dictionaries). They
contain the most common SMILES string for a given normalized compound name,
as well as the most common compound name for a given SMILES string. We called
the two services name-to-SMILES (https://git.io/JYWMR) and SMILES-to-name
(https://git.io/JYWMo), respectively.

By mapping a compound name to a SMILES string and then back to its
compound name, one can obtain the most common synonym for the given
compound name. For instance, “dimethyl sulfoxide” is mapped to the SMILES
string “CS(C)=O”, which maps back to “DMSO”.

Tokenization of temperatures, durations, and pH values. We replaced the
extracted temperatures, durations, and pH values with tokens representing predefined
intervals (https://git.io/JYWMS). We report, in the Supplementary Note 6, the ranges,
tokens, and values used to convert the predicted instructions into numerical values.

Prior to the actual tokenization, we needed to convert the strings of characters
representing temperatures, durations, and pH values to actual numbers with
associated dimensions. This was achieved with heuristics that account for the
multiple ways of representing numbers (“five”, “5”) and units (“C”, “F”, “degrees”,
etc.), and that assign predefined values when no actual number is given (“over the
weekend”, “overnight”, “RT”, “ambient temperature”, etc.). If the conversion of an
extracted value failed, we ignored the associated reaction and did not include it in
the data set of experimental procedures.

Data set generation. As a source of chemical reaction data, we selected the Pistachio
database, version 3.027. Duplicate reaction records and records with no experimental
procedure text were filtered out. This provided a set of 3,464,664 reaction records.

The application of the following standardization steps produced 693,517 reaction
SMILES and associated action sequences to train the machine learning models.

Reaction SMILES postprocessing. The Pistachio database provides reaction SMILES
strings parsed into reactant, reagent, and product molecules. We merged the
reactant and reagent molecules into a list of precursor molecules, and all the
SMILES strings were canonicalized with RDKit33. For both lists of precursor and
product SMILES, we removed the duplicates and reordered the lists alphabetically.
The concatenation of the SMILES strings produced the reaction SMILES used for
training. Following the reaction SMILES notation, we separated the molecules
within the same class using dots (“.”), while the precursor and product lists were
separated by “>>”. For fragment bonds, we adopted the convention of using the
tilde symbol (“~”) instead of a dot.

For use in language-based models, the reaction SMILES is tokenized by
inserting spaces between the SMILES tokens.

Action sequence filtering. Some action sequences are not adequate for training and
were removed (https://git.io/JYWDi) from the data set. This is the case for reac-
tions with incomplete experimental procedures (such as the ones shortening the
description by referring to other procedures), or for unsuccessful or incomplete
action sequence extraction.

We ignored experimental procedures when their processing with the
Paragraph2Actions model17 contained any InvalidAction or
FollowOtherProcedure action. We filtered out any experimental procedure
containing fewer than five actions because such short sequences are not likely to
describe a chemical reaction appropriately. We also ignored experimental
procedures that likely describe multiple reaction steps. Therefore, any experimental
paragraph whose action sequence contains multiple Yield actions interlaid with
actions other than purification or work-up were rejected.

Action sequence postprocessing. The action sequence extraction model operates sen-
tence by sentence. When combining the actions for a full experimental procedure, it is
crucial to provide a consistent record, guaranteeing correct relative dependencies
between instructions. To do so, the action sequence extracted from the experimental
procedure text underwent a series of postprocessing steps (https://git.io/JYWyd).

We removed all NoAction actions, because these instructions usually arise from
sentences that are not relevant to the actual synthesis and can safely be ignored.

Whenever possible, we merged Wait actions with previous actions. This provides a
more concise representation when a sentence specifies the duration of an action only in
the next sentence. For instance, “The mixture was brought to reflux. After 2 hours, ...” is
equivalent to a Reflux action with a time parameter of 2 h.

Often, experimental procedures do not explicitly state whether the precipitate or
the filtrate should be kept upon filtering. We therefore inferred this information
from the previous or subsequent actions.

The use of preceding actions is also important to complete instructions
containing information related to previous actions. For instance, an action
specifying the temperature parameter with the “same temperature” value, requires
the inspection of the preceding actions to identify the latest set temperature.

Finally, we replaced MakeSolution actions appearing as first instruction in a
procedure by a series of Add actions. This reduces the differences between
equivalent ways of formulating action sequences while keeping an identical logic in
terms of experimental operations.

Updates to individual actions. To further remove unnecessary pieces of information
and harmonize differences in action sequences, we applied a series of changes to the
individual actions (https://git.io/JYWyd). First, we removed all compound quantities.
The inclusion of mass information would only decrease the overall accuracy of the
model. Better and more evenly distributed data sets will make it possible to skip this
simplification step, thereby enriching future predictive capabilities. Second, we toke-
nized all the values for temperature, duration, and pH values as described above.
Third, because of the uneven reporting of the number of repetitions for Extract
and Wash actions, we decided to ignore these values and always assume a single
repetition. Finally, again because of poor reporting consistency of experimental
details, we ignored all indications related to the use of specific atmospheres except
when the reported value was “vacuum” for the DrySolid action.

Compound names substitutions. As explained in the Results section, compound
names are only admissible in action sequences if the corresponding tokens refer to
molecules in the chemical equation or to molecules in a list of common reagents.
Therefore, it is necessary to map the molecules present in the chemical equation to
the extracted compound names. If the mapping is unsuccessful, we verify if their
most common synonyms match any item on the list of common reagents. We
report the list of common reagents in the Supplementary Data 1. The generation of
this list is explained in the Supplementary Note 7.

In addition to the name-to-SMILES and SMILES-to-name mappings
introduced above, the Pistachio records provide reaction-specific mappings
between compound names and SMILES strings. These mappings are particularly
useful when compounds are specified with a general name such as “the compound
from Example A”, “title compound”, etc. The mappings from Pistachio have
precedence over name-to-SMILES and SMILES-to-name.
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We trimmed each compound name in an extracted action sequence and
mapped its normalized name to a SMILES string, if possible. We separated
extracted compound names containing more than one compound by a slash (“/”)
symbol. If the SMILES string corresponded to a molecule present in the chemical
equation, we used a placeholder indicating the position in the chemical equation
instead of the extracted compound name. If the SMILES string did not correspond
to any molecule in the chemical equation, we converted it to its most common
synonym; for instance, “dimethyl sulfoxide” is replaced by “DMSO”.

We only kept compound names that did not match any molecule in the
chemical equation if they were present in the list of common reagents.

Upon application of these guidelines, if exactly one molecule from the chemical
equation and exactly one extracted compound name had not been mapped yet, we
considered them to be matching entities. We ignored the entire experimental
procedure if, at the end of this protocol, there were still unmapped molecules or
extracted compound names.

Textual representation of action sequences. As in previous work17, we converted the
actions (types and associated properties) to a semi-structured textual representa-
tion. This format is concise, human-readable, easily understandable and it enables
the use of natural language machine-learning models. This representation can be
converted to and from the action type and associated properties without loss
(https://git.io/JYW9e). The actions listed in Tables 1 and 4 use this textual format.

Models
Nearest-neighbor model. The nearest-neighbor model relies on the computation of
reaction fingerprints (rxnfp ft), as published in our previous work21, for the training
and test set. For any test set reaction fingerprint query, we search the nearest neighbors
in the training set with faiss34. The nearest-neighbor search is constrained to the
training reactions that have the same number of precursors as the test reactions.

The data-driven reaction fingerprints from Schwaller et al.21 were preferred to
the connectivity-based reaction fingerprints from Schneider et al.35. The latter
require a distinction between reactants and reagents, which may be subtle or
ambiguous22, and have a lower accuracy than the data-driven fingerprints on the
reaction classification task21.

Transformer model. The transformer model uses a transformer encoder-decoder
architecture with 8 attention heads and is trained by minimizing the categorical cross-
entropy loss for the output words. The model was implemented with the OpenNMT-
py library36,37. We adopted the hyperparameters suggested by the library with a few
changes. First, we reduced the model size by decreasing the number of layers from 6
to 4, the size of the hidden states from 512 to 256, and the size of the word vectors
from 512 to 256. Second, we changed the values of the parameters max_gener-
ator_batches to 32, accum_count to 4 and label_smoothing to 0.

BART model. The BART model was implemented using the reference imple-
mentation in the fairseq framework by Facebook AI Research38.

Data availability
The generated data set of 693,517 chemical equations and associated action sequences is
a derivative work of the Pistachio data set27. It is available from the authors upon request.

Code availability
A GitHub repository, available at https://github.com/rxn4chemistry/smiles2actions39,
contains code for processing compound names and action sequences, as well as
instructions to train and use the transformer model presented in this manuscript.
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