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Abstract

The pathophysiology of major depressive disorder (MDD) has been explored to be

highly associated with the dysfunctional integration of brain networks. It is therefore

imperative to explore neuroimaging biomarkers to aid diagnosis and treatment. In this

study, we developed a spatiotemporal graph convolutional network (STGCN) frame-

work to learn discriminative features from functional connectivity for automatic diag-

nosis and treatment response prediction of MDD. Briefly, dynamic functional

networks were first obtained from the resting-state fMRI with the sliding temporal

window method. Secondly, a novel STGCN approach was proposed by introducing

the modules of spatial graph attention convolution (SGAC) and temporal fusion. A

novel SGAC was proposed to improve the feature learning ability and special anat-

omy prior guided pooling was developed to enable the feature dimension reduction.

A temporal fusion module was proposed to capture the dynamic features of func-

tional connectivity between adjacent sliding windows. Finally, the STGCN proposed

approach was utilized to the tasks of diagnosis and antidepressant treatment

response prediction for MDD. Performances of the framework were comprehensively

examined with large cohorts of clinical data, which demonstrated its effectiveness in

classifying MDD patients and predicting the treatment response. The sound perfor-

mance suggests the potential of the STGCN for the clinical use in diagnosis and treat-

ment prediction.
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1 | INTRODUCTION

Major depressive disorder (MDD) is a severe psychiatric disorder

characterized by deep sadness, low energy and a high risk of suicide,

which is accompanied by substantial mortality (Dwyer et al., 2020,

Sekhon, Patel, & Sapra, 2020). During the past decades, various

efforts have been made to combat the heightened mortality caused

by MDD. Typically, syndrome-based clinical routines are utilized to

aid in its diagnosis as well as inform clinical treatment. However, due

to the limited diagnosis accuracies (Stephan et al., 2016), a significant

portion of patients fails to respond to the first-line treatment with

antidepressants, and the response can only be determined after about

1 month (Bauer et al., 2015). The treatment resistance not only affects

the compliance of antidepressant treatment and but also incurs the

risk of developing mental disability for poorly responsive patients.

Given the serious prevalence of the MDD and a lack of its effective

management, it is highly imperative to explore objective biomarkers

for detection and treatment response prediction of MDD.

It has been established that the pathophysiology of MDD is inti-

mately associated with dysfunctional integrations of brain networks

(Hou et al., 2018; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015).

As such, brain functional connectivity derived from functional magnetic

resonance imaging (fMRI) has been widely used in the recent past to

discriminate MDD from healthy controls and to predict treatment

response for MDD as well. Indeed, many endeavors have been made

with the intent to explore potential biomarkers for MDD diagnosis on

the basis of functional connectomes (Bhaumik et al., 2017; Rosa

et al., 2015; Zhao et al., 2020). Most of these studies resorted to multi-

variate pattern analysis of functional connectivity measures derived

among brain regions. While promising in offering novel neuroimaging

biomarkers for MDD, these methods, or diagnosis models, typically uti-

lize static features of functional connectivity with topological and

dynamic features basically ignored. The topologies and dynamics of

functional connectivity have in fact been found to be closely related to

the pathophysiology of MDD (Hultman et al., 2018; Ramirez-Mahaluf,

Roxin, Mayberg, & Compte, 2017; Sendi et al., 2021), which thus may

provide vital clues to accurate diagnosis of MDD.

Recently, the notion of deep learning has gained considerable

popularity in the research realm of computer vision and pattern recog-

nition (Badrinarayanan, Kendall, & Cipolla, 2017; Bao et al., 2020), and

deep graph learning has achieved unprecedented success in numerous

applications (Chang et al., 2020; Valsesia, Fracastoro, & Magli, 2020).

As the brain network can be described as a graph, in which parcellated

brain regions are treated as nodes and connectivity metrics between

these regions as edges, deep graph learning can be naturally extended

to characterizations of intrinsic features of brain functional connectiv-

ity (Jiang et al., 2020; Zhang, Kong, Wu, Coatrieux, & Shu, 2019). The

power of deep graph learning lies in its capability of learning intrinsic

topological features from graph, which allows it to yield performances

superior to traditional deep learning approaches. The powerful tech-

nique has recently been introduced for diagnosis of brain disorders.

Ktena et al. (2018) applied the spectral graph convolutional network

with each subject as nodes and functional connectivity as features.

The diagnosis was performed by classifying the nodes into different

classes with spectral graph convolutional network. Yao et al. (2021)

proposed a mutual multi-scale triplet graph convolutional network to

analyze static functional connectivity and structural connectivity for

brain disorder diagnosis. Notwithstanding the greatly successful appli-

cation widely reported in nascent literature, the ability of deep graph

learning in individualized diagnosis and treatment response prediction

of MDD remains to be explored.

In this study, we developed a spatiotemporal graph convolutional

network (STGCN) framework to learn discriminative features from func-

tional connectivity measures for automatic diagnosis and treatment

response prediction of MDD. Briefly, dynamic functional networks were

first obtained from resting-state fMRI datawith the sliding temporal win-

dowmethod. Secondly, a novel STGCNapproachwas proposed by intro-

ducing modules of spatial graph attention convolution (SGAC) and

temporal fusion. A novel SGAC was proposed to improve the feature

learning ability and special anatomy prior guided pooling was developed

to enable the feature dimension reduction. A temporal fusion module

was proposed with the SGAC to capture the dynamic features of func-

tional connectivity between adjacent sliding windows. Finally, the pro-

posed framework was utilized for diagnosis and antidepressant

treatment response prediction for MDD. Performances of the frame-

work were comprehensively examined with large cohorts of clinical data,

which demonstrated its effectiveness in classifying MDD patients and

predicting the treatment response. Insights obtained from our experi-

mentation can help redefine the clinical de facto standard forMDDman-

agement, and offer the potential of opening fundamentally novel

avenues for individualized treatment of depression.

2 | MATERIALS AND METHODS

2.1 | Participant

This study-utilized data sets from two sites, including the Affiliated

ZhongDa Hospital of Southeast University and the Second

Affiliated Hospital of Xinxiang Medical University. The patients were

recruited from the hospitals and the healthy controls (HCs) were

recruited through community health screening. All the subjects were

unequivocally and naturally right-handed. Written informed consent

was obtained from all the participants. All participants completed a

semi-structured clinical interview for DSM-IV Axis I Disorders (SCID-

I/P), Clinician Version (First, Spitzer, Gibbon, & Williams, 1997) with

two senior psychiatrists. All the participants also had an identical

assessment protocol, including the review of medical history and

demographic inventory. The patients met the following inclusion

criteria: (a) they met the MDD in DSM-IV criteria at the time of enroll-

ment; (b) they were in the first depressive episode and the age of

onset was over 18 years old; (c) 24 items Hamilton Depression Rating

Scale (HAMD) were > 20; (d) absence of other major psychiatric ill-

nesses, including substance abuse or dependence; (e) absence of

KONG ET AL. 3923



primary neurological illnesses, including dementia or stroke; (f)

absence of medical illness impairing cognitive function; (g) no history

of receiving electroconvulsive therapy; (h) no gross structural abnor-

malities on T1-weight images, and no gross white matter changes

such as infarction or other vascular lesions T2-weighted MRI; (i) no

psychotic symptoms (e.g., hallucination/bizarre delusions). The MRI

scans were obtained before patients having antidepressant treatment.

After removal of poor quality of imaging due to head motion or

ghost intensity, this study included 82 MDD patients and 50 controls

from the Affiliated ZhongDa Hospital of Southeast University, and

98 MDD patients and 47 controls from the Second Affiliated Hospital

of Xinxiang Medical University.

The patients in the Affiliated ZhongDa Hospital of Southeast Uni-

versity completed the HAMD assessment at the zero and second

week. According to the reduction of HAMD (Leucht et al., 2013)

(HAMDbaseline � HAMDweek-2)/HAMDbaseline), the MDD patients were

classified into nonresponsive depression (NRD, n = 40) (HAMD score

reduction ≤50%) and responsive depression (RD, n = 42) (HAMD

score reduction >50%). In total, there were 132 samples, consisting of

50 HCs, 42 RDs, and 40 NRDs.

2.2 | Image acquisition

The MRI scans were performed at the Affiliated ZhongDa Hospital of

Southeast University and the Second Affiliated Hospital of Xinxiang

Medical University. The images were obtained from 3.0 Tesla whole-

body scanner (Siemens Medical Systems, Erlangen, Germany) with a

12-channel head coil. Subjects laid supine with the head snugly fixed

with a belt and foam pads to minimize the head motion. All the subjects

were instructed to keep eyes closed, relax, and remain awake with no

thinking of anything during the scanning. High resolution three-

dimensional T1 weighted images were obtained using magnetization pre-

pared rapid gradient echo sequences with the following parameters: rep-

etition time (TR) = 1900 ms; echo time (TE) = 2.48 ms; flip angle

(FA) = 9�; acquisition matrix = 256 � 256; field of view

(FOV) = 250 � 250 mm2; thickness = 1.0 mm; gap = 0, 176 slices; in-

plane resolution = 0.97 � 0.97 mm2. An 8 min resting-state fMRI was

acquired with the following parameters: TR = 2000 ms; TE =25 ms;

FA = 90�; acquisition matrix = 64 � 64; FOV = 240 � 240 mm2;

thickness = 4.0 mm; gap = 0 mm; 36 axial slices; 240 volumes;

3.75 � 3.75 mm2 in-plane resolution parallel to the anterior–posterior

commissure line.

2.3 | Data preprocessing

All the rsfMRI data were preprocessed using the Data Processing

Assistant for Resting-State Function (DPARSF 2.3 Advanced Edi-

tion) toolkit. For each subject, the first 10 frames were discarded for

magnetic saturation. The following steps were performed: (a) slice

timing correction; (b) motion correction; (c) co-registering T1 to

functional image; (d) spatial normalization to Montreal Neurological

Institute space; (e) spatial smoothing using a 6 mm full-width at half-

maximum Gaussian kernel; (f ) linear detrend; (g) regression of nui-

sance signals (white matter, cerebrospinal fluid signals, and global

signal), and the head-motion parameters; (h) temporal band-passing

(0.01–0.08 Hz) to minimize low-frequency drift and filtering the

high-frequency noise.

2.4 | Deep dynamic graph learning for diagnosis
and treatment response prediction

A novel STGCN was proposed for diagnosis and treatment response

prediction for MDD. The main framework is illustrated in Figure 1. To

begin with, dynamic functional networks were obtained from the

resting-state fMRI with the sliding temporal window method. Sec-

ondly, a novel STGCN framework was proposed by introducing the

modules of SGAC and temporal fusion at each stage. A novel SGAC

was proposed to improve the feature learning ability and a special

anatomy prior guided pooling was developed to enable the feature

dimension reduction. A temporal fusion module was proposed to cap-

ture the dynamic features of functional connectivity between adja-

cent sliding windows with the SGAC. The key modules of the

framework were SGAC, anatomy prior graph pooling, and temporal

fusion, which will be given detailed description in the following.

Finally, the proposed framework was utilized for the two tasks of

diagnosis and antidepressant treatment response prediction for MDD.

2.4.1 | Construction of the dynamic functional
network

Functional connectivity has been demonstrated to be dynamic with

temporal variations in recent years (Zalesky, Fornito, Cocchi, Gollo, &

Breakspear, 2014; Zhang et al., 2020). Therefore, a set of dynamic

functional networks were constructed from resting-state fMRI data.

Firstly, with a selected atlas and the preprocessed data, averaged time

courses were computed for each brain region. Secondly, the entire

time courses were divided into many overlapping sliding windows,

and the Pearson correlation was utilized to calculate the functional

connectivity in each sliding window. Several functional connectivities

can be obtained with a sliding stride. Finally, the functional connectiv-

ity was further thresholded by the proportional quantization to obtain

the brain network at each window. The edge number was the same

for the functional connectivity at each window (Luo et al., 2021).

These dynamic functional networks can be represented with a set

of graphs. The brain regions were the nodes of the graph as V = {V1,

V2,…, VN}. Each node was represented with the degree and average

time courses TSi, i = 1, 2, …, N, where i represents different brain

region. The connections between nodes for the kth window were
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represented as an adjacency matrix Ak, where Akij denotes the connec-

tion between node i and j at the kth window. Each subject can get K

adjacency matrices A = {A1, A2,…, AK}, Ak�RN�N, and K was number

of sliding windows. The feature of a node Xki can be obtained by

concatenating the normalized signal feature and the degree of the

node Dki is defined with the adjacency matrices as the following

Dki ¼
XN

j¼1
Akij, i¼1,2,…,N,k¼1,2,…,K ð1Þ

Therefore, a set of dynamic brain networks were obtained with G¼
V, A, Xð Þ,V �RN, A�RK�N�N, X�RK�N�C for each sample, and C is the

feature dimension of the node.

F IGURE 1 The framework of the proposed spatiotemporal graph convolutional network (STGCN) framework for diagnosis and treatment
response prediction of major depressive disorder (MDD). Dynamic functional networks were first obtained from the resting-state functional
magnetic resonance imaging (fMRI) with the sliding temporal window method. Secondly, a novel STGCN framework was proposed by introducing
the modules of spatial graph attention convolution (SGAC) and temporal fusion at each stage. A novel SGAC was proposed to improve the
feature learning ability. A special anatomy prior graph pooling module was developed to enable the feature dimension reduction with a
hierarchical brain parcellation. A temporal fusion module was proposed to capture the dynamic features of functional connectivity between
adjacent sliding windows with the spatial graph attention convolution module. Finally, the proposed framework was utilized for the two tasks of
diagnosis and antidepressant treatment response prediction for MDD
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2.4.2 | SGAC

A SGAC module was introduced to learn the features from the graph

at each time window. A linear filter is defined to make a combination

of the adjacency matrix as following

Hk ¼ h0Iþh1Ak ð2Þ

where I represents the identity matrix, which means the reflexive con-

nection, and h0, h1 are the filter coefficients. Ak is the adjacency matrix

of the graph at the kth sliding window. As each node is represented

with the feature of the degree and the average time course, the filter

coefficient h0 or h1 is a vector with the length C. The size of the out-

put Hk is N *N *C. A single feature channel of the linear filter can be

described as the following

H cð Þ
k ¼ h cð Þ

0 Iþh cð Þ
1 Ak ,H

cð Þ
k �RN�N and c� 1,2,3…:,Cf g ð3Þ

where H cð Þ
k represents a slice of Hk, which means the corresponding

filter of the kth feature h(c) represents the weight corresponding to

the cth node feature. The graph convolutional layer can also be uti-

lized to perform on the vertex signal Xk as following

Xout,k ¼
XC

c¼1
H cð Þ

k X cð Þ
k þb ð4Þ

where, X cð Þ
k means the cth column of Xk, which represents the cth fea-

ture of the vertex, and the parameter b is the bias.

The traditional convolution operation gives the same weights of

the neighbor nodes. However, some neighbors are more important

than the other ones. Therefore, the attention mechanism is further

utilized to identify the effective nodes during the convolution (Petar

Velickovic, Casanova, Romero, Lio, & Bengio, 2018). The important

neighbor nodes are given larger weights, and while the irrelevant

neighbors are suppressed to avoid potentially confusing information.

After introducing the attention mechanism, the convolution filter of

Equation (4) can be modified as follows,

Xout,k ¼
XC

c¼1
1þattð ÞH cð Þ

k X cð Þ
k þb ð5Þ

where att = {att1， att2,…, attN} is the attention weight of each node,

which can be learnable with an initial value of 0.

2.4.3 | Anatomy prior graph pooling

Graph pooling layer could make the dimension reduction to enable a

larger receptive field and a low computational burden. Moreover, the

pooling operation can help extracting more distinctive feature informa-

tion. Commonly utilized graph embedded pooling approach adaptively

learns an embedding matrix. This method merges nodes with similar fea-

tures to generate new nodes. However, the nodes of the graph are the

anatomical regions of the brain, and certain neighborhood regions have

strong relationships and functional dependencies (Liu et al., 2018). It is

better to merge the regions with a similar function. To utilize the prior

knowledge, a novel anatomy prior graph pooling method is proposed

based on anatomy information between the graph nodes. A hierarchical

brain parcellations are utilized at different scales, as shown in Figure 1.

The three parcellations of L1, L2, and L3 include 90, 54, and 14 regions of

interest. The embedding matrix Vemb is obtained by mapping the

corresponding brain parcellations with a hierarchical architecture. The

90 nodes with the L1 level is pooling to 54 nodes at the L2 level and the

54 nodes at the L2 level is pooling to 14 nodes at the L3 level.

With the embedding matrix, a pooled graph can be obtained as

follows,

Xout,k ¼Vemb
TXin,k，Xin,k �RN�C ð6Þ

Aout,k ¼ Vemb
TAin,k

� �
Vemb ð7Þ

where Ain,k and Xin,k are the adjacent matrix and feature of the input

graph, Aout,k and Xout,k are the adjacent matrix and feature of the out-

put graph after the pooling operation.

2.4.4 | Temporal fusion

MDD has exhibited abnormal temporal dynamics of the functional

connectivity (Hou et al., 2018; Hou, Kong, Yin, Zhang, & Yuan, 2021).

Therefore, a temporal fusion module is introduced to capture the

dynamic feature of functional connectivities among different windows

based on the above proposed SGAC module and long short-term

memory. The detailed structure is illustrated in Figure 2. The temporal

fusion consists of the forget stage, the select memory stage, and the

output stage. The inputs consist of the learned graph feature at cur-

rent temporal window and the difference between current and previ-

ous temporal windows. The SGAC operator is utilized to perform the

feature learning.

The forget stage selectively forgets the stage passed at the last

moment, and only keeps the important part. This stage can be calcu-

lated with the Equation (8)

ft ¼ σ g � Diff At�1,Atð Þ, Xlþ1
t�1,X

l
t

h i� �
þg � At, Xlþ1

t�1,X
l
t

h i� �
þbf

� �
ð8Þ

where Xlþ1
t�1 is the output of last window, Xl

t is the input of this win-

dow, g* denotes the SGAC operator in Equation (5) with adjacency

and vertex feature as input, and the function Diff calculates the differ-

ence between the graph features at temporal window t-1 and t, which

capture the dynamic features of functional connectivity between adja-

cent temporal windows.

The select memory stage selectively remembers the input of the

moment, which includes an input stage and a state vector. The input

stage is made up of the sigmoid layer with Equation (9), which deter-

mines the values to update.
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it ¼ σ g � Diff At�1,Atð Þ, Xlþ1
t�1,X

l
t

h i� �
þg � At, Xlþ1

t�1,X
l
t

h i� �
þbi

� �
ð9Þ

where g* represents the SGAC operator.

The state vector consists of the tanh layer with Equation (10),

which might be entered into the next cell.

~St ¼ tanh g � Diff At�1,Atð Þ, Xlþ1
t�1,X

l
t

h i� �
þg � At, Xlþ1

t�1,X
l
t

h i� �
þbC

� �

ð10Þ

The current cell state is thus obtained by multiplying the previous cell

state and forget stage, and multiplying the state vector multiplied with

input stage, as the Equation (11).

St ¼ ft �St�1þ it �~St ð11Þ

The output stage determines the output of the current moment. A

sigmoid layer determines which cell state will be output with

Equation (12).

ot ¼ σ g � Diff At�1,Atð Þ, Xlþ1
t�1,X

l
t

h i� �
þg � At, Xlþ1

t�1,X
l
t

h i� �
þbo

� �
ð12Þ

At the same time, the cell state is sent to the tanh layer, and is multi-

plied by the output of sigmoid gate to obtain the final output with

Equation (13).

Xlþ1
t ¼ ot � tanh Stð Þ ð13Þ

2.4.5 | Optimization and implementation

In the network, the activation function was Rectified Linear Unit

(ReLU) and max pooling ϕ(x) = max(0, x) was utilized. The Adam opti-

mization was applied with the learning rate η of 0.01. W represented

the parameters to be trained, and the loss function is L(W). Back prop-

agation was utilized for the optimization and the gradient of the loss

function gt = rWL(W) was imposed along W.

For Adam optimization, two intermediate variables and their con-

versions are introduced: mt, vt, m̂t, and v̂t. The formulas are as follows:

mt ¼ βmt�1þ 1�βð Þgt ð14Þ

vt ¼ βvt�1þ 1�βð Þg2t ð15Þ

m̂t ¼ mt

1�βt
ð16Þ

v̂t ¼ vt
1�βt

ð17Þ

where momentums β is 0.9 in general, mt and vt are the accumulation

of all gradients from the beginning of the algorithm to the current

step. As all the variables are ready, we can update the parameters

with the formula below:

Wtþ1 ¼Wt� ηffiffiffiffî
vt

p þε
m̂t ð18Þ

The k-fold cross-validation strategy was used to evaluate the perfor-

mance in the diagnosis and prediction, and the k was set to 10. The

k-fold cross evaluation was performed on each site with the two

tasks of diagnosis and prediction. The proposed STGCN method was

compared with several methods, including support vector machine

(SVM), random forest (RF), deep auto-encoder (DAE), graph con-

volutional network (GCN). The performance was quantified using

accuracy, sensitivity, and specificity. The k-fold cross-evaluation pro-

cedure was repeated 10 times to obtain the means and SD of accu-

racy, sensitivity, and specificity. The two-sample t test was utilized

to compare the classification performance between different

methods.

F IGURE 2 Detailed structure of the temporal fusion module for capturing the dynamic features of the functional connectivity. The temporal
fusion consists of the forget stage, the select memory stage, and the output stage. The inputs consist of the learned graph feature at the current
temporal window and the difference between current and previous temporal windows. The spatial graph attention convolution (SGAC) operator
is utilized to perform the feature learning
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Experiments were performed to evaluate classification perfor-

mance with the influence of different modules in the proposed

STGCN framework. The performance was also quantified using accu-

racy, sensitivity, and specificity. The k-fold cross-evaluation procedure

was repeated 10 times to obtain the means and standard deviations

of accuracy, sensitivity, and specificity. The two-sample t test was uti-

lized to compare the classification performance between results vary-

ing key modules.

The most discriminating regions were calculated for the diagnosis

and treatment response prediction. For each node, the weights were

averaged for 10 experiments on the 10-fold cross-validation. The top

10 nodes with the largest values were retained as the most discrimi-

nating regions for the two tasks of diagnosis and treatment response

prediction.

3 | RESULTS

3.1 | Ten-fold classification for diagnosis and
prediction

The proposed STGCN approach was used for the two tasks of MDD

diagnosis and treatment response prediction. The MDD diagnosis was

evaluated on the data sets from Zhongda hospital and Xinxiang hospi-

tal, and the treatment response prediction was assessed on the data

set from the Zhongda hospital. The results of 10-fold cross-validation

were illustrated as Figure 3. The STGCN achieved accuracies of 84.14

and 83.93%, sensitivities of 89.43%, and 92.93%, specificities of

68.26 and 67.90% on the diagnosis task for the two data sets, respec-

tively. The proposed STGCN obtained significant higher accuracy,

sensitivity, specificity than the other four competitive methods for the

MDD diagnosis task on both two data sets from Zhongda hospital and

Xinxiang hospital (p < .05, two-sample t test). The proposed STGCN

further achieved the performance with accuracy of 89.63%, sensitivity

of 84.57%, and specificity of 92.57% for the treatment response

prediction on the data set from Zhongda hospital. The accuracy, sensi-

tivity, and specificity are significantly higher than the other four com-

petitive methods for the task of treatment response prediction

(p < .05, two-sample t test).

3.2 | Performance with different modules

The classification performance can be influenced by different

modules of the proposed STGCN framework. Experiments were per-

formed with varying the modules of feature, convolution, and pooling,

shown in Figure 4. Three kinds of features were validated, including

the BOLD signal, node degree, and concatenation of signal and node

degree. Concatenation of signal and node degree achieved better per-

formance for the two tasks, shown in Figure 4a. For the convolution

module, the proposed SGAC obtained better performance than the

traditional edge attention and the result without attention, shown in

Figure 4b. As for the pooling module, the proposed anatomy prior

graph pooling obtained significantly better performance than the tra-

ditional graph embedding pooling, shown in Figure 4c.

3.3 | Performance with key parameters

The proportion of edges and the window length for dynamic func-

tional connectivity generation were two key parameters in the pro-

posed STGCN framework. Experiments were performed to evaluate

the performance with varying these two parameters. The performance

of accuracy, sensitivity, and specificity were calculated and the results

were illustrated in Figure 5 and Figure 6. The proportion of edges was

assessed from 0.02 to 0.30 with a step of 0.02. Both the diagnosis

and treatment response tasks obtained the best performance at the

proportion value of 0.20. The window lengths were evaluated ranging

from 60 to 120 with a step of 10. The optimal window length was

100 for both the two tasks.

F IGURE 3 Statistical summary of 10-fold cross-validation for MDD diagnosis and treatment prediction. SVM, support vector machine; RF,
random forest; DAE, deep auto-encoder; GCN, graph convolutional network; STGCN, spatiotemporal graph convolutional network. **Denotes
the significant differences (p < .05) with two sample t test
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F IGURE 4 Classification accuracy with different modules for diagnosis on Zhongda hospital and Xinxiang hospital, treatment prediction on
Zhongda hospital. (a) Node with different types of features, including node degree (blue), BOLD signal (green), and their concatenation (red).
(b) Convolution without attention (blue), with edge attention (green), and with proposed spatial graph attention convolution (SGAC, red).
(c) Pooling using graph embedding pooling (GEP, blue) and anatomy prior graph pooling (APGP, red). **Denotes the significant differences
(p < .05) with two sample t test

F IGURE 5 Classification performance of diagnosis on Zhongda hospital (red) and Xixiang hospital (green), treatment prediction (purple) with
different proportions of edges. (a) Accuracy (b) Sensitivity, and (c) Specificity

F IGURE 6 Classification performance of diagnosis on Zhongda hospital (red) and Xixiang hospital (green), treatment prediction (purple) with
different lengths of sliding window. (a) Accuracy (b) Sensitivity, and (c) Specificity
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F IGURE 7 Legend on next page.
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3.4 | Most discriminative regions

We further analyzed the most discriminating regions for the diagnosis

and treatment response prediction, shown in Figure 7. The most dis-

criminating regions for diagnosis regions include the left and right pal-

lidum, right putamen, left and right middle frontal gyrus, right

postcentral gyrus, right heschl gyrus, right caudate, right olfactory cor-

tex, right inferior frontal gyrus, and triangular part. The most discrimi-

nating regions for treatment response prediction include left and right

putamen, right pallidum, left hippocampus, right amygdala, right Cau-

date, left inferior frontal gyrus, triangular part, left insula, left lingual,

and left rectus.

4 | DISCUSSION

In this study, we proposed a novel STGCN framework based on

dynamic functional connectivity, which is demonstrated to success-

fully discriminate MDD patients from healthy controls and predict the

treatment response of patients. To the best of our knowledge, this is

the first study that simultaneously identifies and predicts treatment

response of MDD using dynamic topologic features derived from

resting-state fMRI. The diagnosis accuracies are 84.14 and 83.93%

across two study sites and the accuracy of treatment response predic-

tion is as high as 89.63% for the Zhongda site. The performance of

the proposed framework transcends that of other traditional algo-

rithms, suggestive of its potential of being used clinically for diagnosis

and treatment prediction.

As alluded to earlier, the current diagnosis of MDD primarily

relies on patients' clinical manifestations and the treatment response

is determined about a month posttreatment. In the recent decade,

important progresses have been achieved in establishing robust neu-

roimaging biomarkers for individualized identification and treatment

response prediction. Methodologically, the proposed method

enhances the capabilities of diagnosis and treatment prediction by

introducing a STGCN, whereas previous studies commonly used mul-

tivariate pattern analysis of static or dynamic functional connectivity

in the brain network (Hultman et al., 2018; Ramirez-Mahaluf

et al., 2017), which have ignored topological features that could pro-

vide vital clues for diagnosis. Mechanistically, the enhanced perfor-

mance of the STGCN framework we proposed may have derived from

several technical innovations. Firstly, the STGCN approach could have

outperformed the GCN method, which indicates the importance of

the temporal fusion of dynamic functional connectivities. Secondly,

the proposed SGAC module could have achieved higher accuracies

than the traditional graph convolution module. In principle, the

proposed convolution module could give larger weights to the impor-

tant nodes with more contribution to the classification task, which

could help improve feature learning on each dynamic functional con-

nectivity. Thirdly, the performance of the proposed pooling approach

was superior to traditional pooling methods on the clinical evalua-

tions, in that the proposed anatomy prior graph pooling module could

obtain more effective dimension reduction due to the hierarchical

architecture of multiscale parcellations.

The clinical findings from the STGCN are that there are shared

and specific brain regions of diagnosis and treatment, much to our

expectations. Our experiments indicate that some basal nuclei includ-

ing pallidum and putamen are not only involved in the pathogenesis

of depression, but also related to the prognosis of the disease. The

pallidum is an important brain structure that distinguishes disease and

prognosis of MDD with a high contribution degree (Knowland

et al., 2017). Physiologically, the pallidum is a major convergent point

related to reward circuitry, which is critical to clinical manifestations

of depression, such as anhedonia. Moreover, the pallidum is essential

for antidepressant effects of ketamine (Yamanaka et al., 2014). Mean-

while, the putamen, as part of the striatum, is considered to be com-

posed of the limbic, associative, and sensorimotor subregions, which

also plays a major role in emotional/motivational functions and

reward processing (Postuma & Dagher, 2006). In addition to these

two structures, the present study also found that some other brain

structures such as hippocampus, amygdala, and insula were important

for distinguishing curative effects. In previous studies, decreased hip-

pocampal and increased amygdala volumes were considered a poten-

tial marker in first-episode MDD patients, which are positively

correlated with the severity of depression (Frodl et al., 2002; van

Eijndhoven et al., 2009). In this study, enhanced functional activity

and connectivity in amygdala were found in remitted women depres-

sive patients as well, which implicates that amygdala dysfunction is

also an effective indicator of prognosis (Albert, Gau, Taylor, &

Newhouse, 2017). Taken together, these findings suggest that the

STGCN could provide a new strategy for finding imaging markers for

the diagnosis and treatment of depression.

Finally, a few limitations of this work should be pointed out. As

mentioned previously, the sample size used in this study is relatively

large for learning discriminative features of diagnosis and treatment

response for MDD. A larger size preferably from more diverse study

sites will be undoubtedly beneficial to parameter optimizations and

thus further increases in the accuracies of both diagnosis and treat-

ment response prediction. Moreover, the current study only utilizes

functional connectivity information derived from functional MRI. It is

anticipated that multi-modal imaging with added parameter dimen-

sions, which will be included in our future studies, will further enhance

F IGURE 7 The most discriminative regions of the proposed STGCN approach for (a) diagnosis and (b) treatment response prediction. The
most discriminating regions for diagnosis include the left and right pallidum, right putamen, left and right middle frontal gyrus, right postcentral
gyrus, right heschl gyrus, right caudate, right olfactory cortex, right inferior frontal gyrus, and triangular part. The most discriminating regions for
treatment response prediction include left and right putamen, right pallidum, left hippocampus, right amygdala, right Caudate, left inferior frontal
gyrus, triangular part, left insula, left lingual, and left rectus
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the performance of the proposed framework. Lastly but not least

importantly, the efficacy observation in the present study is made

only 2 weeks posttreatment, so it is not possible to predict mid- and

long-term effects or the final outcome of the patients with MDD. In

spite of these limitations, this study demonstrates that the proposed

STGCN framework, which features dynamic functional connectivity,

outperforms other classification algorithms in accurately diagnosing

MDD and predicting early efficacy, which provides a promising future

direction for effective management of MDD.

5 | CONCLUSION

In this work, we have developed a novel STGCN framework to cap-

ture brain dynamic functional connectivity for diagnosis and treatment

response prediction of MDD. The proposed framework can achieve

superior performance for both the purposes. Our experiments with

large clinical data sets suggest a high potential of spatiotemporal

graph learning with dynamic functional connectivity in exploring bio-

markers for effective clinical diagnosis and treatment response predic-

tion of MDD. In addition, the proposed STGCN framework can also

be adapted to investigate other brain diseases.
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