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Hepatocellular carcinoma (HCC) is a major liver tumor (∼80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcino-
mas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage
and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common
mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer
PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology
method usingNGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified
43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the
evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the
early and late stages were those related to ordinary cancermechanisms. A pathway specific to the early stagewas themismatch repair
pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-
mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages.

1. Introduction

Cancer is the leading cause of death worldwide, and its
etiology occurs at the DNA, RNA, and protein levels. It
is a very complex disease involving cascades of spatial
and temporal changes in genetic networks and metabolic
pathways [1]. Weinberg summarized the important cancer
hallmarks [2, 3]. Cancer hallmarks can highlight important
cancer mechanisms. In recent years, many systems biology
approaches have been applied to study cancers [4–9]. We
performed a series of studies on cancer using systems biology
approaches. Recently, we have particularly focused on search-
ing for network biomarkers of cancers [10–16].

Hepatocellular carcinoma (HCC) is a major liver
tumor (∼80%), besides hepatoblastomas, angiosarcomas,
and cholangiocarcinomas. Compared to other types of
cancer, liver cancer is the third most deadly cancer globally
and caused about 700,000 deaths in 2011 [17]. Due to
the increasing annual incidences [18] and poor 5-year
survival rate (∼15%), diagnosis and prognosis of HCC
are still important public health issues. Various studies
revealed a multistep process involved in liver carcinogenesis
[19]; however, the exact biology of HCC remains poorly
understood overall [20]. In addition, late confirmation of
the occurrence of HCC through traditional histological
examinations and tumor sections contributes to the poor
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survival rate. To accurately diagnose the occurrence of HCC
at an early time, it is necessary to understand the cellular and
molecular mechanisms of HCC [20]. Hence, in this study, we
compared the early and late stages of molecular interaction
networks of HCC to reveal the underlying mechanisms of
HCC development.

Although the histological and molecular features leading
to HCC initiation are still poorly understood, mounting
evidence suggests that a gradual accumulation of mutations
and genetic changes in hepatocytes, which form the live
lobule, may lead to the development of HCC [21]. Exposure
to risk factors for liver cancer, such as obesity [22], alcohol
addiction, aflatoxin, or hepatitis viruses [21], and the subse-
quent induction of inflammation may cause advanced hepa-
tocyte necrosis. The recurrence of necrosis and regeneration
of hepatocytes provide an opportunity for the introduction
of mutations and genetic changes in hepatocytes. During
these processes, alternative ways to protect liver lesions occur
such as fibrosis and cirrhosis. Although a high correlation
between cirrhosis and an HCC diagnosis was reported, the
mechanisms of how cirrhosis transforms into HCC are still
unknown. Furthermore, after a definite diagnosis of HCC,
patientswith early-stage liver cancer have better survival rates
than those in the late stage. Although HCC’s management
has substantially changed in the past few decades, the only
systemic standard of care for patients with advanced HCC
is sorafenib, a multikinase inhibitor, with a mean survival
benefit of only 3months [20, 23].With advances in affordable,
high-throughput technologies, increasing numbers of sys-
tems biology studies of HCC diagnoses [24] and treatments
[25] have shed light on applications of systems biology to
HCC diagnosis, prognosis, and therapy.

As for different etiologies and heterogenic genomic alter-
ations of HCC, the systems biology methodology that inte-
grates Omics data is suitable to develop accurate diagnoses,
novel therapeutic targets, and efficient targeted therapies [26].
In this study, NGS data were used to construct protein-
protein interaction (PPI) networks (PPINs) of the early
and late stages of HCC. The network structure and protein
associations of different stages of HCC were compared to
obtain a set of significant proteins which play important roles
in processes of the progression of HCC.

Chen et al. developed a dynamical network biomarker
(DNB) that can serve as a general early-warning signal to
indicate an imminent bifurcation or sudden deterioration
before the critical transition occurs, which means that it can
identify a predisease state using time series microarray data
[27–29]. We tried a different approach from their method
and used sample microarray data from liver cancer patients
at different stages. Our approach could also be extended to
predict some similar results as their research. That is, in
this study, we simply divided the cancer into early and late
stages, but there are more stages of cancer, such as stages
I, II, III, and IV. If we could observe the time evolution of
cancer biomarkers at these other different stages, we could
also predict the predisease state by comparing these cancer
biomarkers at different stages.

We reveal the carcinogenesis process from early-stage and
late-stage liver cancer. A specific pathway of the early stage

was the mismatch repair pathway, while specific pathways of
the late stage were the spliceosome pathway, lysine degrada-
tion pathway, and progesterone-mediated oocyte maturation
pathway.

2. Materials and Methods

2.1. Overview of the Process for Constructing Liver Cancer
Network Markers. We successfully used our methods to find
core and specific network markers of four different kinds
of cancer and the evolution of network markers from the
early stage to late stage of liver cancer [15, 16]. A similar
theoretical framework was employed in this study to find the
evolution of network markers in the early and late stages of
liver cancer.The theoretical systemsmethod in this paper was
developed from a previous study, but we used a new large
dataset of NGS expression data which differ from traditional
microarray expression data. A flowchart of the construction
of network biomarkers for the early and late stages of liver
cancer is shown in Figure 1. We know that a lot of NGS
gene expression data have been generated in recent years.
Some consider that they are more accurate than traditional
microarray expression data. Another key point of this work
was to make comparisons with our previous results, such
as network biomarkers of liver cancer from microarray data
and the evolution of network markers from the early and
late stages of liver cancer. We combined two data sources: (1)
NGS data of liver cancer and noncancer samples from the
GEO database, among which cancer samples were divided
into two groups of early-stage and late-stage liver cancer, and
(2) the PPI database, which is required to construct PPINs
for liver cancer. These data were used for PPI pool selection,
and the selected PPIs and microarray data were then used
for PPIN construction. Through regression modeling and
the maximum-likelihood parameter estimation method, a
cancer PPIN (CPPIN) and noncancer PPIN (NPPIN) were
obtained. We also constructed a differential PPIN (DPPIN).
The constructedCPPIN andNPPINwere compared to obtain
a set of significant proteins for liver cancer based on the
carcinogenesis relevance value (CRV) for each protein and
a statistical assessment. Significant proteins and PPIs among
these proteinswere used to construct networkmarkers for the
early and late stages of liver cancer.

2.2. Data Selection and Preprocessing. Liver RNA-seq data
were collected from liver HCC (LIHC) of The Cancer
Genome Atlas (TCGA) with a batch number of 100. Nor-
malized results, which consisted of reads per kilobase of
exon per million mapped reads (RPKM) values, were used
to represent gene expressions. The NGS gene expression
dataset of liver cancer was obtained from TCGA database.
The same dataset contained early-stage and late-stage liver
cancer and noncancer samples. We only used data derived
from nonprocessed primary biopsies to avoid discrepancies
in gene expressions that are intrinsic to cell culture and
fixation. Therefore, the dataset utilized contained primary
tumor samples of both stages from patients and adjacent
nontumor tissue samples from the same cancer patients,
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Figure 1: Flowchart illustrating construction of network markers in two stages of liver cancer and the investigation of carcinogenesis
mechanisms. We integrated NGS data, the GO database, and protein-protein interaction (PPI) information to construct the PPI network.
These data were used for pool selection, and then the selected proteins and NGS data were used to contribute to the PPI network (PPIN)
by a maximum-likelihood estimation and model order detection method, resulting in a liver cancer PPIN (CPPIN) and a noncancer PPIN
(NPPIN) in the early and late stages of liver cancer. The two constructed PPINs were used to determine significant proteins of tumorigenesis
by examining differences between the two PPI matrices of the two constructed PPINs. With the help of a differential PPI matrix (network)
betweenCPPIN andNPPIN, a carcinogenesis relevance value (CRV)was computed for each protein, and significant proteins in carcinogenesis
were determined based on 𝑝 values of the CRVs of these proteins in the differential PPI matrix between CPPIN and NPPIN.These significant
proteins were obtained for early and late stages of liver cancer.

which were considered to be control samples. As shown
in Table 1, 19 early-stage (stages I and II) and 18 late-stage
(stages III and IV) liver HCC tumors and 24 adjacent normal
tissue pairs were collected for further analysis. To describe
the extent of a patient’s cancer, the cancers were classified
into four stages according to their degree of invasion and
migration using the TNM staging system, as defined by
the American Joint Committee on Cancer (AJCC) and the
International Union against Cancer (UICC).We then divided
the cancer samples into two groups. In general, stages I and II
described early-stage cancers that have higher curability rates

with medical treatment, while stages III and IV described
late stages. We also combined the early and late stages for a
total stage. However, there were no corresponding noncancer
samples in the surrounding area for each stage, and we had
only one group of surrounding noncancer samples (Table 1).
The reason why we had to take this step was that NGS
samples are harder (andmuchmore expensive) to obtain than
microarray data, and the number of samples was small, which
may have caused overfitting in the parameter estimation
process of our model. So we used the total stage to identify
a model to avoid overfitting. We built the CPPIN and NPPIN
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Table 1: Descriptive information on datasets extracted from the TCGA database used in this study. Cases are grouped by the type of cancer,
and surrounding normal tissues came from human patients in the early or late stage of liver cancer.

Cancer type TCGA dataset
number

Early stage
sample#

Late stage
sample# Normal sample# Platform

Liver cancer Batch100
of LIHC 19 18 24 Illumina

HiSeq 2000

for early-stage, late-stage, and total-stage liver cancer in this
study. We obtained 19 and 18 samples for the early-stage
and late-stage liver cancer, respectively, and 24 noncancer
samples. Prior to further analysis, the gene expression value,
ℎ

𝑖𝑗
, was normalized to 𝑧-transformed scores, 𝑔

𝑖𝑗
, for each

gene, 𝑖, and then the resulting normalized expression value
had a mean 𝜇

𝑖
= 0 and a standard deviation 𝜎

𝑖
= 1 for sample

𝑗 [30, 31].
PPI data for Homo sapiens were extracted from the

Biological General Repository for Interaction Database
(BioGRID, downloaded in October 2012). The BioGRID is
an open-access archive of genetic and protein interactions
that are curated from the primary biomedical literature of
all major model organisms. As of September 2012, BioGRID
housed more than 500,000 manually annotated interactions
from more than 30 model organisms [32]. The above two
databases were mined for liver cancer and noncancer PPINs
using their corresponding microarray data. These early-stage
and late-stage liver cancer and noncancer PPINs were then
compared to obtain network markers.

2.3. Selection of a Protein Pool and Identification of PPINs for
Cancerous and Noncancerous Cells. To integrate gene expres-
sions with PPI data so we could construct the corresponding
CPPINs and NPPINs, we set up a protein pool containing
differentially expressed proteins. Gene expression valueswere
reasonably assumed to correlate with protein expression lev-
els.We used a one-way analysis of variance (ANOVA) to ana-
lyze the expression of each protein and selected proteins with
differential expression levels. This method allowed determi-
nation of significant differences between cancer and non-
cancer datasets. The null hypothesis (Ho) was based on the
assumption that mean protein expression levels of cancer and
noncancer sets were the same. A Bonferroni adjustment [33],
a type of multiple testing, was used to detect and correct pro-
teins with a discrepancy. Proteins with a 𝑝 value of <0.01 were
included in the protein pool. However, any proteins in the
protein pool which did not have PPI information were elim-
inated. In addition, proteins that were not already in the pro-
tein pool were included if their PPI information determined
that they were closely associated with proteins already in the
pool. As a result, the protein pool contained proteins that had
certain differences in expression levels and proteins that had
close relationships with the aforementioned proteins.

On the strength of the significant pool and PPI infor-
mation, candidate PPINs for early-stage and late-stage liver
cancer were constructed for liver cancer and noncancer
tissues by linking proteins that interacted with each other. In
other words, proteins that had PPI information through the
pool were linked together, resulting in candidate PPINs.

As the candidate PPIN included all possible PPIs under
various environments, different organisms, and experimen-
tal conditions, the candidate PPIN needed to be further
confirmed by microarray data to identify appropriate PPIs
according to the biological processes that are relevant to
cancer. To remove false-positive PPIs from each candidate
PPIN for different biological conditions, we used both a PPI
model identification scheme and a model order detection
method to prune each candidate PPIN using the correspond-
ing microarray data to approach the actual PPIN. Here, the
PPIs of a target protein 𝑖 in the candidate PPIN can be
depicted by the following protein association model:

𝑥

𝑖 [
𝑛] =

𝑀𝑖

∑

𝑗=1
𝛼

𝑖𝑗
𝑥

𝑗 [
𝑛] +𝜔

𝑖 [
𝑛] , (1)

where 𝑥

𝑖
[𝑛] represents the expression level of the target

protein 𝑖 for sample 𝑛; 𝑥
𝑗
[𝑛] represents the expression level

of the 𝑗th protein interacting with target protein 𝑖 for sample
𝑛; 𝛼
𝑖𝑗
denotes the association interaction ability between the

target protein 𝑖 and its 𝑗th interactive protein; 𝑀
𝑖
represents

the number of proteins interacting with the target protein 𝑖;
and 𝜔

𝑖
[𝑛] represents the stochastic noise due to other factors

or model uncertainty. The biological meaning of (1) is that
expression levels of target protein 𝑖 are associatedwith expres-
sion levels of proteins that interact with it. Consequently, a
protein association (interaction) model for each protein in
the protein pool can be built using (1).

After constructing (1) for the PPI model of each
protein in the candidate PPIN, we used the maximum-
likelihood estimation method [34] to identify associa-
tion parameters in (1) using microarray data as fol-
lows (see Supplementary Materials S.1 available online at
http://dx.doi.org/10.1155/2015/391475):

𝑥

𝑖 (
𝑛) =

𝑀𝑖

∑

𝑗=1
�̂�

𝑖𝑗
𝑥

𝑗 (
𝑛) +𝑤

𝑖 (
𝑛) , (2)

where �̂�
𝑖𝑗
was identified using microarray data in accordance

with the maximum-likelihood estimation method.
Once the association parameters for all proteins in the

candidate PPIN were identified for each protein, significant
protein associations were determined using the interaction
model order detection method based on estimated associ-
ation abilities, that is, to detect the interaction number 𝑀

𝑖

in (2). The Akaike information criterion (AIC) [34] and
Student’s 𝑡-test [35] were used for both model order selection
and significance determination of protein associations in �̂�

𝑖𝑗

(see Supplementary Materials S.2).
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2.4. Determination of Significant Proteins and Their Network
Structures in the Carcinogenesis of Liver Cancer. After the
interaction number𝑀

𝑖
was determined using the AIC order

detection and Student’s 𝑡-test, spurious false-positive PPIs,
�̂�

𝑖𝑗
, in (2) were pruned away, and only significant PPIs that

remained were refined as follows:

𝑥

𝑖 (
𝑛) =

𝑀


𝑖

∑

𝑗=1
�̂�

𝑖𝑗
𝑥

𝑗 (
𝑛) +𝑤



𝑖
(𝑛) , 𝑖 = 1, 2, . . . ,𝑀 (3)

where 𝑀



𝑖
≤ 𝑀

𝑖
denotes the number of significant PPIs

of the PPIN, with the target protein 𝑖. In other words, a
number of 𝑀

𝑖
− 𝑀



𝑖
’s (or false positives) were pruned from

the PPIs of target protein 𝑖. One protein by one protein (i.e.,
𝑖 = 1, 2, . . . ,𝑀 for all proteins in the refined PPIN in (3))
resulted in the following refined PPIN:

𝑋(𝑛) = 𝐴𝑋 (𝑛) +𝑤 (𝑛)

𝑋 (𝑛) =

[

[

[

[

[

[

[

𝑥1 (𝑛)

𝑥2 (𝑛)

.

.

.

𝑥

𝑀 (𝑛)

]

]

]

]

]

]

]

,
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. d
.
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𝑤 (𝑛) =
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[
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[
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𝑤



2 (𝑛)

.

.

.

𝑤



𝑀
(𝑛)

]

]

]

]

]

]

]

]

,

(4)

where the interaction matrix 𝐴 denotes the PPIs.
If there was no PPI between proteins 𝑖 and 𝑗 or it was

pruned away by the AIC order detection due to insignificance
in the refined PPIN, then �̂�

𝑖𝑗
= 0. In general, �̂�

𝑖𝑗
= �̂�

𝑗𝑖
, but

if this was not the case, the larger one was chosen as �̂�

𝑖𝑗
=

�̂�

𝑗𝑖
to avoid the situation where �̂�

𝑖𝑗
̸= �̂�

𝑗𝑖
. The above PPIN

constructionmethodwas used to construct refined PPINs for
each stage of liver cancer (early and late) and noncancer cells.
The interaction matrices 𝐴 of the refined PPINs in (4) for
cancer and noncancer cells of both the early and late stages
of liver cancer were constructed, respectively, as follows:

𝐴

𝑘

𝐶
=

[

[

[

[

[

�̂�

𝑘

11,𝐶 . . . �̂�

𝑘

1𝑀,𝐶

.

.

. d
.

.

.

�̂�

𝑘

𝑀1,𝐶 ⋅ ⋅ ⋅ �̂�

𝑘

𝑀𝑀,𝐶

]

]

]

]

]

,

𝐴

𝑘

𝑁
=

[

[

[

[

[

�̂�

𝑘

11,𝑁 . . . �̂�

𝑘

1𝑀,𝑁

.

.

. d
.

.

.

�̂�

𝑘

𝑀1,𝑁 ⋅ ⋅ ⋅ �̂�

𝑘

𝑀𝑀,𝑁

]

]

]

]

]

,

(5)

where 𝑘 is the early-stage and late-stage liver cancer; 𝐴𝑘
𝐶
and

𝐴

𝑘

𝑁
denote interaction matrices of the refined PPIN of the

𝑘th stage of liver cancer and noncancer, respectively; and 𝑀

is the number of proteins in the refined PPIN. Therefore, the
protein association model for CPPIN and NPPIN in the 𝑘th-
stage liver cancer and noncancer samples can be represented
by the following equations according to (4) and (5):

𝑥

𝑘

𝐶
(𝑛) = 𝐴

𝑘

𝐶
𝑥

𝐶 (
𝑛) +𝑤

𝑘

𝐶
(𝑛)

𝑥

𝑘

𝑁
(𝑛) = 𝐴

𝑘

𝑁
𝑥

𝑁 (𝑛) +𝑤

𝑘

𝑁
(𝑛) ,

(6)

where 𝑘 is early-stage and late-stage liver cancer, 𝑥𝑘
𝐶
(𝑛) =

[𝑥

𝑘

1𝐶 𝑥

𝑘

2𝐶 ⋅ ⋅ ⋅ 𝑥

𝑘

𝑀𝐶
]

𝑇

and 𝑥

𝑘

𝑁
(𝑛) = [𝑥

𝑘

1𝑁 𝑥

𝑘

2𝑁 ⋅ ⋅ ⋅ 𝑥

𝑘

𝑀𝑁
]

𝑇

denote vectors of expression levels, and 𝑤

𝐾

𝐶
(𝑛) and 𝑤

𝐾

𝑁
(𝑛)

indicate noise vectors of the PPINs in the 𝑘th stage liver
cancer and noncancer cells, respectively.

The different matrix 𝐴

𝑘

𝐶
− 𝐴

𝑘

𝑁
of the differential PPI

network between CPPIN and NPPIN in the 𝑘th stage liver
cancer is defined as follows:

𝐷

𝑘
=

[

[

[

[

[

𝑑

𝑘

11 . . . 𝑑

𝑘

1𝑀

.

.

. d
.

.

.

𝑑

𝑘

𝑀1 ⋅ ⋅ ⋅ 𝑑

𝑘

𝑀𝑀

]

]

]

]

]

=

[

[

[

[

[

�̂�

𝑘

11,𝐶 − �̂�

𝑘

11,𝑁 . . . �̂�

𝑘

1𝑀,𝐶 − �̂�

𝑘

1𝑀,𝑁

.

.

. d
.

.

.

�̂�

𝑘

𝑀1,𝐶 − �̂�

𝑘

𝑀1,𝑁 ⋅ ⋅ ⋅ �̂�

𝑘

𝑀𝑀,𝐶
− �̂�

𝑘

𝑀𝑀,𝑁

]

]

]

]

]

,

(7)

where 𝑘 is early-stage and late-stage liver cancer, 𝑑𝑘
𝑖𝑗
denotes

the protein association ability difference between CPPIN and
NPPIN in the 𝑘th-stage liver cancer, and matrix𝐷

𝑘 indicates
the difference in network structures between CPPIN and
NPPIN in the 𝑘th-stage liver cancer. In order to investigate
carcinogenesis from the difference matrix, 𝐷

𝑘, between
CPPINandNPPINof the 𝑘th-stage liver cancer in (7), a score,
which we called the carcinogenesis relevance value (CRV),
was presented to quantify the correlation of each protein
in 𝐷

𝑘 with the significance of carcinogenesis as follows
[30]:

CRV𝑘 =

[

[

[

[

[

[

[

[

[

[

[

[

CRV𝑘1
.

.

.

CRV𝑘
𝑖

.

.

.

CRV𝑘
𝑀

]

]

]

]

]

]

]

]

]

]

]

]

, (8)

where CRV𝑘
𝑖

= ∑

𝑀

𝑗=1 |𝑑
𝑘

𝑖𝑗
| and 𝑘 is early-stage and late-stage

liver cancer.
The CRV𝑘

𝑖
in (8) quantifies the differential extent of

protein associations of the 𝑖th protein (the absolute sum of



6 BioMed Research International

the 𝑖th row of 𝐷

𝑘 in (7)) and the CRV𝑘 can differentiate
CPPIN fromNPPIN in 𝑘th-stage liver cancer. In other words,
the CRV𝑘

𝑖
in (8) represents the network structure difference

of the 𝑖th protein between cancer and noncancer networks in
the 𝑘th-stage liver cancer.

In order to investigate what proteins are more likely
involved in 𝑘th-stage liver cancer, we needed to calculate the
corresponding empirical 𝑝 value to determine the statistical
significance of the CRV𝑘

𝑖
. To determine the observed 𝑝 value

of each CRV𝑘
𝑖
, we repeatedly permuted the network structure

of the candidate PPIN of the 𝑘th-stage liver cancer as a
random network of 𝑘th-stage liver cancer. Each protein in
the random network of the 𝑘th-stage liver cancer had its own
CRV to generate a distribution of CRV𝑘

𝑖
for 𝑘 = early-stage

and late-stage liver cancer. Although the network structure
was randomly disarranged, linkages of each protein were
maintained. In other words, proteins with which a particular
protein interacted were permuted without changing the total
number of protein interactions. This procedure was repeated
105 times, and the corresponding 𝑝 value was calculated as
the fraction of the random network structure in which the
CRV𝑘
𝑖
was at least as large as the CRV of the real network

structure. According to distributions of the CRV𝑘
𝑖
of the

random networks, the CRV𝑘
𝑖
in (8) with a 𝑝 value of ≤0.01

was regarded as a significant CRV, and the corresponding
protein was determined to be a significant protein in the
carcinogenesis of the 𝑘th-stage liver cancer: a protein with
a 𝑝 value of >0.01 was removed from the list of significant
proteins in carcinogenesis (in other words, if the 𝑝 value of
CRV𝑘
𝑖
was >0.01, then the 𝑖th protein was removed from the

CRV𝑘
𝑖
in (8), and the remainder in the CRV𝑘 with 𝑝 values

of CRVs of <0.01 was considered significant proteins of the
𝑘th-stage liver cancer).

Based on 𝑝 values of the CRVs for all proteins (𝑖 =

1, 2, . . . ,𝑀) and the two stages of liver cancer (𝑘 = early-
stage and late-stage liver cancer), we generated two lists of
significant proteins for each of the two stages according to the
CRV and a statistical assessment of each significant protein
in the CRV𝑘 in (8). We found 152 significant proteins in
the early-stage liver cancer and 50 significant proteins in
the late-stage liver cancer. These proteins showed significant
changes between the CPPIN and NPPIN in the carcinogenic
process according to their corresponding stage of cancer, and
we suspected that these changes might play important roles
in the carcinogenesis process of liver cancer. These findings
warrant further investigation.

Intersections of these significant proteins in the early and
late stages of liver cancer and their PPIs are known as the core
network markers appearing in all stages of liver cancer. In
contrast, unique significant proteins and their PPIs in each
stage of liver cancer are known as specific network markers
for each stage of cancer. We found 18 significant proteins that
could be classified as core network markers over the entire
carcinogenesis process of liver cancer. We also found 134
significant proteins as specific networkmarkers of early-stage
liver cancer and 32 significant proteins as specific network
markers of late-stage liver cancer.

2.5. Pathway Analysis. Much valuable cellular information
can be found using known pathways, which are useful
for describing most “normal” biological phenomena. All of
these known pathways are the result of repeated testing and
verification, and the entire pathway network has definedmost
links. Therefore, the proteins we identified to be significant
in the above network markers were mapped onto known
pathway networks (e.g., the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and PANTHER pathways) to investigate
significant pathways with network markers and explore
relationships between these pathways and the carcinogenesis
of liver cancer. This approach supports the view that systems
biology can help identify significant network biomarkers in
both normal and cancerous pathways and their roles in the
pathogenesis of cancer.

Together with comprehensive pathway databases such
as the KEGG, we used a series of bioinformatics pathway
analytical tools to identify biologically relevant pathway net-
works [36]. The KEGG includes manually curated biological
pathways that cover three main categories: systems informa-
tion (e.g., human diseases and drugs), genomics information
(e.g., gene catalogs and sequence similarities), and chemical
information (e.g., metabolites and biochemical reactions).
At present, the KEGG contains 134,511 distinct pathways
generated from 391 original reference pathways [37]. There-
fore, to investigate pathways involved in carcinogenesis, the
bioinformatics database, DAVID [38, 39], which generates
automatic outputs of the results from a KEGG pathway
analysis [38], was used for the pathway analysis of significant
proteins identified as network markers to determine their
roles in the pathogenesis of early- and late-stage liver cancer.
Our methodology did not include a pathway analysis or gene
set enrichment analysis (GSEA). To complete our research
results, we used NOA software for the pathway analysis
and GSEA of biological processes, cellular components, and
molecular functions [40, 41].

2.6. Explore the Evolution of Network Biomarkers in the
Liver Carcinogenesis via PPI Network through NGS Data.
Our cancer PPI model was constructed from the differential
expression of cancer and noncancermicroarray data and data
mining of PPI information from the BioGRID database. So,
the early-stage and late-stage liver CPPINs and NPPINs were
the results of our systems biology model using the original
NGS data and PPI databases. There were two key factors that
affected our final results.

(i) The Effect of Different Original PPI Databases. We know
that PPI databases, such as the BioGRID and MIPS, are
constructed from putative samples and validated by wet-
lab experiments. Due to advances in many high-throughput
experimental skills, the original PPI databases have evolved
over time. The newly updated original PPI databases are the
second factor to affect the final results.

(ii) The Effect of the Systems Biology Model. Microarray data,
PPI databases, and the PPI interaction model in (1) were
employed to construct PPI networks of normal and can-
cer cells by the maximum-likelihood parameter estimation
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method (see Supplementary Materials S.1). The AIC system
order detection method (Supplementary Materials S.2) was
used to prune false-positive PPIs to obtain actual PPI net-
works of normal and cancer cells; that is, we used the so-
called reverse engineeringmethod to construct PPI networks
of normal and cancer cells. Then, the DPPIN between the
CPPIN and NPPIN was obtained in (7) to investigate PPI
variations of each protein in the DPPIN due to carcino-
genesis. Finally, the CRV based on PPI variations was also
proposed to evaluate the significance of carcinogenesis for
each protein of the DPPIN. Proteins with a significant CRV
(𝑝 < 0.01) were considered significant proteins of the
cancer. Significant proteins in Table 3 were these significant
proteins of early-stage and late-stage liver cancer, and these
proteins and their PPIs were used to construct the PPI
network in Figure 2. Finally, from early-stage and late-stage
liver cancer network markers, we investigated mechanisms
of the carcinogenesis process with the help of databases
(e.g., the GO database and the DAVID and KEGG pathway
databases) to findmultiple network targets for cancer therapy.
Unlike conventional theoretical methods which always give
a single mathematical model for a cancer network for a
more-detailed theoretical analysis, this study introduced a
systems biology approach to cancer network markers based
on actual NGS data through so-called reverse engineering,
a systems statistical method, and a data mining method in
combination with large databases. These are the novelty and
significance of our study. Although we described the novelty
of our systems biologymodel, we have validated our results by
a literature survey of research. In the future, our results can be
validated by other researchers’ wet-lab experiments, and we
will repeatedly modify our mathematical system model. This
is the third key factor that affected our results. Although not
directly, it also influenced the protein interaction network.

We also know that biosystems evolve with time. It is
obvious that early-stage and late-stage patients have very
different symptoms; these are key features we used to classify
early-stage and late-stage liver cancer. Since liver cancer
patients in the two stages have very different symptoms, the
NGS data of these two stages of patients should undoubtedly
greatly differ. As described above, protein expressions from
NGS data are one of the key factors of our systems biology
model producing the final CPPINs and NPPINs, and the
CPPINs andNPPINs gave the final network biomarkers from
our systems biology model. So, the most important thing
for evolution of network biomarkers is evolution of the NGS
data in both stages of liver cancer, which is inherent in the
exhibition of cancer-related genes due to DNA mutations in
the carcinogenesis process.

3. Results and Discussion

3.1. Evolution of Network Biomarkers in Early-Stage and Late-
Stage Liver Cancer. We built the DPPIN to examine the early,
late, and total stages of liver cancer (Figure 2). CRVs of each
protein in the three networks were calculated. This figure
shows more-detailed information than just the CRVs; that is,
it shows the changes of edges and nodes at different stages

of the network. By screening using 𝑝 values of CRVs, we
found significant proteins of network markers for these three
stages of liver cancer. Similar to our previous experience with
bladder cancer [16], we wanted to reveal the carcinogenesis
mechanisms of liver cancer in the early and late stages.
Because we combined the early stage (stages I and II) and
late stage (stages III and IV) into a total stage (stages I∼IV), it
is not surprising that most of the pathways associated with
either the early or late stage overlapped those of the total
stage. We had to perform this step because NGS samples
are more difficult (and much more expensive) to obtain than
microarray data; that is, therewere few samples.This shortage
may have caused overfitting in the parameter estimation
process of ourmodel in (2). So we used the total stage again to
build a model to avoid overfitting. To summarize, we built a
model using early, late, and total stages. Numbers of samples
in these three stages were 19, 18, and 37, respectively (37 being
the sum of 19 and 18). The reason for using the total stage is
that 19 and 18 are small numbers of samples, and there was
the chance that overfittingmay have occurred. So we used the
sum of the early and late stages (37) to see the entire picture
between cancer and noncancer tissues.

3.2. NetworkMarkers of Early, Late, and Total (Early Plus Late
Stages) Stages of Liver Cancer. After 𝑝 value (0.01) screening,
we found that there were 43, 80, and 74 significant proteins
for the early, late, and total stages of liver cancer, respectively.
In addition, their corresponding CRVs ranged 6.0∼46.5, 6.1∼
34.1 and 6.5∼81.5, respectively. These significant proteins and
their PPIs were used to construct network markers for the
early, late, and total stages of liver cancer. The intersection
network of markers of the early and late stages was a core
feature that contained 27 significant proteins associated with
carcinogenesis. We list the 27 significant proteins and their
corresponding CRVs and 𝑝 values in both stages of liver
cancer in Table 2. In the second step, we separately list the
top 20 significant proteins in the early and late stages of liver
cancer in Table 3. The full list of the 43, 80, and 74 significant
proteins for these three stages of liver cancer is given in
Supplementary Tables S3. Table 4 shows the top 30 proteins of
the total stage. Table 5 shows interactions with our previous
results using microarray data.

3.3. Pathway Analysis of the Total Stage of Liver Cancer. We
first analyzed the pathway of the total stage of liver cancer
using the David database. As stated above, the key point of
this research was to find evolutionary mechanisms of liver
cancer from the early and late stages, but the number of
samples of NGS data was small, so we had to combine the
early and late stages to see the overall picture of the liver
cancer network. The five key pathways we were interested
in, which were selected by these 74 key proteins, are listed
as follows: (1) 14 proteins in hsa04110 were associated with
the cell cycle (Figure 3(a)), (2) seven proteins in hsa04114
were associated with oocyte meiosis (Figure 3(b)), (3) five
proteins in hsa03030 were associated with DNA replication
(Figure 3(c)), (4) 10 proteins in hsa05200 were associated
with cancer pathways (Figure 3(d)), and (5) four proteins
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Figure 2: Continued.
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Figure 2: The constructed cancer differential protein-protein interaction networks (DPPINs) for early, late, and total stages of liver cancer.
This figure shows the DPPINs with edge and node information for the early, late, and total stages of liver cancer. The DPPIN is the difference
between the cancer PPIN (CPPIN) and noncancer PPIN (NPPIN). The figures were created using Cytoscape.



10 BioMed Research International

Table 2: The 27 identified significant proteins of core network marker in both early-stage and late-stage liver cancer (intersection).

Common network marker of early-stage and late-stage liver cancer
Protein CRV 𝑝 value Cancer AvgExp Control AvgExp log2FC
APP 46.52 0.00001 13724 14041 −0.03
APP 13.87 0.00066 15083 14041 0.1
ELAVL1 22.99 0.00033 1725 1319 0.39
ELAVL1 29.69 0.00003 1791 1319 0.44
KRTAP10-5 14.73 0.00098 1 1 0.04
KRTAP10-5 20.54 0.00022 1 1 0.06
H2AFX 14.08 0.00105 608 271 1.17
H2AFX 15.43 0.00053 806 271 1.58
CDK1 13.69 0.00108 335 34 3.32
CDK1 10.31 0.00119 596 34 4.15
ESR1 12.81 0.00119 228 1537 −2.76
ESR1 34.1 0.00000 245 1537 −2.65
EZH2 12.22 0.00127 310 49 2.66
EZH2 19.05 0.00027 394 49 3
CEP250 12.05 0.00130 716 268 1.42
CEP250 16.12 0.00045 627 268 1.23
AURKB 11.41 0.00138 141 14 3.35
AURKB 7.68 0.00289 199 14 3.85
CDC20 10.89 0.00152 359 20 4.17
CDC20 8.94 0.00168 688 20 5.11
E2F1 10.54 0.00158 476 43 3.46
E2F1 8.85 0.00174 673 43 3.95
OTX1 10.29 0.00166 31 2 4.27
OTX1 6.25 0.00811 26 2 4.02
SUMO1 9.86 0.00181 2422 2982 −0.3
SUMO1 8.63 0.00188 2624 2982 −0.18
MCM4 9.76 0.00186 1308 336 1.96
MCM4 6.76 0.00535 1327 336 1.98
HGS 7.96 0.00312 2504 1167 1.1
HGS 13.9 0.00066 2441 1167 1.06
KPNA2 7.86 0.00323 1927 689 1.48
KPNA2 10.43 0.00116 2533 689 1.88
UBC 7.85 0.00323 34388 35490 −0.05
UBC 6.63 0.00591 36931 35490 0.06
SPRY2 7.5 0.00376 409 989 −1.27
SPRY2 7.17 0.00399 328 989 −1.59
TOPBP1 7.33 0.00406 799 346 1.21
TOPBP1 6.45 0.00698 875 346 1.34
SIRT7 7.11 0.00456 442 225 0.98
SIRT7 24 0.00012 456 225 1.02
WHSC1 6.67 0.00590 1217 447 1.44
WHSC1 12.06 0.00086 1369 447 1.61
MCM2 6.45 0.00666 1097 174 2.66
MCM2 8.48 0.00200 1351 174 2.96
AURKA 6.4 0.00685 570 86 2.73
AURKA 9.25 0.00154 516 86 2.58
COPS5 6.39 0.00691 1506 1184 0.35
COPS5 10 0.00128 1708 1184 0.53
PCNA 6.29 0.00749 1652 904 0.87
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Table 2: Continued.

Common network marker of early-stage and late-stage liver cancer
Protein CRV 𝑝 value Cancer AvgExp Control AvgExp log2FC
PCNA 15.95 0.00046 2290 904 1.34
BUB1B 6.27 0.00762 179 12 3.89
BUB1B 7.47 0.00327 320 12 4.73
DNMT1 6.02 0.00920 1376 455 1.6
DNMT1 10.63 0.00110 1383 455 1.6
There are two rows with same proteins name while the upper row represents the early stage liver cancer and the lower raw represents the late stage liver cancer.
AvgExp means average expression.
log2FC means log

2
fold change.

in hsa04115 were associated with the p53 signaling pathway
(Figure 3(e)). We only focused on those pathways related to
liver cancer and eliminated unrelated ones, such as prostate
cancer, glioma (brain cancer) pathway, and small cell lung
cancer pathway (Table 6).

(1) Cell Cycle. An abnormal cell cycle is highly related to
cancer mechanisms. We described this in our previous study
[15, 16]. More clues and mechanisms were revealed in this
study, so we have to repeat and highlight the previous results
while adding the new results. Dysregulation of the cell cycle
governs deviant cell proliferation in cancer. Loss of the
ability to control cell cycle checkpoints induces abnormal
genetic instability. It is well known that the cell cycle is
composed of two consecutive periods, characterized by DNA
replication, and of sequential differential and segregation of
replicated chromosomes into two separate daughter cells.
This may be due to activation of tumorigenic mutations,
which were recognized in various tumors at different levels
in mitogenic signal transduction pathways: (1) ligands and
receptors (receptor mutations of HER2/neu [ErB2] or ampli-
fication of the HER2 gene), (2) downstream signal trans-
duction networks (Raf/Ras/MAPK or PI3K-AKT-mTOR),
and (3) regulatory genes of the cell cycle (cyclin D1/CDK4,
CDK6, and cyclin E/CDK2) [42]. There are many reported
discussions regarding cell cycle regulators and checkpoint
functions involved in HCC [43–46]. Herein, 14 of the total
stage network markers identified were involved in the cell
cycle pathway. In this case, we found that five of these 14
markers were related to the DNA replication pathway. This
shows that the cell cycle and DNA replication are highly
related to liver cancer at the total stage.

Because the cell cycle is so crucial to cancer, we list
other pathways given by BioCarta (Figures 3(e) and 3(f)).
The former shows that these key proteins are related to
the G

1
/S checkpoint, while the later shows that they are

related to regulation of p27 phosphorylation during cell cycle
progression.

Dituri et al. showed that changes in the cell cycle check-
point frequently occur during HCC.They identified different
pathways from us and showed that the phosphatidylinositol-
3-kinase (PI3K)/protein kinase B (AKT)/mammalian target
of the rapamycin (mTOR) pathway is the key pathway for
HCC. They used the human PLC/PRF/5, Hep3B, HepG2,

HLE, and HLF HCC cell lines and a normal human hepato-
cyte cell line. Although they and our group did not identify
the same targets, the key point is that an abnormal cell cycle is
a complexmechanism.Their scope covered theG

0
-G
1
, G
2
-M,

andG
1
-S phases [45]. Our futureworkwill try to link our net-

work makers with mechanisms discovered by other groups.
Furuta et al. showed that micro- (mi)RNAs are key

posttranscriptional regulators of gene expression and are
usually deregulated in HCC. They identified four miRNAs,
mir-101, mir-195, mir-378, and mir-497 that are always
silenced inHCC. In this research, we did not includemiRNAs
when building the model [46]. We know that miRNAs play
significant roles in genetic regulatory networks, and our
future work will incorporate miRNAs into our model to
reveal more hidden mechanisms of HCC.

(2) Oocyte Meiosis. We did notidentify this pathway in our
previous study. Zhang et al. used network-based bioinformat-
ics methods to identify biomarkers for HCC and identified
this pathway with 19 upregulated genes with a 𝑝 value of
0.0016 [47]. We identified seven genes in this pathway with
a very low 𝑝 value of 8.70E−05. Terret et al. claimed that
mouse oocytes are a paradigm of cancer cells. They showed
asymmetric division in both mitotic cells and oocytes cells,
and this causes cancer cells to divide [48].

(3) DNA Replication. As we stated above, we identified
five genes of the DNA replication pathway which are also
involved in the cell cycle pathway. Macheret and Halazonetis
claimed that DNA replication stress is a hallmark of cancer
[49], so we have to discuss this topic in more detail here.
Hanahan and Weinberg published two review papers on
the topic of cancer hallmarks, and the key points are listed
here. Based on their first-generation cancer hallmarks [2],
Hanahan and Weinberg extended their work to second-
generation hallmarks of cancers [3]. It inspired many people
and stimulated many ideas on cancer targeted therapies.

(i) Sustaining Proliferative Signaling. Cancer cells can sustain
proliferative signaling in various ways, become independent
of exogenous growth signals, and so can proliferate.They also
have the ability to generate growth factor ligands themselves.

(ii) Evading Growth Suppressors. Cancer cells can ignore sig-
nals that inhibit cell proliferation. Retinoblastoma-associated
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Table 3: Top 20 proteins of early-stage and late-stage liver cancer.

Protein CRV 𝑝 value Case AvgExp Control AvgExp log2FC
Top 20 proteins of early-stage liver cancer

APP 46.52 6.09𝐸 − 06 13724 14041 −0.03
KRTAP4-12 33.47 6.09𝐸 − 05 1 1 −0.17
ELAVL1 22.99 0.000329 1725 1319 0.39
KRTAP10-1 17.17 0.000756 1 1 0.04
KRTAP10-5 14.73 0.000981 1 1 0.04
H2AFX 14.08 0.001048 608 271 1.17
CDK1 13.69 0.001079 335 34 3.32
PRKDC 12.91 0.001176 4011 1684 1.25
CUL3 12.83 0.001188 1376 1606 −0.22
ESR1 12.81 0.001194 228 1537 −2.76
EZH2 12.22 0.001274 310 49 2.66
CEP250 12.05 0.001298 716 268 1.42
AURKB 11.41 0.001383 141 14 3.35
CDC20 10.89 0.001523 359 20 4.17
E2F1 10.54 0.001584 476 43 3.46
OTX1 10.29 0.001664 31 2 4.27
C19orf66 10.2 0.001688 1551 3166 −1.03
SUMO1 9.86 0.00181 2422 2982 −0.3
MCM4 9.76 0.001859 1308 336 1.96
GRB2 9.19 0.0022 3572 2608 0.45

Top 20 proteins of late stage liver cancer
ESR1 34.1 4.22𝐸 − 06 245 1537 −2.65
ELAVL1 29.69 2.53𝐸 − 05 1791 1319 0.44
UBD 28.54 3.38𝐸 − 05 20926 1781 3.55
YWHAZ 27.31 4.22𝐸 − 05 13323 6408 1.06
SIRT7 24 0.000122 456 225 1.02
HDAC5 22.07 0.000152 1696 840 1.01
KRTAP10-5 20.54 0.000224 1 1 0.06
EZH2 19.05 0.00027 394 49 3
ILF2 18.86 0.000283 4111 1737 1.24
CEP250 16.12 0.000452 627 268 1.23
PCNA 15.95 0.00046 2290 904 1.34
SUMO2 15.77 0.00049 3305 2112 0.65
H2AFX 15.43 0.000532 806 271 1.58
HSP90AB1 14.43 0.0006 30949 14629 1.08
HGS 13.9 0.000659 2441 1167 1.06
APP 13.87 0.000659 15083 14041 0.1
WHSC1 12.06 0.000861 1369 447 1.61
SETDB1 11.7 0.000912 1203 497 1.28
TRAF2 11.45 0.000938 665 277 1.26
SMARCA4 11.18 0.000992 2696 1115 1.27
SFN 11.03 0.001026 1008 55 4.19
AvgExp means average expression.
log2FC means log2 fold change.

(RB) and TP53 proteins are the two main prototypes of
tumor suppressors. They are also important targets of cancer
therapies.

(iii) Activating Invasion andMetastasis. Invasion andmetasta-
sis comprise multistep processes, usually called the invasion-
metastasis cascade.This cascade is related to the mechanisms
of miRNAs [50, 51].

(iv) Enabling Replicative Immortality. Cancer cells becoming
immortal is a lethal event for cancer patients. There are three

important topics to this immortality: reassessing replicative
senescence, delayed activation of telomerase, and new non-
canonical functions of telomerases.

(v) Inducing Angiogenesis. Both invasion and metastasis
need new-born blood vessels to supply nutrients for cancer
cells.

(vi) Resisting Cell Death. Cancer cells have many strategies to
disable apoptosis. Cancer cells becoming immortal is another
lethal event for cancer patients.
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Table 4: Top 30 proteins of total-stage liver cancer.

Protein CRV 𝑝 value Case AvgExp Control AvgExp log2FC
APP 81.53 <10

−9 14385 14041 0.03
ELAVL1 3.65𝐸 + 01 0.000187 1757 1319 0.41
CCDC33 2.82𝐸 + 01 0.000464 3 1 1.7
UBC 25.19 0.000588 35625 35490 0.01
HIST3H3 24.3 0.000626 1 1 0.02
KRTAP10-1 23.96 0.000643 1 1 0.02
ESR1 23.79 0.000652 236 1537 −2.7
UBD 23.34 0.000682 14701 1781 3.04
H2AFX 17.28 0.001125 705 271 1.38
KRTAP10-5 17.05 0.001133 1 1 0.05
HGS 15.2 0.001329 2473 1167 1.08
TRAF2 14.28 0.001461 581 277 1.07
HSP90AB1 14.16 0.001483 29756 14629 1.02
PCNA 13.58 0.001572 1962 904 1.12
SMARCA4 13.21 0.001611 2546 1115 1.19
TAF6 12.84 0.001636 1075 478 1.17
SUMO2 12.6 0.001704 2968 2112 0.49
UBQLN4 12.59 0.001713 1881 905 1.05
COPS5 12.45 0.001743 1604 1184 0.44
CEP250 12.41 0.001747 673 268 1.33
EZH2 12.15 0.001802 351 49 2.84
CDK1 11.69 0.001892 462 34 3.78
TCF3 11.35 0.00199 980 415 1.24
CDC20 11.28 0.002011 519 20 4.7
MCM2 10.9 0.002126 1220 174 2.81
GRB2 10.64 0.002233 3488 2608 0.42
WHSC1 10.5 0.002288 1291 447 1.53
MYOD1 10.5 0.002292 2 1 1.22
AURKB 10.48 0.002305 169 14 3.61
SUMO1 10.36 0.002373 2520 2982 −0.24

Table 5: The intersection of the total-stage liver cancer with our previous result.

Protein CRV
(in this study)

𝑝 value
(in this study)

CRV
(previous)

𝑝 value
(previous)

BUB1B 7.58 0.005833 5.5696 0.00064
CDC20 11.28 0.002011 5.1507 0.00109
CDK2 6.9 0.007708 14.069 <1𝐸 − 5

CUL3 8.16 0.004478 12.9519 <1𝐸 − 5

E2F1 10.19 0.002497 3.9947 0.00862
ESR1 23.79 0.000652 10.3758 <1𝐸 − 5

HDAC4 10.11 0.002531 5.8397 0.00048
HGS 15.2 0.001329 4.6929 0.00232
MYC 7.55 0.005884 10.7821 <1𝐸 − 5

PCNA 13.58 0.001572 15.1438 <1𝐸 − 5

PRKDC 8.19 0.004418 5.9369 0.00041
SMARCA4 13.21 0.001611 7.7449 0.0001
SUMO1 10.36 0.002373 15.8533 <1𝐸 − 5

TRAF2 14.28 0.001461 4.7703 0.00207
UBC 25.19 0.000588 137.284 <1𝐸 − 5
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Figure 3: Overview of significant pathways in networkmarker of total stage of liver cancer. AmongKEGGpathways identified via the DAVID
tool (Table 4) showing significant associations with specific proteins of the early stage of liver cancer, thesemolecular pathways had 𝑝 values of
≤0.05.This indicates that these pathways play important roles in the carcinogenesis mechanism in the early stage of liver cancer.The network
markers of the early stage of liver cancer highlighted by stars show potentially targets in the pathways. Due to the different naming systems,
the same proteins in these tables and in the text are labeled with different names.

When we tried to apply a systems biology approach to
cancer therapy, understanding cancer hallmarkswas themost
important and basic step. There are many investigations of
cancer systems biology based onWeinberg’s work. Negrini et
al. discussed the genomic instability characteristics of cancers
and evolving hallmarks of cancer [52]. Hornberg et al. used
the concept of complex signaling networks and increases
in complexity to directly name cancers as systems biology
disease [53]. Barillot et al. merged the six hallmarks into the

following three main properties related to the proliferation,
survival, and dissemination of cancers.They are the defective
control of the cell cycle, defective control of cell death, and
the invasiveness and metastatic potential. There are three
key levels at which normal cells transform into cancer cells:
mutations of DNA, transcription of DNA to RNA, and RNA
translation to proteins. Hallmarks are omens and portent of
cancers, and, by a pathway analysis, we can find drug targets
at this stage.
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Figure 4: Overview of significant pathways of network markers of early-stage liver cancer. KEGG pathways accessed using the DAVID tool
(Table 7) show significant associations with specific proteins in the early stage of liver cancer; these molecular pathways are labeled with
𝑝 values of ≤0.05. These pathways were shown to play important roles in the carcinogenesis mechanism in the early stage of liver cancer.
Network markers of the early stage of liver cancer as highlighted by stars show potential targets in the pathways. Due to different naming
systems, the same proteins in the tables and text have different names.The proteins in the early-stage liver cancer networkmarker are enriched
in “hsa03040:Mismatch repair” (Rank 9 in Table 7).

Cancer is a network disease, that is, a dysregulation of the
entire network. Determining how to build a cancer network
is the first important task.

We have briefly reviewed and summarized the key points
of Weinberg’s theory. Now we focus on DNA replication

stress, because it was identified as another hallmark of cancer.
Macheret and Halazonetis claimed that the sustained prolif-
eration hallmark can be regarded as mutations in oncogenes
and tumor suppressor genes that are involved in the cell
growth pathway. Mutations of TP53, ATM, or MDM2 genes
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Table 6: (a) The pathways analysis for 74 significant proteins in the total stage carcinogenesis. (b) The pathway analysis and gene set
enrichment analysis of the 74 proteins of total-stage liver cancer on (1) biological processes, (2) cellular components, and (3) molecular
functions by NOA.

(a)

Rank Term Count Symbol 𝑝 value
KEGG

1 hsa04110:Cell cycle 14
E2F1, CDK1, PRKDC, CDC20, MCM2, MCM3,
YWHAE, MCM4, CDK2, MCM7, GSK3B, PCNA,

BUB1B, MYC
5.96𝐸 − 13

2 hsa05215:Prostate cancer 7 E2F1, HSP90AB1, GRB2, GSK3B, MAPK3, PTEN,
CDK2 2.62𝐸 − 05

3 hsa04114:Oocyte meiosis 7 CDK1, PPP1CA, MAPK3, CDC20, AURKA, YWHAE,
CDK2 8.70𝐸 − 05

4 hsa03030:DNA replication 5 MCM7, PCNA, MCM2, MCM3, MCM4 9.48𝐸 − 05

5 hsa05200:Pathways in cancer 10 E2F1, HSP90AB1, TRAF2, GRB2, MSH2, GSK3B,
MAPK3, MYC, PTEN, CDK2 2.73𝐸 − 04

6 hsa05213:Endometrial cancer 5 GRB2, GSK3B, MAPK3, MYC, PTEN 4.03𝐸 − 04

7 hsa05210:Colorectal cancer 5 GRB2, MSH2, GSK3B, MAPK3, MYC 0.002457
8 hsa05222:Small cell lung cancer 5 E2F1, TRAF2, MYC, PTEN, CDK2 0.002457
9 hsa05214:Glioma 4 E2F1, GRB2, MAPK3, PTEN 0.008946

10 hsa04722:Neurotrophin
signaling pathway 5 GRB2, GSK3B, MAPK3, YWHAE, TP73 0.009832

11 hsa04115:p53 signaling pathway 4 CDK1, PTEN, CDK2, TP73 0.011029

12 hsa05220:Chronic myeloid
leukemia 4 E2F1, GRB2, MAPK3, MYC 0.014381

13 hsa04914:Progesterone-mediated
oocyte maturation 4 HSP90AB1, CDK1, MAPK3, CDK2 0.020705

14 hsa04012:ErbB signaling pathway 4 GRB2, GSK3B, MAPK3, MYC 0.021345
15 hsa04540:Gap junction 4 CDK1, GRB2, MAPK3, TUBA1B 0.022657
16 hsa05219:Bladder cancer 3 E2F1, MAPK3, MYC 0.033366
17 hsa04510:Focal adhesion 5 PPP1CA, GRB2, GSK3B, MAPK3, PTEN 0.047655

18 hsa05223:Non-small cell lung
cancer 3 E2F1, GRB2, MAPK3 0.052694

19 hsa05221:Acute myeloid
leukemia 3 GRB2, MAPK3, MYC 0.059845

20 hsa04910:Insulin signaling
pathway 4 PPP1CA, GRB2, GSK3B, MAPK3 0.064636

21 hsa05218:Melanoma 3 E2F1, MAPK3, PTEN 0.085159

22 hsa04662:B cell receptor
signaling pathway 3 GRB2, GSK3B, MAPK3 0.09351

BioCarte

1a h g1Pathway:Cell Cycle:G1/S
Check Point 4 E2F1, CDK1, GSK3B, CDK2 0.012616

2a
h p27Pathway:Regulation of p27
Phosphorylation during Cell

Cycle Progression
3 E2F1, NEDD8, CDK2 0.020162

3a h p53Pathway:p53 Signaling
Pathway 3 E2F1, PCNA, CDK2 0.033691

4a
h her2Pathway:Role of ERBB2 in

Signal Transduction and
Oncology

3 GRB2, MAPK3, ESR1 0.049866
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(a) Continued.

Rank Term Count Symbol 𝑝 value

5a h ptenPathway:PTEN dependent
cell cycle arrest and apoptosis 3 GRB2, MAPK3, PTEN 0.054277

6a
h RacCycDPathway:Influence of
Ras and Rho proteins on G1 to S

Transition
3 E2F1, MAPK3, CDK2 0.063496

7a h cellcyclePathway:Cyclins and
Cell Cycle Regulation 3 E2F1, CDK1, CDK2 0.068295

The significant pathways via DAVID Bioinformatics database are selected for the 74 significant proteins in carcinogenesis. Bold indicates 𝑝 value > 0.05. Most
of them are from the KEGG database, and we add several key pathways from BioCarta.

(b)

GO:term 𝑝 value Corrected 𝑝 value 𝑅 𝑇 𝐺 𝑂 Term name
(1) Biological processes

GO:0051320 9.1𝐸 − 10 1.9𝐸 − 7 6357 9 12 4 S phase
GO:0000084 9.1𝐸 − 10 1.9𝐸 − 7 6357 9 12 4 S phase of mitotic cell cycle
GO:0006267 3.3𝐸 − 9 7.1𝐸 − 7 6357 9 16 4 Prereplicative complex assembly
GO:0065004 1.4𝐸 − 8 3.1𝐸 − 6 6357 9 68 5 Protein-DNA complex assembly

GO:0000727 2.7𝐸 − 8 5.8𝐸 − 6 6357 9 26 4 Double-strand break repair via break-induced
replication

GO:0006270 3.7𝐸 − 8 8.0𝐸 − 6 6357 9 28 4 DNA-dependent DNA replication initiation
GO:0022616 5.7𝐸 − 8 1.2𝐸 − 5 6357 9 31 4 DNA strand elongation
GO:0006271 5.7𝐸 − 8 1.2𝐸 − 5 6357 9 31 4 DNA strand elongation involved in DNA replication

GO:0000724 1.3𝐸 − 7 2.8𝐸 − 5 6357 9 38 4 Double-strand break repair via homologous
recombination

GO:0022402 2.5𝐸 − 7 5.3𝐸 − 5 6357 9 445 7 Cell cycle process
(2) Cellular components

GO:0042555 2.7𝐸 − 11 1.3𝐸 − 9 6357 9 6 4 MCM complex
GO:0005656 3.3𝐸 − 9 1.5𝐸 − 7 6357 9 16 4 Prereplicative complex
GO:0031261 1.3𝐸 − 8 6.3𝐸 − 7 6357 9 22 4 DNA replication preinitiation complex
GO:0031298 2.3𝐸 − 8 1.0𝐸 − 6 6357 9 25 4 Replication fork protection complex
GO:0032993 2.9𝐸 − 7 1.3𝐸 − 5 6357 9 46 4 Protein-DNA complex
GO:0043234 9.7𝐸 − 7 4.5𝐸 − 5 6357 9 1369 9 Protein complex
GO:0044454 4.9𝐸 − 6 2.3𝐸 − 4 6357 9 217 5 Nuclear chromosome part
GO:0044451 1.5𝐸 − 5 7.5𝐸 − 4 6357 9 275 5 Nucleoplasm part
GO:0044428 1.6𝐸 − 5 7.7𝐸 − 4 6357 9 1251 8 Nuclear part
GO:0044427 2.5𝐸 − 5 0.0011 6357 9 302 5 Chromosomal part

(3) Molecular functions
GO:0043566 3.8𝐸 − 10 2.6𝐸 − 8 6357 9 85 6 Structure-specific DNA binding
GO:0043138 5.6𝐸 − 9 3.7𝐸 − 7 6357 9 18 4 3-5 DNA helicase activity
GO:0004003 2.7𝐸 − 8 1.8𝐸 − 6 6357 9 26 4 ATP-dependent DNA helicase activity
GO:0003682 3.3𝐸 − 8 2.2𝐸 − 6 6357 9 80 5 Chromatin binding
GO:0003688 4.9𝐸 − 8 3.3𝐸 − 6 6357 9 30 4 DNA replication origin binding
GO:0003678 1.4𝐸 − 7 9.9𝐸 − 6 6357 9 39 4 DNA helicase activity
GO:0003697 2.4𝐸 − 7 1.6𝐸 − 5 6357 9 44 4 Single-stranded DNA binding
GO:0016887 4.9𝐸 − 7 3.3𝐸 − 5 6357 9 278 6 ATPase activity
GO:0043140 5.5𝐸 − 7 3.7𝐸 − 5 6357 9 13 3 ATP-dependent 3-5 DNA helicase activity
GO:0008094 1.3𝐸 − 6 9.1𝐸 − 5 6357 9 67 4 DNA-dependent ATPase activity
𝑅: number of genes in reference set.
𝑇: number of genes in test set.
𝐺: number of genes annotated by given term in reference set.
𝑂: number of genes annotated by given term in test set.
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Table 7: (a)The pathways analysis for 43 early stage significant proteins in carcinogenesis. (b)The pathway analysis and gene set enrichment
analysis of the 74 proteins of total-stage liver cancer on (1) biological processes, (2) cellular components, and (3) molecular functions byNOA.

(a)

Rank Term Count Symbol 𝑝 value
KEGG

1 hsa04110:Cell cycle 11
E2F1, CCNB1, CDK1, CDKN2A, PCNA,

BUB1B, PRKDC, CDC20, MCM2,
MCM4, MYC

4.90𝐸 − 11

2 hsa03030:DNA replication 4 POLD1, PCNA, MCM2, MCM4 5.24𝐸 − 04

3 hsa05220:Chronic myeloid leukemia 4 E2F1, CDKN2A, GRB2, MYC 0.004415
4 hsa04114:Oocyte meiosis 4 CCNB1, CDK1, CDC20, AURKA 0.01273
5 hsa05219:Bladder cancer 3 E2F1, CDKN2A, MYC 0.015099
6 hsa05223:Non-small cell lung cancer 3 E2F1, CDKN2A, GRB2 0.024285
7 hsa05214:Glioma 3 E2F1, CDKN2A, GRB2 0.03234
8 hsa04115:p53 signaling pathway 3 CCNB1, CDK1, CDKN2A 0.037212
9 hsa03430:Mismatch repair 2 POLD1, PCNA 0.09922

BioCarta

1a h cellcyclePathway:Cyclins and Cell
Cycle Regulation 4 E2F1, CCNB1, CDK1, CDKN2A 0.002246

2a h srcRPTPPathway:Activation of Src by
Protein-tyrosine phosphatase alpha 3 CCNB1, CDK1, GRB2 0.004

3a h g2Pathway:Cell Cycle:G2/M
Checkpoint 3 CCNB1, CDK1, PRKDC 0.025668

4a h g1Pathway:Cell Cycle:G1/S Check Point 3 E2F1, CDK1, CDKN2A 0.039621

5a h ptc1Pathway:Sonic Hedgehog (SHH)
Receptor Ptc1 Regulates cell cycle 2 CCNB1, CDK1 0.075537

The significant pathways via DAVID Bioinformatics database are selected for the 43 significant proteins in carcinogenesis. Bold indicates 𝑝 value > 0.05. Most
of them are from the KEGG database, and we add several key pathways from BioCarta.

(b)

GO:term 𝑝 value Corrected 𝑝 value 𝑅 𝑇 𝐺 𝑂 Term name
(1) Biological processes

GO:0051320 1.9𝐸 − 5 0.0028 6357 4 12 2 S phase
GO:0000084 1.9𝐸 − 5 0.0028 6357 4 12 2 S phase of mitotic cell cycle
GO:0006267 3.5𝐸 − 5 0.0052 6357 4 16 2 Prereplicative complex assembly

GO:0000727 9.6𝐸 − 5 0.0142 6357 4 26 2 Double-strand break repair via break-induced
replication

GO:0006270 1.1𝐸 − 4 0.0165 6357 4 28 2 DNA-dependent DNA replication initiation
GO:0022616 1.3𝐸 − 4 0.0203 6357 4 31 2 DNA strand elongation
GO:0006271 1.3𝐸 − 4 0.0203 6357 4 31 2 DNA strand elongation involved in DNA replication

GO:0000724 2.0𝐸 − 4 0.0306 6357 4 38 2 Double-strand break repair via homologous
recombination

GO:0000725 3.1𝐸 − 4 0.0470 6357 4 47 2 Recombinational repair
GO:0022403 3.4𝐸 − 4 0.0515 6357 4 286 3 Cell cycle phase

(2) Cellular components
GO:0042555 4.4𝐸 − 6 1.3𝐸 − 4 6357 4 6 2 MCM complex
GO:0005656 3.5𝐸 − 5 0.0010 6357 4 16 2 Prereplicative complex
GO:0031261 6.8𝐸 − 5 0.0020 6357 4 22 2 DNA replication preinitiation complex
GO:0031298 8.8𝐸 − 5 0.0026 6357 4 25 2 Replication fork protection complex
GO:0032993 3.0𝐸 − 4 0.0091 6357 4 46 2 Protein-DNA complex
GO:0000151 5.7𝐸 − 4 0.0171 6357 4 63 2 Ubiquitin ligase complex
GO:0043234 0.0021 0.0643 6357 4 1369 4 Protein complex
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(b) Continued.

GO:term 𝑝 value Corrected 𝑝 value 𝑅 𝑇 𝐺 𝑂 Term name
GO:0033597 0.0025 0.0754 6357 4 4 1 Mitotic checkpoint complex
GO:0031463 0.0031 0.0942 6357 4 5 1 Cul3-RING ubiquitin ligase complex
GO:0043596 0.0062 0.1883 6357 4 10 1 Nuclear replication fork

(3) Molecular functions
GO:0043138 4.5𝐸 − 5 0.0021 6357 4 18 2 3-5 DNA helicase activity
GO:0004003 9.6𝐸 − 5 0.0046 6357 4 26 2 ATP-dependent DNA helicase activity
GO:0003688 1.2𝐸 − 4 0.0061 6357 4 30 2 DNA replication origin binding
GO:0003678 2.1𝐸 − 4 0.0104 6357 4 39 2 DNA helicase activity
GO:0003697 2.7𝐸 − 4 0.0133 6357 4 44 2 Single-stranded DNA binding
GO:0008094 6.4𝐸 − 4 0.0310 6357 4 67 2 DNA-dependent ATPase activity
GO:0003682 9.2𝐸 − 4 0.0443 6357 4 80 2 Chromatin binding
GO:0043566 0.0010 0.0500 6357 4 85 2 Structure-specific DNA binding
GO:0004842 0.0010 0.0500 6357 4 85 2 Ubiquitin-protein ligase activity
GO:0070035 0.0010 0.0511 6357 4 86 2 Purine NTP-dependent helicase activity
𝑅: number of genes in reference set.
𝑇: number of genes in test set.
𝐺: number of genes annotated by given term in reference set.
𝑂: number of genes annotated by given term in test set.

can allow escaping from the apoptosis hallmark.He discussed
oncogene-induced DNA replication stress and the role it
plays as a cancer progression driver [49].

(4) p53 Signaling Pathway. Soussi et al. discussed a multi-
factorial analysis of p53 alterations in human cancers [54].
Ueda et al. claimed that the functional inactivation but not
the structural mutation of p53 can cause liver cancer [55].

3.4. Pathway Analysis of Early-Stage Liver Cancer. Four of
these five key pathways discussed in the total stage (cell
cycle, DNA replication, oocyte meiosis, and p53 signaling)
were also selected by both early and late stages, although
the proteins involved in these pathways were not the same
(Table 7).We should paymore attention to the evolution from
the early to late stages.

(1) Mismatch Repair. This is a key pathway that was only
selected by the early stage (with higher𝑝 value of 0.09) but not
the late stage (Figure 4). Fujimoto et al. sequenced the entire
genome of liver cancers to identify etiological influences
on mutation patterns. They discussed transcription-coupled
repair and mismatch repair-deficient tumors to show that
mismatch repair plays a significant role in liver cancer [56].

3.5. Pathway Analysis of Late-Stage Liver Cancer

(1) Spliceosome. It is important that we selected the spliceo-
some pathway again in late-stage liver cancer (Table 8),
because we selected it in our previous results of late-stage
bladder cancer.We review previous results of the spliceosome
pathway [16] and then add new results here. Alternative splic-
ing is a modification of premessenger (m)RNA transcripts in
which internal noncoding regions of pre-mRNA (introns) are

removed and then the remaining segments (exons) are joined
(Figure 5). The formation of mature mRNA is subsequently
capped at its 5 end, polyadenylated at its 3 end, and
transported out of the nucleus to be translated into proteins in
the cytoplasm.Most genes use alternative splicing to generate
multiple spliced transcripts.These transcripts contain various
combinations of exons resulting from different mRNA vari-
ants, and these are synthesized as protein isoforms. Exons are
always around 50∼250 base pairs, whereas introns can be as
long as several thousands of base pairs. For nuclear-encoded
genes, splicing takes place within the nucleus simultaneously
with or after transcription. Splicing is necessary for eukary-
oticmRNAbefore it can be translated into the correct protein.
The spliceosome is a dynamic intracellular macromolecular
complex ofmultiple proteins and ribonucleoproteins (RNPs).
For many eukaryotic introns, the spliceosome carries out the
two main functions of alternative splicing: first, it recognizes
intron-exon boundaries, and, second, it catalyzes cut-and-
paste reactions that remove introns and concatenate exons.
Various spliceosomal machinery complexes are formed from
five RNP subunits, termed uridine- (U) rich small nuclear
(sn)RNPs, that are transiently associated with more than
760 non-snRNP splicing factors (RNA helicases, SR splicing
factors, etc.) [57, 58]. Each spliceosomal snRNP (U1, U2,
U4, U5, and U6) consists of a U-rich snRNA complexed
with a set of seven proteins known as canonical Sm core or
SNRP proteins. The seven Sm proteins (B/B, D1, D2, D3,
E, F, and G) form a core ring structure that surrounds the
RNA. All Sm proteins contain a conserved sequence motif
in two segments (Sm1 and Sm2) that are responsible for
the assembly and ordering of snRNAs. They form the Sm
core of spliceosomal snRNPs [59] and process pre-mRNA
[60]. Spliceosomes not only catalyze splicing by a series of
reactions, but also are themain cellularmachinery that guides
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Table 8: (a) The pathways analysis for 80 late stage significant proteins in carcinogenesis. (b) The pathway analysis and gene set enrichment
analysis of the 74 proteins of total-stage liver cancer on (1) biological processes, (2) cellular components, and (3) molecular functions byNOA.

(a)

Rank Term Count Symbol 𝑝 value
KEGG

1 hsa04110:Cell cycle 16
E2F1, CDK1, YWHAZ, YWHAB, CDC20,
SFN, MCM2, MCM3, CDK4, MCM4,

CDK2, MCM7, PCNA, YWHAQ, BUB1B,
CCNA2

3.90𝐸 − 14

2 hsa04114:Oocyte meiosis 8 CDK1, YWHAZ, YWHAB, YWHAQ,
CDC20, AURKA, PPP1CC, CDK2 3.62𝐸 − 05

3 hsa03030:DNA replication 5 MCM7, PCNA, MCM2, MCM3, MCM4 2.35𝐸 − 04

4 hsa04115:p53 signaling pathway 4 CDK1, SFN, CDK4, CDK2 0.020496
5 hsa03040:Spliceosome 5 SNRPB, THOC4, LSM2, SF3A2, SF3B4 0.022722
6 hsa05222:Small cell lung cancer 4 E2F1, TRAF2, CDK4, CDK2 0.035432

7 hsa04914:Progesterone-mediated oocyte
maturation 4 HSP90AB1, CDK1, CCNA2, CDK2 0.037607

8 hsa00310:Lysine degradation 3 SETDB1, WHSC1, EHMT2 0.055046

9 hsa05200:Pathways in cancer 7 E2F1, HSP90AB1, TRAF2, MSH2, BIRC5,
CDK4, CDK2 0.061178

BioCarte
1a h p53Pathway:p53 Signaling Pathway 4 E2F1, PCNA, CDK4, CDK2 0.003378

2a h cellcyclePathway:Cyclins and Cell
Cycle Regulation 4 E2F1, CDK1, CDK4, CDK2 0.010334

3a h g1Pathway:Cell Cycle:G1/S Check Point 4 E2F1, CDK1, CDK4, CDK2 0.015615

4a
h rbPathway:RB Tumor

Suppressor/Checkpoint Signaling in
response to DNA damage

3 CDK1, CDK4, CDK2 0.019987

5a h ranMSpathway:Role of Ran in mitotic
spindle regulation 3 RAN, AURKA, KPNA2 0.019987

6a h g2Pathway:Cell Cycle:G2/M
Checkpoint 3 CDK1, YWHAQ, BRCA1 0.067509

7a h RacCycDPathway:Influence of Ras and
Rho proteins on G1 to S Transition

3 E2F1, CDK4, CDK2 0.072809

The significant pathways via DAVID Bioinformatics database are selected for the 74 significant proteins in carcinogenesis. Bold indicates 𝑝 value > 0.05. Most
of them are from the KEGG database, and we add several key pathways from BioCarta.

(b)

GO:term 𝑝 value Corrected 𝑝 value 𝑅 𝑇 𝐺 𝑂 Term name
(1) Biological processes

GO:0051320 1.5𝐸 − 9 3.6𝐸 − 7 6357 10 12 4 S phase
GO:0000084 1.5𝐸 − 9 3.6𝐸 − 7 6357 10 12 4 S phase of mitotic cell cycle
GO:0006267 5.5𝐸 − 9 1.3𝐸 − 6 6357 10 16 4 Prereplicative complex assembly

GO:0000727 4.5𝐸 − 8 1.1𝐸 − 5 6357 10 26 4 Double-strand break repair via break-induced
replication

GO:0006270 6.2𝐸 − 8 1.5𝐸 − 5 6357 10 28 4 DNA-dependent DNA replication initiation
GO:0022616 9.5𝐸 − 8 2.3𝐸 − 5 6357 10 31 4 DNA strand elongation
GO:0006271 9.5𝐸 − 8 2.3𝐸 − 5 6357 10 31 4 DNA strand elongation involved in DNA replication

GO:0000724 2.2𝐸 − 7 5.4𝐸 − 5 6357 10 38 4 Double-strand break repair via homologous
recombination

GO:0006260 5.1𝐸 − 7 1.2𝐸 − 4 6357 10 120 5 DNA replication
GO:0000725 5.3𝐸 − 7 1.2𝐸 − 4 6357 10 47 4 Recombinational repair
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(b) Continued.

GO:term 𝑝 value Corrected 𝑝 value 𝑅 𝑇 𝐺 𝑂 Term name
(2) Cellular components

GO:0042555 4.6𝐸 − 11 2.2𝐸 − 9 6357 10 6 4 MCM complex
GO:0005656 5.5𝐸 − 9 2.6𝐸 − 7 6357 10 16 4 Prereplicative complex
GO:0031261 2.2𝐸 − 8 1.0𝐸 − 6 6357 10 22 4 DNA replication preinitiation complex
GO:0031298 3.8𝐸 − 8 1.8𝐸 − 6 6357 10 25 4 Replication fork protection complex
GO:0032993 4.8𝐸 − 7 2.3𝐸 − 5 6357 10 46 4 Protein-DNA complex
GO:0044454 2.3𝐸 − 4 0.0113 6357 10 217 4 Nuclear chromosome part
GO:0044451 5.8𝐸 − 4 0.0280 6357 10 275 4 Nucleoplasm part
GO:0044428 7.7𝐸 − 4 0.0370 6357 10 1251 7 Nuclear part
GO:0044427 8.3𝐸 − 4 0.0400 6357 10 302 4 Chromosomal part
GO:0043234 0.0013 0.0656 6357 10 1369 7 Protein complex

(3) Molecular functions
GO:0043138 9.3𝐸 − 9 6.4𝐸 − 7 6357 10 18 4 3-5 DNA helicase activity
GO:0004003 4.5𝐸 − 8 3.1𝐸 − 6 6357 10 26 4 ATP-dependent DNA helicase activity
GO:0003688 8.3𝐸 − 8 5.7𝐸 − 6 6357 10 30 4 DNA replication origin binding
GO:0043566 9.0𝐸 − 8 6.2𝐸 − 6 6357 10 85 5 Structure-specific DNA binding
GO:0003678 2.4𝐸 − 7 1.7𝐸 − 5 6357 10 39 4 DNA helicase activity
GO:0003697 4.0𝐸 − 7 2.8𝐸 − 5 6357 10 44 4 Single-stranded DNA binding
GO:0043140 7.9𝐸 − 7 5.4𝐸 − 5 6357 10 13 3 ATP-dependent 3-5 DNA helicase activity
GO:0008094 2.2𝐸 − 6 1.5𝐸 − 4 6357 10 67 4 DNA-dependent ATPase activity
GO:0003682 4.6𝐸 − 6 3.1𝐸 − 4 6357 10 80 4 Chromatin binding
GO:0070035 6.1𝐸 − 6 4.2𝐸 − 4 6357 10 86 4 Purine NTP-dependent helicase activity
𝑅: number of genes in reference set.
𝑇: number of genes in test set.
𝐺: number of genes annotated by given term in reference set.
𝑂: number of genes annotated by given term in test set.

splicing. Recently, scientists found two natural compounds
that can interfere with spliceosome function that also display
anticancer activity in vitro and in vivo [61, 62]. Therefore,
it is thought that inhibiting the spliceosome can be a new
target for anticancer drug development [63], and it should be
validated in vivo and in vitro in the future [56].

Tian et al. used a phosphoproteomic analytical method
on the highly metastatic HCC cell line, MHCC97-H. They
reported that phosphoproteins were also found in the
spliceosome pathway, and they were related to liver cancer
[64].

(2) Progesterone-Mediated Oocyte Maturation. Zhang et al.
also identified this pathway [47].

(3) Lysine Degradation. Huang et al. identified this pathway in
liver cancer [65].

3.6. Comparison with Our Previous Liver Cancer Network
Biomarkers Using a Microarray Analysis. We found 15 com-
mon proteins in this study and our previous results (Table 5).
That tells us that the NGS is a revolutionary technology, but
it can be trusted to not give totally different results from
microarray data.

3.7. Comparison of Microarray and NGS Technology. Gene
expression profiling by microarray has been successful at
demonstrating the patterns of mRNAs within tissues and
cells. Although microarray platforms showed similar levels
of concordance with the RNA-seq data, the next generation
sequencing (NGS) technologies provided high sensitivity,
specificity, and accuracy as compared to the microarray
platforms [66]. Due to NGS providing a more detailed
observation at the transcriptome, scientists and biologists
have been eager to apply NGS for gene expression profiling.
Microarrays only return results from those regions for probes
which have been designed. Therefore, microarrays are only
as good as the databases from which they are designed.
NGSmethods provide aspects of the transcriptome without a
priori knowledge, allowing for the analysis and discovery of
novel transcripts, noncoding RNAs, and alternative splicing.
Thus, RNA sequencing methods enable the most accurate
detection and quantification for transcriptome analysis.

4. Conclusions

Liver cancer is the third most deadly cancer causing about
700,000 deaths in 2011 worldwide. It is a lethal disease
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Figure 5: Overview of significant pathways of network markers of late-stage liver cancer. KEGG pathways identified using the DAVID tool
(Table 8) show significant associationswith specific proteins in the late stage of liver cancer; thesemolecular pathways are labeledwith𝑝 values
of ≤0.05. These pathways were shown to play important roles in the carcinogenesis mechanism of the early stage of liver cancer. Proteins in
networkmarkers of the early stage of liver cancer as highlighted by stars are potential targets in the pathways. Due to different naming systems,
the same proteins in the tables and in the text have different names. The proteins in the total stage liver cancer network marker are enriched
in “hsa03040:Spliceosome” (Rank 5 in Table 8).

like other cancers. There are three important topics in this
research. The first was to compare this study with our
previous research of liver cancer microarray data, because
the microarray technology may someday be replaced by the
NGS technology. We found the results to be good, because
there were a lot of key proteins identified by both methods.
The second was to reveal the carcinogenesis process from
the early to late stages of liver cancer. The specific pathway
of the early stage was the mismatch repair pathway, and the
specific pathways of the late stage were the spliceosome path-
way, lysine degradation pathway, and progesterone-mediated
oocytematuration pathway.This suggests novel directions for

choosing different targeted therapeutic strategies at different
stages of cancer. In particular, compared to our previous
results of bladder cancer, we found that the spliceosome
pathway is a significant pathway in the late stage of both
liver cancer and bladder cancer. Our future work will focus
greater attention on this pathway related to various cancers
and consider it as a new drug target for anticancer therapies.
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