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The 21-day experimental gingivitis model, an established noninvasive model of inflammation in
response to increasing bacterial accumulation in humans, is designed to enable the study of both the
induction and resolution of inflammation. Here, we have analyzed gingival crevicular fluid, an oral
fluid comprising a serum transudate and tissue exudates, by LC-MS/MS using Fourier transform ion
cyclotron resonance mass spectrometry and iTRAQ isobaric mass tags, to establish meta-proteomic
profiles of inflammation-induced changes in proteins in healthy young volunteers. Across the course
of experimentally induced gingivitis, we identified 16 bacterial and 186 human proteins. Although
abundances of the bacterial proteins identified did not vary temporally, Fusobacterium outer membrane
proteins were detected. Fusobacterium species have previously been associated with periodontal health
or disease. The human proteins identified spanned a wide range of compartments (both extracellular
and intracellular) and functions, including serum proteins, proteins displaying antibacterial properties,
and proteins with functions associated with cellular transcription, DNA binding, the cytoskeleton, cell
adhesion, and cilia. PolySNAP3 clustering software was used in a multilayered analytical approach.
Clusters of proteins that associated with changes to the clinical parameters included neuronal and
synapse associated proteins.
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Introduction

The 21-day experimental gingivitis model is an established
noninvasive model in humans for investigating the induction
and resolution of inflammation in response to increasing
bacterial accumulation. From its inception in 1965,1,2 this
model of inflammation has been used to assess how drugs,3

bioactive compounds in dentifrices4-6 and environmental
toxins, such as tobacco smoke,7,8 affect the development of
inflammation. The model is designed to enable the study of
both the induction and resolution of inflammation, which can
also be assessed over a relatively short period of time (35 days)
and in a controlled manner.

The model involves periodontally and systemically healthy
volunteers, who do not brush specified test teeth in one sextant
of the dentition, but continue to brush the remaining control teeth
over a 21 day period. Accidental brushing of test teeth is prevented
by the use of a vinyl shield (mouth guard) to cover them during
cleaning. On day 21, the accumulated plaque on all teeth is
removed by a trained hygienist and study participants resume
their normal oral hygiene practices. Clinical assessment of plaque
accumulation and gingival inflammation are made at baseline,
day 7, 14, 21 on test and control teeth, following plaque ac-
cumulation on test teeth, and normal plaque removal from
control teeth. Assessments are repeated again on day 35, following
14 days of resolution of inflammation at test sites, and mainte-
nance of health at control sites. When performed by trained and
calibrated experts, these measures show consistent increases in
plaque-induced inflammation up to day 21 followed by a return
to baseline, preinflammation levels at day 35.9,10 However none
of these assessments could potentially form the basis for a
predictor of disease as they are all measures of existing inflam-
mation or inducers of inflammation.
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A further and more objective assessment that can be made
during the experimental gingivitis is that of the volume and
composition of gingival crevicular fluid (GCF) and at individual
sites around individual teeth. This fluid flows from the crevice
between the tooth and the gum and comprises both a serum
transdate11 and tissue exudates.3,10,12-14 During inflammation,
the volume and flow of this fluid increases,1 and this alone can
be used to demonstrate induction and/or presence of gingivitis
and periodontitis. However, due to its very nature, as a mixed
serum transudate and tissue exudate, GCF carries with it
proteins from the crevice. Thus its composition also provides
a biological and pathological fingerprint of the various physi-
ological and biochemical processes occurring within the gin-
gival tissues. In 1980, Novaes et al.15 demonstrated that the
total protein present in GCF increased with increasing severity
of periodontitis, although this was probably due to increases
in GCF volume. By 1985, Lamster et al.16 had measured
differences in lactate dehydrogenase, beta-glucuronidase and
arylsulfatase activity in GCF collected from experimental
gingivitis sites and demonstrated increases in these biomarkers
over the course of the 21 day study. Since then, studies have
targeted particular cytokines,3,10,12-14,17,18 antibacterial peptides
and proteins19 and many more individual proteins and
peptides,9,20-22 revealing increases in pro-inflammatory species
during disease. Studies have also examined the effect of
diseases, such as type I diabetes mellitus,23 analysis of many
anti-inflammatory or antimicrobial compounds, and environ-
mental conditions, such as smoking,8 on experimental gingivitis.

Recently, proteomics techniques have greatly increased
understanding of the composition of GCF. Surface enhanced
laser desorption/ionization time-of-flight mass spectrometry
(SELDI TOF MS) has been used to examine small proteins and
peptides (2.5-30 kDa) from healthy volunteers and gingivitis
patients.24 That study employed a targeted approach to inves-
tigate neutrophil defensins. Unfractionated GCF samples were
also examined by matrix assisted laser desorption/ionization
(MALDI)-TOF MS, for neutrophil defensins.25 Similarly, Pisano
et al26 used electrospray ionization27 (ESI)-MS to examine the
acid-soluble protein content of GCF from healthy volunteers.
They, too, identified the neutrophil defensins, along with
cystatin A, statherin and serum albumin. Only in the last year
have tandem mass spectrometry (MS/MS) techniques been
employed in the examination of GCF. Ngo et al.28 used both
MALDI-TOF/TOF and ESI-MS/MS to identify 66 proteins that
had been separated by gel electrophoresis from a single patient,
who had a history of periodontal disease but who was in the
maintenance phase following treatment. Proteins identified
included a number of serum-derived proteins, such as albumin,
complement and transferrin. Other proteins that were present
included: antimicrobial proteins calgranulin A and B; amylase;
cytatin S; and Histone H4. Bostanci et al.29 used a LC-MSE

label-free quantitative technique to identify 154 proteins from
either healthy volunteers or patients with aggressive periodon-
titis. Bostanci et al.29 identified a wide range of proteins
including those mentioned already and a large number of
keratins, immunoglobulins, and other intracellular proteins.
They also potentially identified a number of bacterial, fungal
and viral proteins.

The majority of mass spectrometry-based proteomics is
performed using the bottom-up30 liquid chromatography
tandem mass spectrometry (LC-MS/MS) approach. Generally,
proteins are digested with trypsin prior to online LC separation.
As the peptides elute into the mass spectrometer, they are

fragmented typically by collision induced dissociation31 (CID)
resulting in b and y ion series.32 The MS/MS spectra are
searched against protein databases by use of algorithms (e.g.,
Mascot,33 SEQUEST,34 OMSSA35) which match the data to
theoretical spectra from in-silico digests of proteins. Quantita-
tive proteomics by mass spectrometry can use several methods.
Two of the most popular are stable isotope labeled amino acids
in cell culture36 (SILAC) and isobaric tags for relative and
absolute quantitation (iTRAQ).37 In SILAC, cells are grown in
media lacking essential amino acids. The media is supple-
mented with heavy or light amino acids. The labeled and
unlabeled peptides elute together and the intensity of the
peptide ions can be compared. SILAC is not suitable for clinical
samples. A common approach for quantitation of biological
fluids38 and tissue samples39 is postdigestion labeling with
iTRAQ40 labels. iTRAQ labels consist of a reporter ion with a
m/z value of between 113 and 121 and a balance mass
(191-183 Da) such that all labeled peptides of the same
sequence have the same nominal mass shift (∆304 Da). Test
and control samples are treated with separate iTRAQ labels
postdigestion and combined prior to MS analysis. When the
peptide ions are fragmented with CID, the reporter ions are
cleaved from the peptide and detected in the mass spectrom-
eter. The intensity of the reporter ions can then be quantified.
Quantitation with iTRAQ, allows for the analysis up to eight
different treatment groups41 simultaneously. One of the dis-
advantages of performing CID in ion traps is the instability of
ions with m/z values approximately 1/3 that of the parent ion,42

that is, fragment ions with m/z less than 1/3 of the precursor
ions are not detected. iTRAQ reporter ions have m/z 113-121
and therefore ion trap CID of iTRAQ labeled peptides often
does not result in quantification. The recent introduction of
pulsed-Q dissociation43 (PQD) has allowed for the analysis of
iTRAQ labeled samples in linear ion trap mass analysers. PQD
excites ions with a high amplitude Q value; Q is a resonance
excitation pulse. When the ions are excited, they collide with
neutral gas molecules in a similar manner to CID. The
activation profile applied in PQD is different to that of CID
meaning that low mass ions are stable and can be detected.

To date, the proteomic profile of GCF during the active
induction and subsequent resolution of inflammation under
controlled conditions using the 21 day experimental gingivitis
model has not been described. Herein we describe the quan-
titative analysis of GCF, collected from volunteers undergoing
experimental gingivitis, by LC-MS/MS using Fourier transform
ion cyclotron resonance44 (FT-ICR) MS and iTRAQ isobaric
mass tags, to establish a profile of changes in proteins in
healthy young volunteers that may be used to compare to the
inflammatory response in other subsets of the population, such
as those predisposed to periodontitis.

Materials and Methods

Subjects and Collection. The experimental gingivitis model
previously described by Chapple et al.9 was used, and the study
was approved by the South Birmingham Local Research Ethical
Committee (LREC 2004/074). Ten nonsmoking volunteers
(mean age 21 years; range 19-28, 4 males and 6 females) who
had unremarkable medical histories, no periodontal problems
(past or present), were not undergoing orthodontic or pros-
thetic appliance therapy or taking medication that may have
affected results were enrolled into the study, and informed
consent was obtained. A split mouth design was employed with
test sites being the maxillary left 4, 5, and 6 (first and second
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premolars and first molar on the left-hand side of the upper
jaw) in right-handed individuals (n ) 9) and the equivalent
teeth on the maxillary right side in left-handed individuals
(n ) 1). Control sites were the corresponding teeth on the
contralateral side. Plaque accumulation was assessed using a
modified Quigley-Hein index45 (PI; scores 0-5) and the gingival
index (GI) of Löe46 (scores 0-3) was used to measure gingival
inflammation. Bleeding was measured dichotomously as pres-
ence or absence following gentle probing and expressed as the
percentage of sites that bled upon probing. All volunteers had
no evidence of attachment loss (destruction or loss of the
connective tissues and bone holding the teeth within their
sockets) when admitted to the study. A soft vinyl splint was
constructed to cover five teeth, with a 5 mm clearance at each
free surface from the marginal tissues. The splint was inserted
gently over test teeth before brushing, to ensure against any
mechanical or chemical cleaning. The test and control teeth
were given a thorough prophylaxis and oral hygiene was closely
monitored for 2 weeks prior to the study commencing to ensure
pristine gingival health at baseline (see Introduction and Figure
1). GCF samples were collected from both test and control sites
on days 0 (baseline), 7, 14, and 21. On day 21, following plaque
accumulation at test sites and after GCF sampling and record-
ing of clinical indices, volunteers were given a full mouth
prophylaxis and recommenced brushing without using the
splint, in order to resolve the experimentally induced inflam-
mation at test sites. Fourteen days later (day 35), the final set
of GCF samples was collected and clinical indices recorded.

Gingival crevicular fluid was collected on Periopaper strips
(Oraflow, Plainview, NY) over a period of 30 s as previously
described.9 GCF volume was measured using a precalibrated
Periotron 8000 (Oraflow, Plainview, NY),47 from the 3 test teeth
and the 3 control teeth. The three test strips were then placed
into a cryotube (Appleton Woods, Birmingham, U.K.) contain-
ing ammonium bicarbonate (100 mM, 200 µL), sealed and
immediately frozen in liquid nitrogen, prior to storage at -80
°C. This procedure was repeated for the 3 control strips, thereby
providing one pooled sample from test teeth and one pooled
sample from control teeth for each volunteer. Periopaper strips,
showed a percentage recovery of 62 ( 5% from spiked plasma
(1 µL) (data not shown) as analyzed by the number of proteins
identified.

Sample Preparation. Samples were defrosted on ice. From
each sample within a time point and test or control site, 200
µL of solution was removed and pooled to give rise to 10 × 1
mL samples: 5 from test sites and 5 from control sites, covering
all time points. The pooled samples were vacuum centrifuged
and reduced to 200 µL. To each pooled sample dithiothreitol
(Fisher Scientific, U.K.) (20 µL, 50 mM) was added and the
samples incubated at 60 °C for 40 min. The sample was

returned to room temperature before iodoacetamide (Fisher
Scientific, U.K.) (100 µL, 22 mM) was added and the samples
incubated at room temperature for 25 min. To consume any
remaining iodoacetamide, dithiothreitol (2.8 µL, 50 mM) was
added. The samples were digested overnight with trypsin Gold
(500 ng, Promega, Madison, WI) at 37 °C.

The samples were vacuum centrifuged to dryness, resus-
pended in trifluoroacetic acid (Fisher Scientific, U.K.) (TFA,
0.5%, 200 µL) and desalted using a Michrom desalting Mac-
rotrap (Michrom, Auburn, CA). The trap was wetted using
acetonitrile:water (50:50, 300 µL) and washed with TFA (0.1%,
200 µL). The sample was loaded onto the trap and washed with
TFA (0.1%, 200 µL) and eluted in acetonitrile/water (70:30, 200
µL). Samples were vacuum centrifuged to dryness. Samples
were resuspended in dissolution buffer (0.5 M triethylammo-
nium bicarbonate, 30 µL). The two day 0 samples were
combined and half the sample was taken forward for labeling.
The day 7 control was omitted such that 8 samples were labeled
in total, as follows. The iTRAQ 8-plex labels (Applied Biosys-
tems, Foster City, CA) were resuspended in isopropanol (50 µL),
added to the 8 samples as below, vortexed for 1 min and
incubated at room temperature for 2 h. The labels were applied
in the following order (sampling time and condition, sample
ID): Day 0, 113; Day 7 test, 114; Day 14 control, 115; Day 14
test, 116; Day 21 control, 117; Day 21 test, 118; Day 35 control,
119; and Day 35 test, 121.

The eight labeled samples were combined and vacuum
centrifuged dry. The pooled sample was desalted as above and
resuspended in mobile phase A (see below, 200 µL). The sample
was separated using strong cation exchange high performance
liquid chromatography (SCX-HPLC) and fractions collected.
The chromatography was performed on an Ettan LC (GE
Healthcare Life Science, U.K.) with a Frac-950 fraction collec-
tion system. The sample was separated on a polysulfethyl A
column (100 mm ×2.1 mm, 5 µm particle size, 200 Åpore size.
PolyLC, Columbia, MD) with a javelin guard cartridge (10 mm
× 2.1 mm, 5 µm particle size, 200 Åpore size. PolyLC, Columbia,
MD). Mobile phase A was potassium dihydrogen orthophos-
phate (10 mM, pH 3) dissolved in water:acetonitrile (80:20).
Mobile phase B was potassium dihydrogen orthophosphate (10
mM), potassium chloride (500 mM, pH 3) dissolved in water/
acetonitrile (80:20). The LC gradient ran from 0 to 80% mobile
phase B over 73 min. Half of the sample was loaded onto the
column and eighteen fractions were collected in eppendorf
tubes (1.5 mL). Fractions were combined to give a total of 8
fractions (fractions 2, 18, and 19 were combined; 3, 16, and 17
combined; 4 and 15 combined; 5 and 14 combined; 6 and
13 combined; 7 and 12 combined; 8 and 11 combined; 9 and
10 combined). The combinations gave rise to a minimum
number of fractions with similar peptide quantities. The eight

Figure 1. Flowchart of study design for test sites. Control sites were treated identically until baseline, but normal plaque removal then
continued until day 35.
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fractions were vacuum centrifuged to dryness and desalted as
above. The fractions were resuspended in formic acid (0.1%,
50 µL). Each sample was analyzed in triplicate with 5 µL used
for mass spectrometric analysis.

Liquid Chromatography-Tandem Mass Spectrometry
(LC-MS/MS). Online liquid chromatography was performed
by use of a Micro AS autosampler and Surveyor MS pump
(Thermo Fisher Scientific, Bremen, Germany). Peptides were
loaded onto a 75 µm (internal diameter) Integrafrit (New
Objective, Woburn, MA) C8 resolving column (length 10 cm)
and separated over a 40 min gradient from 0% to 40%
acetonitrile (Baker, Holland). Peptides were eluted directly
(∼350 nL/min) via a Triversa nanospray source (Advion Bio-
sciences, Ithaca, NY) into a 7 T LTQ FT mass spectrometer
(Thermo Fisher Scientific), where they were subjected to data-
dependent PQD.

Data-Dependent PQD. The mass spectrometer alternated
between a full FT-MS scan (m/z 400-2000) and subsequent
PQD MS/MS scans of the three most abundant ions above a
threshold of 1500. Survey scans were acquired in the ICR cell
with a resolution of 100 000 at m/z 400. Precursor ions were
subjected to PQD in the linear ion trap. The width of the
precursor isolation window was 2 m/z. Only multiply charged
precursor ions were selected for MS/MS. PQD was performed
with helium gas at a normalized collision energy of 45%,
activation Q 0.8 and activation time 200 ms. Automated gain
control was used to accumulate sufficient precursor ions (target
value 5 × 104, maximum fill time 0.2 s). Dynamic exclusion
was used with a repeat count of 1 and exclusion duration of
180 s. Data acquisition was controlled by Xcalibur software
V2.1.0 (Thermo Fisher Scientific Inc.).

Data Analysis. The MS/MS spectra were searched against a
concatentated forward and reverse IPI human database v3.66
supplemented with bacterial proteins (224 902 entries) using
the SEQUEST algorithm in Proteome Discoverer sp 1.0 (Thermo
Fisher Scientific). Only the iTRAQ labels were specified as
variable modifications, with carboxyamidomethylation of cys-
teine as a static modification. The data were searched with a
precursor mass error of 20 ppm and a fragment mass error of
0.5 Da. The search results were filtered using XCorr vs charge
state (peptides reporting XCorr values <2 for 2+ ions, <2.25 for
3+ ions and <2.5 for 4+ or greater ions are rejected) resulting
in a false discovery rate of less than 1%. The database used
was compiled of human FASTA proteins from the IPI database
supplemented with bacterial families identified by Socransky48

as being associated with periodontal health or periodontal
disease. These families were Porphyromonas, Bacterioides,
Treponema, Fusobacterium, Prevotella, Campylobacter, Eubac-
terium, Streptococcus, Capnocytophaga, Eikenella, Actinobac-
cillus, Actinomyces, Selenomonas and Aggregaterbacter.

Statistical Analysis. Protein database searches resulted in
10 000 protein hits across all the runs. These were filtered for
proteins identified in at least three fractions by at least 2
peptides and quantified at all time points. The temporal
quantitative profiles of these proteins were analyzed using
PolySNAP3 software.49 PolySNAP3 compares trends using a
weighted mean of the Pearson parametric and Spearman
nonparametric correlation coefficients employing every mea-
sured intensity data point common to all one-dimensional
patterns. Cluster numbers are estimated by: principal compo-
nents analysis using transformed and nontransformed matrices;
multidimensional metric scaling (MMDS); gamma statistic,
Calinski-Harabasz statistic and C-statistic using either single

linkage, group averages, Ward method or complete linkage. The
maximum number of clusters was selected as generated by
these methods. Data were visualized by 3-dimensional MMDS
plots and dendrograms.

Results

Clinical measurements revealed that the volunteers had
complied with the study criteria as shown in Figure 2, where it
can be seen that plaque accumulated significantly at the test
sites but not the control sites, as assessed by the plaque index.
After removal of all plaque from both test and control sites at
day 21 microbial recolonization to baseline levels was observed
at day 35. Clinical measurements also demonstrated that at test
sites inflammation had been induced, as measured by the
modified gingival index (Figure 3) and the bleeding index
(Figure 4). Both these indices showed significant increases at
test sites but not at control sites during plaque accumulation
and returned to baseline levels, at day 35, after removal of the
inflammatory stimulus at day 21 and resumption of manual
brushing (Figure 1). Similarly, GCF volume increased with
plaque accumulation at test sites but not at control sites and
returned to baseline levels after removal of the inflammatory
stimulus (Figure 5).

Using a meta-proteomics approach, 16 bacterial and 186
human proteins were identified (Tables 1 and 2). The bacterial
proteins showed little temporal variance across the course of
the experimental gingivitis, from day 0 to day 35.

Figure 2. Plaque accumulation was assessed using a modified
Quigley-Hein index (PI). Data were analyzed by a Kruskal-Wallis
test with a Dunn’s post test. *** represents p < 0.001 and **
represents p < 0.01 in comparison to day 0; $ represents p < 0.05
in comparison to control site at the same time point.

Figure 3. Gingival index (GI) was used to measure gingival
inflammation. Data were analyzed by a Kruskal-Wallis test with
a Dunn’s post test. ** represents p < 0.01 in comparison to
day 0.
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Temporal changes in the abundance of human proteins
across the course of the experiment at control sites were
analyzed with PolySNAP3 software for patterns different from
a stable unchanging profile. 170 proteins showed no change
over the course of the experiment (Cluster 1, not deviating from
a ratio of 1 from day 0) at control sites, and 16 showed
decreases from day 0 to day 35 (Clusters 2-5), at control sites,
that did not cluster with the other proteins (maximum number
of clusters: 5, range 1-5, median number of clusters 3, Figure
6). These 16 proteins were then removed from subsequent
statistical analysis. The proteins in cluster 1 were then used to
filter the data from the test sites, which were normalized to
control sites. The normalized data for the 170 proteins were
analyzed using PolySNAP3 to identify the proteins whose
abundances showed the greatest change with development of
experimental gingivitis. Five clusters were determined (Clusters
A-E, maximum number of clusters: 6, range 2-6, median
number of clusters 3, Figure 7). Clusters A and E, containing 3
proteins each, increased to a maximum value at day 14 and
day 21 respectively before returning to baseline levels at day
35. Clusters C (1 protein) and D (2 proteins), both decreased
at day 14 and then either returned to baseline at days 21 and
35 (Cluster C) or returned to baseline at day 21 and continued
to increased to a maximum value at day 35. Cluster B, (161

proteins), appeared to remain constant at baseline levels and
throughout the course of the experimental gingivitis.

Inspection of the dendrogram from this clustering analysis
demonstrated that there were still many clusters within group
B. Thus further analysis of this group was performed. The
second round of clustering revealed a further 6 clusters (clusters
B1-6, maximum number of clusters: 6, range 3-6, median
number of clusters 4, Figure 7). Clusters B4 (4 proteins) and
B5 (2 proteins) demonstrated increases across the course of
the experimental gingivitis peaking at days 14 and 21 respec-
tively and remaining elevated at the peak level at day 35.
Clusters B1, B3 and B6, containing 8, 20, and 4 proteins
respectively, decreased during the course of the study. Cluster
B1 showed a small decrease at day 14 and then returned to
baseline levels before decreasing greatly at day 35. Cluster B3
decreased at day 14 but returned to baseline at subsequent time
points. Cluster B6 decreased at day 14 and remained at this
level for the rest of the experimental gingivitis. Cluster B2 (123
proteins) did not fluctuate at this level of detail across the
course of the experimental gingivitis and these proteins were
again taken for further clustering analysis. That analysis gave
rise to another 6 clusters (clusters B2i-vi, maximum number
of clusters: 6, range 3-6, median number of clusters 4, Figure
7). At this point two observations were made: (1) the largest
group (B2i) showed a slight increase at day 21, i.e., no longer
showed little variation across the course of the experimental
gingivitis and (2) the variation in the ratio to day 0 for all the
clusters was now between 0-1 unit at its maximum. Therefore,
further rounds of clustering analysis were not pursued, even
though there were still a large number of proteins in the largest
cluster (cluster B2i, n ) 86). Inspection of the patterns
generated from this third and final clustering showed that
cluster B2ii (1 protein) showed a peak at day 21; cluster B2iii
(4 proteins) peaked at day 14 and then decreased at days 21
and 35; cluster B2iv (13 proteins) showed little change over
14 and 21 days but an increase at day 35; cluster B2v (1
protein) showed a decrease at day 21; and cluster B2vi (18
proteins) showed an increase at day 14 that was sustained
to day 21 before returning to baseline at day 35. Fold changes
for all proteins in Cluster 1 can be found in the supplemental
Table 1.

Gene ontology analysis for location revealed the majority of
proteins identified to cover the entire range of nuclear, plasma
membrane, cytoplasmic and extracellular compartments (Fig-
ure 8). Gene ontology analysis for function identified a wide
range of possibilities with the greatest numbers of proteins for
cellular transcription, DNA binding, cytoskeletal functions, cell
adhesion, defense against bacteria and cilia (Figure 8). Par-
ticular clusters did not preferentially fall into one of these
categories and the proteins functions were diverse throughout
the individual clusters. It should be noted that between 35 and
40% proteins did not have gene ontology terms that could be
used.

Discussion

Across the course of experimentally induced gingivitis, we
identified 16 bacterial and 186 human proteins by combining
iTRAQ and LC-MS/MS on an FT-ICR mass spectrometer. The
abundances of the bacterial proteins identified did not vary
temporally. This observation may be used as confirmation that
the GCF samples were not significantly contaminated with
plaque during sampling. Furthermore, Fusobacterium species
(Fusobacterium outer membrane proteins) were detected and

Figure 4. Bleeding on probing was measured dichotomously as
presence or absence following gentle probing and expressed as
percentage of sites that bled upon probing. Data were analyzed
by a Kruskal-Wallis test with a Dunn’s post test. *** represents
p < 0.001 and * represents p < 0.05 in comparison to day 0; $
represents p < 0.05 in comparison to control site at the same
time point.

Figure 5. GCF was collected on Periopaper TM strips over 30s
and the volume was measured using a precalibrated Periotron
8000TM. Data were analyzed by a Kruskal-Wallis test with a
Dunn’s post test. *** represents p < 0.001 and ** represents p <
0.01 in comparison to day 0; $ represents p < 0.05 in comparison
to control site at the same time point.
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although this family, particularly Fusobacterium nucleatum
which is part of the orange complex identified by Socransky et
al,48 has being associated with increased periodontal pocket
depth and worsening clinical parameters, it is also associated
with nonperiodontitis sites.48 Other bacterial proteins identified
were not immediately obvious candidates from oral pathogens.

The human proteins identified spanned a wide range of
compartments and functions. As GCF comprises both a serum
transudate and tissue exudates, it is unsurprising to find both
extracellular and intracellular components within samples.
With respect to the extracellular components, serum proteins,
such as albumin, IgG3 and apolipoprotein B-100; as well as
proteins displaying antibacterial properties, such as neutrophil
defensin, cystatins B and S and Annexins A1 and A3, were
found. The serum components (albumin and IgG3) clustered
together (cluster B3) and showed a decrease at day 14 at test
sites. At this time point, the GCF volume from test sites was
already significantly increased above control sites. On the other
hand apolipoprotein B-100 falls into cluster B2vi, which follows
the profile of the increase in GCF volume and bleeding index
at test sites. Apolipoprotein B-100 is the protein component
of low density lipoprotein, which has a diameter of ap-
proximately 26 nm. This particle is unlikely to be able to pass
across the permeable sulcular membrane and could potentially
be used as a marker of increased microulceration of the sulcular
epithelium. Cystatins B and S and Annexins A1 and A3 were
found in cluster B2i, which was largely unchanged across the
course of the experimental gingivitis. Cystatin B and Annexin
A1 were found by Bostanci et al.29 only in healthy volunteers
and not in developing inflammatory disease. That they seem
not to change across the course of our experiment would
support the idea that they are not associated with the develop-
ment of moderate gingival inflammation. Neutophil defensin
was found in cluster B2iv that showed the greatest increases

at day 35 for the test sites. This may indicate a role in
maintaining a healthy state upon resolution of inflammation.
Bostanci et al.29 also detected this protein at healthy sites,
although the GCF volume at these sites is equivalent to day 7
in this experimental gingivitis study, perhaps highlighting a
potential role of neutrophil defensin in population based health
screening.

Intracellular proteins identified had functions such as cellular
transcription, DNA binding, cytoskeletal functions, cell adhe-
sion, and cilia proteins. Starting with cytoskeletal proteins, a
large number of keratins were identified, which was expected
from sampling adjacent to epithelial tissues. The oral epithe-
lium has one of the highest turnover rates50 and this will have
contributed to the large number of keratins seen. The majority
of keratins were clustered together in cluster B2i, which showed
the least variation across the course of the experimental
gingivitis, perhaps indicating that the differentiation or prolif-
eration of the epithelium was not affected during the course
of the induced inflammation, again consistent with a sulcular
rather than a pocket lining epithelium that characterizes
periodontitis. However, it is acknowledged that some keratin
contamination could have occurred during sample handling.
Other cytoskeletal and associated proteins, such as titin and
actin- and microtubule- associated proteins, also fell into
cluster B2i. These proteins could be components of desqua-
mated epithelial cells released during the turnover of the
epithelium. There were also several axonemal dynein proteins
grouped to cluster B2i. To our knowledge, these cilia-associated
proteins have not been identified in GCF before. However, a
number of studies51-53 have used histology to investigate
changes in the gingivae in periodontal disease. Saglie et al.53

used scanning electron microscopy to investigate the pocket
epithelium from patients with advanced periodontal disease.
At high resolution they observed individual epithelial cells,

Table 1. All Bacterial Proteins Identified from GCF by FTICR-MS/MS, Listing Protein Identity (IPI Accession Number and
Description), Mean Coverage, Mean Number of Peptides Used to Identify the Protein, Mean Score, Total Number of Time Identified
Across All Runs

accession # description
mean

coverage

mean
number of

peptides
mean
score

total times
identified

gi119357403 helicase domain-containing protein [Chlorobium phaeobacteroides
DSM 266]

2.13 2.67 5.13 3

gi149370586 type II restriction enzyme, methylase [unidentified eubacterium
SCB49]

1.35 3.00 2.59 3

gi149372617 hypothetical protein SCB49_12134 [unidentified eubacterium SCB49] 4.76 3.67 5.27 3
gi149372893 Glycosyl transferase, group 1 [unidentified

eubacterium SCB49]
3.93 2.33 3.97 3

gi149372926 ABC transporter ATP-binding protein [unidentified
eubacterium SCB49]

2.89 2.40 3.26 5

gi150008138 hypothetical protein BDI_1504 [Parabacteroides distasonis
ATCC 8503]

2.29 2.20 4.23 5

gi150010070 30S ribosomal protein S2 [Parabacteroides distasonis ATCC 8503] 6.48 3.67 3.41 3
gi154491686 hypothetical protein PARMER_01297 [Parabacteroides

merdae ATCC 43184]
2.40 2.25 4.54 4

gi189499472 chromosome segregation protein SMC [Chlorobium
phaeobacteroides BS1]

1.60 2.33 1.98 3

gi189499611 cysteine synthase [Chlorobium phaeobacteroides BS1] 3.27 2. 70 3.71 3
gi212550547 hypothetical protein CFPG_190 [Candidatus Azobacteroides

pseudotrichonymphae genomovar. CFP2]
3.30 5.00 9.07 3

gi218262131 hypothetical protein PRABACTJOHN_02373 [Parabacteroides
johnsonii DSM 18315]

4.35 2.00 4.62 4

gi237742543 fusobacterium outer membrane protein family
[Fusobacterium sp. 4_1_13]

1.06 3.17 4.15 6

gi256841201 helicase domain-containing protein [Parabacteroides sp. D13] 1.82 2.80 3.47 5
gi256846448 fusobacterium outer membrane protein

[Fusobacterium sp. 3_1_36A2]
1.66 4.00 5.15 7

gi260889807 fusobacterium outer membrane protein
[Leptotrichia hofstadii F0254]

1.41 3.25 2.95 4
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Table 2. All Human Proteins Identified from GCF by FTICR-MS/MS, Listing Protein Identity (IPI Accession Number and
Description), Mean Coverage, Mean Number of Peptides Used to Identify the Protein, Mean Score, Total Number of Time Identified
Across All Runs and the Cluster Analysis Groups

accession # description
mean

coverage
mean number

of peptides mean score
total times
identified

Cluster 1

Cluster A Proteins that increase to maximal values at test sites at day 14,
before returning to baseline at day 35

IPI:IPI00294242.2 28S ribosomal protein S31, mitochondrial 2.78 2 2.51 3
IPI:IPI00923396.1 Isoform 2 of Neurofilament heavy polypeptide 4.11 3.6 4.98 5
IPI:IPI00741005.7 MAX-interacting protein isoform 2 0.82 2 2.72 3

Cluster B1 Proteins that decrease at test day 35 sites at
IPI:IPI00220567.5 5-formyltetrahydrofolate cyclo-ligase 9.85 2 4.27 3
IPI:IPI00023217.2 cardiac muscle ryanodine receptor 0.87 4.6 3.17 5
IPI:IPI00927117.1 CTCL tumor antigen se20-7 1.81 3.9 3.65 7
IPI:IPI00448466.3 Isoform 2 of Ankyrin repeat domain-containing protein 12 1.15 2.8 1.93 6
IPI:IPI00942512.1 keratin 3 5.63 4.7 7.19 13
IPI:IPI00008359.1 Keratin, type II cytoskeletal 2 oral 6.71 5.4 9.38 11
IPI:IPI00167941.1 Midasin 0.7 3.6 2.97 5
IPI:IPI00219168.7 Spectrin beta chain, brain 4 0.95 3.5 3.71 4

Cluster B2i Proteins largely unchanged across the course of the experimental
gingivitis at test sites

IPI:IPI00909239.1 actinin, alpha 1 isoform c 4.25 3.7 6.81 3
IPI:IPI00946286.1 alpha 3 type VI collagen isoform 4 precursor 1.88 4.4 5.42 5
IPI:IPI00218918.5 Annexin A1 8.96 3 5.27 5
IPI:IPI00024095.3 Annexin A3 6.97 3 5.78 4
IPI:IPI00797574.3 Biorientation of chromosomes in cell division protein 1-like 1.04 4.3 3.73 4
IPI:IPI00103595.2 Centrosome-associated protein 350 0.67 3.3 3.53 3
IPI:IPI00021828.1 Cystatin-B 14.96 2.7 6.76 3
IPI:IPI00032294.1 Cystatin-S 7.8 2.7 4.39 3
IPI:IPI00456969.1 Cytoplasmic dynein 1 heavy chain 1 0.68 2.3 2.41 3
IPI:IPI00397930.3 DBF4-type zinc finger-containing protein 2 1.39 4.3 3.29 6
IPI:IPI00335711.5 Dynein heavy chain 11, axonemal 0.72 2.7 2.55 3
IPI:IPI00943773.1 dynein, axonemal, heavy chain 17 0.95 4.3 3.44 3
IPI:IPI00642259.2 Dystonin 0.8 5.7 2.36 6
IPI:IPI00023711.1 Envoplakin 1.51 2.7 2.01 3
IPI:IPI00788953.3 erythrocyte membrane protein band 4.1-like 2 isoform b 2.85 2.6 2.83 5
IPI:IPI00007797.3 Fatty acid-binding protein, epidermal 10.37 2 4.36 3
IPI:IPI00760833.1 Isoform 1 of Ankyrin repeat domain-containing protein 26 1.29 2.7 2.95 3
IPI:IPI00007834.2 Isoform 1 of Ankyrin-2 0.9 4.3 2.5 4
IPI:IPI00328762.5 Isoform 1 of ATP-binding cassette subfamily A member 13 0.73 4.3 4.73 3
IPI:IPI00152462.1 Isoform 1 of Dynein heavy chain 3, axonemal 1.17 5 2.48 3
IPI:IPI00180384.4 Isoform 1 of Dynein heavy chain 7, axonemal 0.78 3 3.7 5
IPI:IPI00009866.6 Isoform 1 of Keratin, type I cytoskeletal 13 17.14 15.6 30.05 10
IPI:IPI00175649.3 Isoform 1 of Leucine-rich repeat serine/threonine-protein kinase 2 1.65 3.7 3.3 3
IPI:IPI00186853.6 Isoform 1 of Pecanex-like protein 2 1.16 2.3 2.78 3
IPI:IPI00175151.7 Isoform 1 of Probable methylcytosine dioxygenase TET2 0.95 2.3 3.09 4
IPI:IPI00745872.2 Isoform 1 of Serum albumin 6.96 6.5 10.1 11
IPI:IPI00514002.4 Isoform 1 of StAR-related lipid transfer protein 9 0.78 3.3 4.01 3
IPI:IPI00658151.5 Isoform 1 of Striated muscle preferentially expressed protein kinase 1.1 3.3 3.44 3
IPI:IPI00939796.1 Isoform 1 of Zinc finger protein 793 4.54 3 2.44 3
IPI:IPI00794668.3 Isoform 2 of Centrosomal protein of 290 kDa 1.51 3 2.79 3
IPI:IPI00795958.1 Isoform 2 of Keratin, type I cuticular Ha6 3.98 2.4 3.66 5
IPI:IPI00166205.3 Isoform 2 of Keratin, type II cytoskeletal 78 7.32 5 6.21 3
IPI:IPI00395772.5 Isoform 2 of Myosin-9 1.73 2.3 2.21 3
IPI:IPI00376609.1 Isoform 2 of Nuclear pore complex protein Nup155 1.3 2 3.3 4
IPI:IPI00375454.8 Isoform 2 of Telomere-associated protein RIF1 1.26 2.8 3.29 5
IPI:IPI00023283.3 Isoform 2 of Titin 0.88 29 13.59 4
IPI:IPI00783859.2 Isoform 2 of Vacuolar protein sorting-associated protein 13D 0.78 3 1.57 4
IPI:IPI00619925.2 Isoform 3 of Centromere-associated protein E 1.67 5.3 4.11 4
IPI:IPI00377257.1 Isoform 3 of Phosphatase and actin regulator 3 3.94 2.2 2.39 6
IPI:IPI00843765.1 Isoform 3 of Spectrin alpha chain, brain 0.94 2.3 0.94 4
IPI:IPI00220798.1 Isoform 4 of Bile acid receptor 4.45 2 2.86 3
IPI:IPI00247295.4 Isoform 4 of Nesprin-1 1.04 9 5.44 6
IPI:IPI00759637.1 Isoform 4 of Titin 1.23 39.5 19.53 4
IPI:IPI00401007.2 Isoform 5 of X-linked retinitis pigmentosa GTPase

regulator-interacting protein 1
2.02 2.3 2.63 3

IPI:IPI00759542.1 Isoform 8 of Titin 0.42 11.7 2.97 3
IPI:IPI00217709.1 Isoform Beta-1 of DNA topoisomerase 2-beta 2.84 4.3 3.37 3
IPI:IPI00013933.2 Isoform DPI of Desmoplakin 2.49 7.9 5.69 8
IPI:IPI00171196.2 keratin 13 isoform b 11.52 9.7 20.61 10
IPI:IPI00384444.6 Keratin, type I cytoskeletal 14 10.82 8.8 18.68 12
IPI:IPI00217963.3 Keratin, type I cytoskeletal 16 12.36 9.3 18.41 17
IPI:IPI00450768.7 Keratin, type I cytoskeletal 17 9.03 7.9 17.1 7
IPI:IPI00479145.2 Keratin, type I cytoskeletal 19 10.4 7.4 13.74 5
IPI:IPI00021298.1 Keratin, type I cytoskeletal 20 6.13 5 8.5 7
IPI:IPI00304458.2 Keratin, type I cytoskeletal 23 4.44 3.3 4.9 4
IPI:IPI00021304.1 Keratin, type II cytoskeletal 2 epidermal 5.84 5.7 11.82 6
IPI:IPI00009867.3 Keratin, type II cytoskeletal 5 11.98 9.8 19 12
IPI:IPI00910122.1 Liprin alpha4 3.48 4.5 4.3 4
IPI:IPI00394925.2 mesoderm posterior 2 homologue 4.03 2 3.86 4
IPI:IPI00941241.1 Microtubule-actin cross-linking factor 1 0.46 2 3.06 3
IPI:IPI00432363.1 Microtubule-actin cross-linking factor 1, isoform 4 0.88 5.8 4.17 5
IPI:IPI00027883.2 Microtubule-associated serine/threonine-protein kinase 1 1.15 2 2.4 3
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Table 2. Continued

accession # description
mean

coverage
mean number

of peptides mean score
total times
identified

IPI:IPI00853536.1 MOV10-like 1 isoform 2 1.63 2.6 2.42 5
IPI:IPI00045914.1 Msx2-interacting protein 1.51 5.3 3.42 6
IPI:IPI00103552.4 Mucin-16 0.2 3.3 2.74 3
IPI:IPI00025879.2 Myosin-1 2.05 4.8 4.82 5
IPI:IPI00914847.2 nebulin isoform 1 1.73 10 4.93 4
IPI:IPI00917728.2 nebulin isoform 2 1.92 14 8.22 3
IPI:IPI00742682.2 Nucleoprotein TPR 1.09 3 2.13 4
IPI:IPI00298057.2 Periplakin 1.97 3.4 3.97 5
IPI:IPI00296909.3 Poly [ADP-ribose] polymerase 4 1.22 2.6 3.49 7
IPI:IPI00005826.1 Probable E3 ubiquitin-protein ligase HERC2 0.56 2.3 1.49 3
IPI:IPI00412541.2 Probable G-protein coupled receptor 158 1.62 2 2.79 3
IPI:IPI00218076.1 Protein FAM9A 4.88 2.4 2.96 5
IPI:IPI00007047.1 Protein S100-A8 15.36 2.9 5.09 7
IPI:IPI00939543.1 Pumilio homologue 1 2.38 2 1.98 4
IPI:IPI00013721.2 Serine/threonine-protein kinase PRP4 homologue 2.61 3 2.21 4
IPI:IPI00786995.1 similar to protein kinase, DNA-activated, catalytic polypeptide 1.51 6.3 5.66 6
IPI:IPI00935432.1 similar to ubiquitin protein ligase E3 component

n-recognin 5 isoform 2
0.9 2.6 3.41 7

IPI:IPI00174345.3 Sperm-associated antigen 17 1.2 3 2.95 3
IPI:IPI00303343.7 Splicing factor, arginine/serine-rich 19 2.19 2.3 2.38 4
IPI:IPI00219420.3 Structural maintenance of chromosomes protein 3 1.67 2.7 2.6 3
IPI:IPI00759613.2 titin isoform N2-A 0.72 23.2 11.17 11
IPI:IPI00784174.1 titin isoform novex-3 0.56 3.8 2.01 4
IPI:IPI00001159.10 Translational activator GCN1 0.83 2.3 3.52 4
IPI:IPI00289709.3 Zinc finger imprinted 3 3.55 2.5 2.21 4
IPI:IPI00921184.1 Zinc finger, PHD-type domain containing protein 3 5 5.65 4

Cluster B2ii Proteins that increase at test sites at day 21 before returning
to baseline at day 35

IPI:IPI00748061.1 Centrosomal protein 350 kDa 1.82 4.5 3.26 4

Cluster B2iii Proteins that increase at test sites at day 14, decrease at day21,
returning to baseline at day before 35

IPI:IPI00453473.6 Histone H4 21.9 3.9 6.76 9
IPI:IPI00007729.1 Isoform 1 of Nucleolar protein 7 8.04 2 1.97 3
IPI:IPI00744062.1 Isoform 2 of Transcription elongation regulator 1 2.17 3 3.3 3
IPI:IPI00375294.2 Laminin subunit alpha-1 0.92 2.7 2.23 3

Cluster B2iv Proteins that increase at test sites at day 35
IPI:IPI00784869.4 Isoform 1 of Dynein heavy chain 10, axonemal 1.23 5 4.97 8
IPI:IPI00239405.4 Isoform 1 of Nesprin-2 0.88 6.5 4.38 6
IPI:IPI00892863.1 Isoform 2 of Collagen alpha-5(VI) chain 1.61 4 3.42 3
IPI:IPI00855826.1 Isoform 2 of Ventricular zone-expressed PH domain-containing

protein homologue 1
2.66 2 3.8 3

IPI:IPI00383970.2 Mutated melanoma-associated antigen 1-like protein 1 3.88 2.3 2.48 3
IPI:IPI00642716.6 myosin, heavy polypeptide 7B, cardiac muscle, beta 1.48 2.5 3.74 4
IPI:IPI00001753.2 Myosin-4 1.9 5 3.48 4
IPI:IPI00025880.2 Myosin-7 1.4 3 3.66 7
IPI:IPI00021827.3 Neutrophil defensin 3 13.54 2.2 4.7 11
IPI:IPI00375149.4 optic atrophy 1 isoform 2 2.71 2.7 4.18 3
IPI:IPI00418184.1 Similar to nonhistone chromosomal protein HMG-1 7.33 3.3 2.18 3
IPI:IPI00848233.1 v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homologue

isoform 2 precursor
3.09 2.3 2.88 3

IPI:IPI00307591.5 Zinc finger protein 609 1.25 2 2.45 3

Cluster B2v Proteins that decrease at test sites at 21 before returning to
baseline at day 35

IPI:IPI00009865.3 Keratin, type I cytoskeletal 10 4.22 3.7 6.95 3

Cluster B2vi Proteins that increase to maximal values at test sites at day 14, before
returning to baseline at day 35

IPI:IPI00300786.1 Alpha-amylase 1 3.84 2 4.8 8
IPI:IPI00166331.4 Ankyrin repeat domain-containing protein 31 2.4 2.3 3.06 3
IPI:IPI00022229.1 Apolipoprotein B-100 0.99 5 5.41 5
IPI:IPI00017800.2 ATP-binding cassette subfamily A member 3 1.31 2 2.47 3
IPI:IPI00514867.1 glutamate receptor, metabotropic 1 isoform beta precursor 3.86 3.7 3.33 3
IPI:IPI00217465.5 Histone H1.2 11.27 2.7 1.79 3
IPI:IPI00006876.2 Immediate early response gene 2 protein 6.28 2.7 3.97 3
IPI:IPI00794880.1 Isoform 1 of Chromodomain-helicase-DNA-binding protein 7 1.33 4.5 4.1 4
IPI:IPI00884996.1 Isoform 1 of Dynein heavy chain 6, axonemal 0.69 2.7 2.66 3
IPI:IPI00896403.1 Isoform 1 of Tetratricopeptide repeat protein GNN 2.1 2.3 3.69 3
IPI:IPI00376283.1 Isoform 2 of Retinoblastoma-binding protein 6 2.66 5.7 4.21 3
IPI:IPI00218207.1 Isoform 2 of Spectrin beta chain, brain 2 1.49 4 3.87 4
IPI:IPI00412210.1 Isoform 3 of SLIT-ROBO Rho GTPase-activating protein 3 3.9 2 2.78 3
IPI:IPI00218660.3 Isoform 4 of Inositol 1,4,5-trisphosphate receptor type 1 1.2 3.7 3.98 3
IPI:IPI00398776.3 Isoform 7 of Plectin-1 0.41 2.3 0.54 3
IPI:IPI00005859.5 Keratin, type II cytoskeletal 75 8.65 7 10.93 3
IPI:IPI00302329.1 Myosin-8 1.87 4 2.56 4
IPI:IPI00217098.2 Zinc finger protein 678 7.3 3 3.69 3

Cluster B3 Proteins that decrease at test sites at day 14 before returning
to baseline at day 35

IPI:IPI00908515.1 bromodomain containing 9 isoform 2 6.19 3.3 4.14 3
IPI:IPI00174574.1 Coiled-coil domain-containing protein 147 3.47 3.3 3.74 4
IPI:IPI00827754.3 Ig gamma-3 chain C region 9.66 2.9 5.5 7
IPI:IPI00878236.2 Isoform 1 of Fibrous sheath-interacting protein 2 0.77 5.3 4.23 4
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bacteria and erythrocytes; however, large amounts of cilia were
not seen, such as might be expected with lung epithelium.
Primary cilia, however, are present on nearly all cells, including
internal stratified oral epithelium,54 and play a chemo- or
mechano-sensory role.55 Although they are not changed in this
experimental gingivitis model, it will be interesting to determine

how cilia proteins change with chronic periodontal diseases
as it has been proposed that ciliopathies may impair wound
healing.55

Among the cellular transcription and DNA binding proteins
that were identified were two histone proteins: Histone H4 and
Histone H1.2. They did not cluster together; however, they were

Table 2. Continued

accession # description
mean

coverage
mean number

of peptides mean score
total times
identified

IPI:IPI00030282.3 Isoform 1 of Filensin 3.23 3 3.5 4
IPI:IPI00376383.2 Isoform 2 of Centriolin 2.52 5 3.42 3
IPI:IPI00413958.5 Isoform 2 of Filamin-C 1.02 2.7 2.68 3
IPI:IPI00889747.1 Isoform 2 of Intraflagellar transport protein 172 homologue 1.4 2 2.24 3
IPI:IPI00829833.2 Isoform 2 of Mucin-19 0.72 4 7.39 3
IPI:IPI00384697.2 Isoform 2 of Serum albumin 6.39 4.4 7.56 8
IPI:IPI00302008.2 Isoform 3 of Zinc finger protein 407 1.67 2 2.19 4
IPI:IPI00216562.3 Isoform 4 of Cadherin-23 0.81 2.7 3.6 7
IPI:IPI00219941.1 Isoform A of Oxysterol-binding protein-related protein 1 3.89 2 2.12 3
IPI:IPI00306400.9 Kinesin-like protein KIFC1 4.85 2.7 3.92 3
IPI:IPI00218725.3 laminin alpha 2 subunit isoform b precursor 1.3 3.3 4.59 3
IPI:IPI00303112.2 Methylcytosine dioxygenase TET1 0.76 2.3 1.31 3
IPI:IPI00152380.3 Myosin-XV 1.2 4 3.17 3
IPI:IPI00884926.1 orosomucoid 1 precursor 6.72 2.3 6.55 4
IPI:IPI00010471.5 Plastin-2 4.59 3 6.5 4
IPI:IPI00795657.1 SFRS2IP protein 1.35 2.5 2.65 4

Cluster B4 Proteins that increase at test sites at day 14 and remain elevated
throughout the experimental gingivitis

IPI:IPI00796450.2 Isoform 1 of Lysosomal-trafficking regulator 0.67 2.2 2.07 6
IPI:IPI00220327.4 Keratin, type II cytoskeletal 1 5.04 3.6 7.06 9
IPI:IPI00848317.1 myosin IXB isoform 2 0.84 3.3 2.37 4
IPI:IPI00168056.2 Zinc finger and BTB domain-containing protein 38 1.7 3.3 4.9 3

Cluster B5 Proteins that increase at test sites at day 21 before returning
to baseline at day 35

IPI:IPI00014515.3 Isoform 1 of Serine/threonine-protein phosphatase 4 regulatory
subunit 4

1.49 2.3 2.12 3

IPI:IPI00426269.2 Isoform 2 of Leucine-rich repeat-containing protein 7 2.41 2.7 2.77 3

Cluster B6 Proteins that decrease at test sites at day 14 and remain lowered
throughout the experimental gingivitis

IPI:IPI00301419.2 COP9 signalosome complex subunit 7a 5.21 2.7 3.13 3
IPI:IPI00743813.3 Isoform 1 of Abnormal spindle-like microcephaly associated protein 1.43 4.7 4.17 7
IPI:IPI00879441.1 Isoform 3 of Protein strawberry notch homologue 1 1.34 2.3 3.3 3
IPI:IPI00299749.4 Zinc finger protein 16 1.96 2 3.96 3

Cluster C Proteins that decrease at test sites at day 14 before returning
to baseline at day 21

IPI:IPI00457261.2 similar to hCG1645503 7.48 3.3 3.61 4

Cluster D Proteins that increase at day 35 at test sites
IPI:IPI00179016.8 Histone-lysine N-methyltransferase SETD1A 1.52 2.3 2.93 3
IPI:IPI00006196.3 Isoform 2 of Nuclear mitotic apparatus protein 1 1.76 3.3 2.68 3

Cluster E Proteins that increase to maximal levels at test sites at day 21
before returning to baseline at day 35

IPI:IPI00747682.1 Isoform 2 of MAGUK p55 subfamily member 2 2.26 2.5 3.08 4
IPI:IPI00298301.4 Myosin-3 2.09 4 2.59 5
IPI:IPI00020153.4 Protein bassoon 0.78 2.6 2.65 7

Cluster 2 Proteins decreased at control sites to minimal levels at day 14
before returning to baseline at day 35

IPI:IPI00942176.1 A-kinase anchor protein 7 isoform gamma 5.62 2.3 3.6 3
IPI:IPI00293655.3 ATP-dependent RNA helicase DDX1 1.7 3.7 2.9 3
IPI:IPI00021129.5 Isoform 1 of AP-3 complex subunit beta-1 1.94 2 2.6 4
IPI:IPI00791131.3 Isoform 1 of Growth hormone-regulated TBC protein 1 5.75 2 3.2 3
IPI:IPI00300504.5 Isoform 1 of Regulator of nonsense transcripts 2 1.57 2.3 3.61 3
IPI:IPI00795394.2 Isoform 2 of Dynein heavy chain 9, axonemal 0.77 3.3 2.78 9
IPI:IPI00333015.7 Isoform 2 of Spectrin beta chain, brain 1 1.21 2.8 3.07 4
IPI:IPI00884904.1 Isoform 3 of Protein AHNAK2 1.66 3.5 3.71 4
IPI:IPI00219330.2 Isoform 5 of Interleukin enhancer-binding factor 3 3.14 2.7 2.3 3
IPI:IPI00019359.4 Keratin, type I cytoskeletal 9 2.25 3.3 4.07 3
IPI:IPI00300053.4 Keratin, type II cuticular Hb2 3.57 2 2.29 3
IPI:IPI00022463.1 Serotransferrin 4.01 4.2 7.6 5
IPI:IPI00787323.2 Similar to Keratin, type II cytoskeletal 8 7.52 4.3 5.93 3

Cluster 3 Proteins decreased at control sites to minimal levels at day 14
before returning to baseline at day 35

IPI:IPI00294696.4 Cyclin B1 5.06 2 2.01 4

Cluster 4 Proteins decreased at control sites throughout the
experimental gingivitis

IPI:IPI00004924.3 Differentially expressed in FDCP 6 homologue 3.52 2.4 3.97 5

Cluster 5 Proteins decreased at control sites at day 14 and before returning
to baseline at day 21 and then decreasing again at day 35

IPI:IPI00303335.2 Nebulin 1.46 8.2 3.62 6

research articles Grant et al.

4740 Journal of Proteome Research • Vol. 9, No. 9, 2010



both in clusters (B2iii and B2vi, respectively) that showed an
increase at test sites at day 14. These proteins are associated
with chromatin and may indicate the presence of neutrophil
extracellular traps (NETs).56 In addition to phagocytosis, neu-
trophils can discharge decondensed chromatin and associated
proteins to trap and immobilize bacteria. These NETs have
been shown to be present in the gingival crevice of periodontitis
patients.57 Neutrophils are the most important leukocytes in
the periodontal tissues and have been implicated in periodon-
titis patients as being hyper-active and hyper-reactive.58,59

Further evidence for neutrophils may be taken from the
presence of Plastin-2 (or L-plastin), which was also identified
by Bostanci et al.29 Plastin-2 is an actin bundling protein that
plays a role in signaling following Fcγ receptor stimulation in
adherent neutrophils. Here we found Plastin-2 clusters within
cluster B3, which demonstrated a decrease at day 14 at test
sites, which might indicate a less adherent phenotype in
neutrophils at this stage of the inflammatory response. Bostanci
et al.29 reported this protein in aggressive periodontitis patients
only, perhaps showing a further change in the behavior of
neutrophils in diseased rather than healthy volunteers.

In this study, we have used PolySNAP3 clustering software
in a multilayered analytical approach. For ease of comprehen-
sion, an analogy may be used of examining the clusters of
proteins in a manner similar to “peeling away the layers of an
onion” or “zooming in to different levels of detail in the
clustering”. The first layer isolated those proteins that did not
maintain a broadly steady flat baseline in the control sites
during the course of the experimental gingivitis. The greatest
change was seen with Nebulin (cluster 5); however, other
isoforms of this protein (nebulin isoform 1 and 2) were
clustered to cluster B2i which showed the least variation across
the course of the experimental gingivitis. Other proteins in
clusters 2-4 showed decreases from baseline. Cluster analysis

of the entire data set (not shown) always showed these
particular proteins as lying outside the central core (Figure 6
control cluster 3D MMDS plot), thus they may be viewed as
outliers. Following the exclusion of these proteins the normal-
ized test data was clustered revealing the clusters that changed
the most across the course of the experimental gingivitis and
then subsequent clustering of the largest group showed the next
level of changes, and so on in the third round of clustering.
Two groups (clusters A and E) in the first round of clustering
and one (cluster B2vi) in the third round of clustering showed
increases at days 14, 21, and 14 respectively, which were similar
to increases in the clinical parameters. Cluster A contained
disparate proteins involved in neuronal axons, transcription
and protein production; cluster E contained proteins involved
in signal transduction, actin-myosin based movement and
synaptic transmission; and cluster B2vi contained many pro-
teins including actin-myosin based movement and synaptic
transmission again. A common theme from these clusters might
be the presence of neuronal and synapse associated proteins.
The most abundant is protein bassoon which is a constituent
of ribbon synapses. Sterling and Matthews (2005)60 suggest that
ribbon synapses “occur wherever synaptic exocytosis is evoked
by graded depolarisation and where signalling requires a high
rate of sustained release” such as in the terminals of photo-
receptors and auditory and vestibular hair cells. These synapses
use glutamate as their primary neurotransmitter and this would
fit with the identification of metabotropic glutamate receptors
in cluster B2vi. Histological investigations of gingival biopsies
will be required to verify the presence of ribbon synapses within
the gingivae as their presence has not been seen before. The
role of their destruction during experimental gingivitis remains
to be fully investigated, particularly with the knowledge that
substance P, a neuropeptide, released from sensory neurones
and an inducer of inflammation and pain, is increased in

Figure 6. Cluster analysis of data set showing the workflow and clusters generated. Control sites across the course of the experimental
gingivitis study were clustered using PolySNAP3. Group 1 showed no changes from baseline, whereas groups 2-5 differed from
baseline over the course of the experiment (Control clusters). Below the flow diagram are graphs representing the mean ((sem) changes
of the proteins in each cluster, which are followed beneath by 3-dimensional metric multidimensional scaling (MMDS) plots and
dendrograms showing the relationships of individual proteins with others in the analysis group. Colors of lines on graphs, spheres on
3D plots and bars on dengrograms coordinate to show the same clustering.
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Figure 7. Cluster analysis of data set showing the workflow and clusters generated. Proteins identified from group 1 were used for the next
step of the analysis using normalized test data which were clustered using PolySNAP3. Five clusters (clusters A-E) were generated (cluster
round 1 summary), with 161 proteins identified in cluster B. The proteins in cluster B were then further analyzed by PolySNAP3 to generate
6 clusters (clusters B1-6; cluster round 2 summary). The largest group from this analysis was group B2 (123 proteins). This group was then
further analyzed using PolySNAP3 to generate 6 clusters (clusters B2i-vi, cluster round 3 summary). Below the flow diagram are graphs
representing the mean ((sem) changes of the proteins in each cluster, which are followed beneath by 3-dimensional metric multidimensional
scaling (MMDS) plots and dendrograms showing the relationships of individual proteins with others in the analysis group. Colors of lines
on graphs, spheres on 3D plots and bars on dendrograms coordinate to show the same clustering. It should be noted that the highlighted,
largest group on each dendrogram was the group taken forward into the subsequent round of clustering analysis.

Figure 8. Analysis of the proteomic data showing component and function gene ontology. Gene Otology pie charts were generated
using Swiss-Prot database with Inforsense, embedded in Proteome Discoverer sp1.0 from Thermo Fisher Scientific Inc.
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gingivitis and periodontitis,61 and that in a recent transcrip-
tomics investigation Offenbacher et al (2009)62 found that after
changes to immune response pathways, neural process path-
ways where the second most abundant pathways activated
during a similar experimental gingivitis model.

Lastly, cytokines have been investigated extensively in GCF
as biomarkers of gingival inflammation. However, in this study
we have not been able to detect any cytokines, consistent with
Bostanci et al.29 This is probably due to the cytokines being at
low, subattomol, concentrations.

To conclude, here we have shown for the first time the
quantitative analysis of temporal changes of proteins in gingival
crevicular fluid, using a nonpresumptive approach. Proteins
identified included proteins already known to the dental
community and verification of newly identified proteins in
other mass spectral studies. We have also identified new
proteins that highlight structural components of the gingivae
that have not been seen before and that warrant further
investigation.
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