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Abstract: Background: One of the most frequently used medications for treating gastrointestinal
disorders is proton pump inhibitor (PPI), which reportedly has potential adverse effects. Although
the relationship between the use of PPIs and the risk of pancreatic cancer has been extensively
investigated, the results remain inconsistent. Hence, this meta-analysis aimed to evaluate such
relationship. Methods: We searched for literature and subsequently included 10 studies (seven
case–control and three cohort studies; 948,782 individuals). The pooled odds ratio (OR) and 95%
confidence intervals (CI) for pancreatic cancer were estimated using a random-effects model. We also
conducted sensitivity analysis and subgroup analysis. Results: The pooled OR of the meta-analysis was
1.698 (95% CI: 1.200–2.402, p = 0.003), with a substantial heterogeneity (I2 = 98.75%, p < 0.001). Even
when studies were excluded one by one, the pooled OR remained statistically significant. According to
the stratified subgroup analyses, PPI use, and pancreatic cancer incidence were positively associated,
regardless of the study design, quality of study, country, and PPI type. Conclusion: PPI use may be
associated with the increased risk of pancreatic cancer. Hence, caution is needed when using PPIs
among patients with a high risk of pancreatic cancer.

Keywords: proton pump inhibitor; pancreatic cancer; pancreatic neoplasm; meta-analysis

1. Introduction

Pancreatic cancer is one of the deadliest malignancies, with a high mortality rate. According to the
GLOBOCAN 2018 database, it is the seventh leading cause of cancer deaths in the world [1]. Moreover,
it ranks fourth as a cause of cancer deaths in the United States, as reported by Cancer statistics, 2020 [2].
Despite having several therapies, the overall 5-year survival rate is approximately 9% [2,3].

Pancreatic cancer has many risk factors, including diabetes mellitus, chronic pancreatitis, and
pancreatic cyst [4–6]. Several environmental risk factors, such as smoking, obesity, a “Western” dietary
pattern (consumption of processed and smoked meat), Helicobacter pylori, and hepatitis B or C virus
infection, were also reported [7–14].

Proton pump inhibitors (PPIs) are one of the most widely used medications for treating
gastrointestinal disorders. Since their introduction into clinical practice in the late 1980s, PPIs
have been approved for both acute and chronic management of several gastrointestinal diseases, such
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as peptic ulcer disease, gastroesophageal reflux disease, and Zollinger–Ellison syndrome. They are
also effective in preventing nonsteroidal anti-inflammatory drug (NSAID)-associated gastroduodenal
mucosal injury and eradicating H. pylori infection. Considering that PPIs are well tolerated and highly
effective, their use has increased dramatically [15]. As their use increases, the concern about the risk of
potential adverse effects also increases [16]. PPIs may increase the risk of Clostridium difficile infection
in the colon [17]. Long-term PPI use may increase the risk of osteoporosis-related fractures of the hip,
wrist, and spine [18]. PPIs’ inhibitive effects of gastric acid secretion affect mineral bioavailability,
resulting in the decreased intestinal absorption of calcium, magnesium, and iron [19–21]. Prolonged
PPI use also reduces vitamin B12 (cyanocobalamin) absorption [22]. Moreover, studies of patients with
long-term PPI medication showed an increased risk of heart attack [23]. The association between PPI
use and the risk of pneumonia, kidney disease, and dementia has also been identified [24].

Indeed, the use of PPIs is associated with the increased risk of gastric cancer and hepatocellular
carcinoma [25–28]. An association between PPI use and the risk of colorectal cancer was also
reported [29]. Given that PPI use is associated with the increased risk of several cancers, the
carcinogenic effects of PPIs have been investigated. In addition, PPI use is associated with the potential
increased risk of pancreatic cancer [30].

However, only few studies investigating the association between PPI use and risk of pancreatic
cancer have been published, reporting equivocal results. Therefore, in this meta-analysis, we aimed to
investigate the association between PPI use and the risk of pancreatic cancer.

2. Materials and Methods

2.1. Search Strategy

We conducted a literature search to retrieve articles concerning the association between PPI
use and the risk of pancreatic cancer between November 2018 and April 2020 (last date searched).
We searched in the following four databases: PubMed, SCOPUS, Cochrane library and Google scholar.
The keywords used for literature search were: “proton pump inhibitor” OR “proton pump inhibitors”
OR “PPI” OR “PPIs” AND “pancreatic cancer” OR “pancreatic neoplasm” OR “pancreatic ductal
adenocarcinoma” OR “pancreatic adenocarcinoma”.

Following the inclusion and exclusion criteria, three authors (HEH, ASK, and MRK) independently
searched the literature and extracted eligible articles. Articles written only in English were selected,
while the duplicated articles were eliminated. After the irrelevant articles were excluded by screening
the titles and abstracts, the full-text articles of the remaining articles were reviewed, and the required
information was then collected. Thereafter, we exported the results to a reference manager (EndNote)
file. In the case of discrepancy, we consulted another author (HJK) and determined the final decision
by mutual discussion. To identify any other relevant articles, we also searched the references of each
article. This meta-analysis conformed to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement [31].

2.2. Study Selection

The inclusion criteria were as follows: (1) human studies; (2) case–control or retrospective cohort
studies; (3) studies reporting or containing the association between PPI use and the risk of pancreatic
cancer; (4) studies reporting the incidence or prevalence of pancreatic cancer; (5) studies providing
available data to calculate the odds ratio (OR) or hazard ratio (HR) with 95% confidence intervals (CI),
with P values; and (6) articles written in English.

Conversely, the exclusion criteria were as follows: (1) duplicated articles; (2) abstracts, case reports,
comments, and reviews; (3) in vivo studies (animal study) and in vitro studies (experimental study
designs in laboratory settings); (4) studies regarding the mortality or survival rate of pancreatic cancer
in patients who had used PPIs; (5) other languages; and (6) studies without relevant data.
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2.3. Data Extraction

For the meta-analysis, we extracted data regarding the PPI exposure and pancreatic cancer
incidence from each study. We double-checked all studies and resolved the differences by discussion
and consensus. For each study, the following information was recorded: publication details (including
the name of the first author and the year of publication), country of publication, study design,
characteristics of the studied population (including mean age and ratio of sex), outcome (including OR
and 95% CI), the diagnostic criteria of pancreatic cancer, and the definition of PPI exposure.

For the early undiagnosed pancreatic cancer symptoms that often present as nonspecific abdominal
symptoms, PPIs may have been administered to alleviate these symptoms. Hence, to reduce protopathic
bias, we excluded pancreatic cancer cases that were diagnosed within 1 or 2 years after PPI exposure
in six of the selected articles [30,32–36]. In agreement with this decision, we extracted the data of
long-term users in Kearns et al. [37].

2.4. Quality Assessment

Using the Newcastle–Ottawa Scale (NOS) [38], we assessed the methodological quality of the
studies. The NOS contains eight items, which are categorized into the following three parts: selection,
comparability, and outcome (on cohort studies) or exposure (on case–control studies). The score of
NOS ranges from 0 to 9 stars. NOS has no definite cutoff value that defines a high-quality study. In
this meta-analysis, the mean value of the selected studies was 7.1. Therefore, we defined >7 stars as a
high-quality study in this analysis.

2.5. Statistical Analysis

Using the DerSimonian–Laird method, we employed the random-effects model to estimate the
summary OR and 95% CI [39], which were both calculated to assess the risk of pancreatic cancer
from PPI exposure. The heterogeneity among the studies was assessed using the p value of the
χ2-based Cochrane Q tests and the inconsistency score (I2). The heterogeneity test addressed the
null hypothesis that all studies in the meta-analysis share a common effect size. A significant χ2 test
result (p < 0.05) indicated a significant heterogeneity. The high, moderate, low, and no heterogeneity
corresponded to the I2 values of ≥75, 50–74, 25–49, and <25%, respectively. Potential publication bias
was evaluated using Begg’s funnel plot and Egger’s regression test [40]. Begg’s funnel plot is a scatter
plot with an effect size on the horizontal axis and the sample size or variance on the vertical axis.
To detect publication bias, we checked the asymmetry of distribution in the funnel plot displaying the
relationship between study size and effect size. Meanwhile, the degree of asymmetry was assessed by
Egger’s test; p < 0.05 indicated a statistically significant publication bias. All analyses were conducted
using the Comprehensive Meta-Analysis version 2.2.064, and the statistically significant level was 0.05.

3. Results

3.1. Selected Studies

Through database search and the reference list, we identified the first 163 potentially relevant
articles: PubMed, n = 33; SCOPUS, n = 106; Cochrane library, n = 12; and Google scholar, n = 12.
After removing the duplicates, we identified 123 studies. After screening the titles and abstracts, we
excluded 109 articles because they were considered irrelevant articles. After performing a full-text
review of the 14 remaining articles, we excluded one article which had no full-text; two articles which
were meta-analysis; and one article which had a different outcome. Ultimately, 10 studies met the
inclusion criteria, and thereby were considered as eligible. Figure 1 presents a flow chart of the
literature identification process.
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Figure 1. Flow diagram of the literature search and selection of studies for the meta-analysis.

Of these 10 studies, seven were case–control studies, and three were cohort studies. They were
published between 2012 and 2020 in six countries. Three studies were conducted in the UK [36,37,41],
two in the USA [32,42], two in Taiwan [30,33], one in Korea [35], one in Denmark [34] and one in
Sweden [43]. The follow-up duration was between 5 and 20 years. The meta-analysis then included
948,782 subjects. All studies contained both men and women, and the mean age ranged from 57.3 years
to 71.1 years. All selected studies obtained results that indicate an association between PPI exposure
and pancreatic cancer incidence. The diagnosis of pancreatic cancer was based on the ICD codes in six
studies [30,32,33,35,42,43], medical record code in two studies [36,37], and histological verification of
PDA in two studies [34,41]. Stratified analysis according to the PPI dose and duration was performed
in five studies [32–36] and in the five other studies [32,33,36,37,43], respectively, although they all used
a different cutoff value of dose and duration. In six studies, pancreatic cancer cases that developed
within 1 or 2 years after PPI introduction were excluded because PPI was probably used to help in
treating and diagnosing cancer-associated symptoms [30,32–36]. Table 1 lists the clinical characteristics
of the included studies.
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Table 1. Baseline characteristics of included studies.

Study
(Author,

Year)

Study
Design Country Period of

Recruitment

No. of Study
Population

(Case/Control)

Mean Age
(Years)

(Case/Control)

Percentage of
Males

(Case/Control)

Confounder Adjusted
in the Multivariate

Analysis

Quality
Assessment

(NOS)

Brusselaers N,
2020 Cohort Sweden 2005–2012 796492 NA 41.5

Age, indications for
gastric acid suppressive

therapy, diabetes
8

Lee JK,
2020 Case–control USA 1996–2016 567/4870 67.8/67.3 50.6/ 51.5

Chronic alcohol
consumption, smoking,
BMI, family history of

each cancer, cystic
fibrosis, chronic

pancreatitis, diabetes
mellitus, pancreatic

cysts

8

Peng YC,
2018 Case–control Taiwan 2006–2011 1087/1087 68.3/67.4 60.9/59.8

Age, chronic
pancreatitis, biliary tract

disease
6

Hicks B,
2018 Case–control Denmark 2000–2015 6921/34605 NA NA

Diabetes,
alcohol-related disease,

COPD, chronic
pancreatitis, gallstones,

peptic ulcer,
Helicobacter pylori

infection, hepatitis B
and C infection, use of

low-dose aspirin,
NSAIDs, statins, HRT,
CCI, highest achieved

education

7

Hwang IC,
2018 Cohort Korea 2002–2013 453655 NA 53.5

Age, BMI, smoking,
alcohol, drinking,
physical activity,
diabetes, chronic

pancreatitis, CCI, SES

9

Kearn MD,
2017

Nested
case–control,

Cohort
UK 1995–2013 4113/16072 70.9/71.1 51.4/51.1 Diabetes, smoking,

alcohol, obesity 6

Boursi B,
2017 Cohort UK 1995–2013 19146 62.7 53.6 NA 9

Lai SW,
2014 Case–control Taiwan 2000–2010 977/3908 68.38/68.11 60.59/60.59

Acute pancreatitis,
chronic pancreatitis,

diabetes, obesity, H2RA,
statin, non-statin lipid

lowering, both ASA and
COX2i

6

Bosetti C,
2013 Case–control

USA,
Canada,

Australia
56/51 NA 56.5/56.6 NA 5

Bradley MC,
2012 Case–control UK 1995–2006 1141/7954 57.3 533.7

Smoking, BMI, alcohol,
history of chronic

pancreatitis, use of other
drugs (NSAIDs,

steroids, HRT), diabetes,
prior cancer

7

Abbreviations: NOS, Newcastle–Ottawa scale; BMI, body mass index; COPD, chronic obstruction pulmonary
disease; HRT, hormone replacement therapy; CCI, Charlson comorbidity index; SES, socioeconomic status; NA, not
applicable; H2RA, histamine-2 receptor antagonists; ASA; aspirin; COX2i; cyclooxygenase-2 inhibitor.

3.2. PPI Use and the Risk of Pancreatic Cancer

Using the random-effects model, the meta-analysis of 10 studies revealed that PPI use was
significantly related to pancreatic cancer risk (OR = 1.698, 95% CI: 1.200–2.402). The log odds ratio also
showed that PPI use had a significant association with the risk pancreatic cancer (log OR = 0.529, 95%
CI: 0.182–0.876), with a substantial heterogeneity (I2 = 98.75%, p < 0.001). Figure 2 illustrates the main
result of the meta-analysis using the random-effects model.
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Figure 2. Forest plot of the association of proton pump inhibitors (PPIs) and the risk of pancreatic cancer.

3.3. Sensitivity Analysis

To estimate the accuracy and robustness of the pooled effect size, we conducted sensitivity analysis
by excluding each study one by one. According to the pooled OR of each analysis, PPI use was
positively associated with the risk of pancreatic cancer, demonstrating statistical significance (Table 2).

Table 2. Sensitivity analysis by excluding each study one-by-one.

Excluded Study
(Author,year)

Observed
OR

Effect Size and 95% Confidence Interval Test of Null (Two-Tailed)
Mean OR without

This Study Lower Limit Upper Limit z-Value p-Value

Brusselaers N,
2020 2.220 1.641 1.049 2.567 2.171 0.030

Lee JK, 2020 1.220 1.759 1.217 2.540 3.008 0.003

Peng YC, 2018 1.690 1.698 1.163 2.479 2.740 0.006

Hicks B, 2018 1.040 1.754 1.214 2.535 2.992 0.003

Hwang IC, 2018 1.250 1.800 1.273 2.545 3.328 0.001

Kearn MD, 2017 1.850 1.678 1.120 2.516 2.507 0.012

Boursi B, 2017 1.510 1.720 1.184 2.497 2.849 0.004

Lai SW, 2014 9.280 1.405 1.062 1.859 2.379 0.017

Bosetti C, 2013 1.160 1.761 2.223 2.535 3.043 0.002

Bradley MC, 2012 1.020 1.799 1.245 2.600 3.125 0.002

3.4. Subgroup Analysis

Subsequently, a series of subgroup analyses that examined the robustness of the result and
explored potential sources of heterogeneity were conducted according to the study characteristics such
as study design, quality of study, counties of publication, and PPI type. A positive association was
consistently observed, regardless of these characteristics (Table 3).
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Table 3. Subgroup analysis according to study design, quality, country, and type of drugs.

Subgroup No. of Studies
Effect Size and 95% Confidence Interval Test of Null (Two-Tailed)

OR Lower Limit Upper Limit z-Value p-Value

Study design
Case–control 7 1.725 1.005 2.959 1.978 0.048

Cohort 3 1.647 1.134 2.392 2.620 0.009

Quality of study
High (NOS > 7) 4 1.534 1.081 2.176 2.394 0.017
Low (NOS ≤ 7) 6 1.824 1.005 3.312 1.975 0.048

Countries
Asia 3 2.705 0.751 9.746 1.522 0.128

Western 7 1.388 0.996 1.934 1.934 0.053

Type of drugs
Omeprazole 3 2.113 0.697 6.411 1.322 0.186
Pantoprazole 3 2.524 0.484 13.156 1.099 0.272
Lansoprazole 3 2.985 0.771 11.556 1.584 0.113
Rabeprazole 2 5.401 1.984 14.703 3.301 0.001

Esomeprazole 3 2.583 0.475 14.056 1.098 0.272

As mentioned, seven and three of the 10 studies were case–control and cohort studies. According
to the study design, the summary effect of case–control studies was significant, with an OR of 1.725 (95%
CI: 1.005–2.959, p = 0.048) compared with 1.647 (95% CI: 1.134–2.392, p = 0.009) of the cohort studies.

In this meta-analysis, studies with seven to nine stars are considered high quality (n = 4), whereas
those with <6 stars are considered low quality (n = 6). With stratification by the quality of study,
PPI use demonstrated a statistically significant positive association with the risk of pancreatic cancer,
irrespective of the scale of quality. The effect size was 1.534 (95% CI: 1.081–2.176, p = 0.017) in
high-quality studies and 1.824 (95% CI: 1.005–3.312, p = 0.048) in low-quality studies.

We also conducted a subgroup analysis by countries of publication. Of the 10 studies, three were
published in Asian countries (Taiwan and Korea), and seven were published in Western countries
(Europe and USA). With stratification by countries, both groups demonstrated a positive association
between PPI exposure and pancreatic cancer incidence. The summary effect OR for the subgroup
analysis of studies in Asian countries was 2.705 (95% CI: 0.751–9.746), whereas that in Western countries
was 1.388 (95% CI: 0.996–1.934).

According to PPI type, three of the 10 studies showed stratified results. The PPIs used in the studies
were omeprazole, pantoprazole, lansoprazole, rabeprazole, and esomeprazole. This subgroup analysis
showed the significant association between PPI use and pancreatic cancer risk. The OR of pancreatic
cancer was 2.113 (95% CI: 0.697–6.411), 2.524 (95% CI: 0.484–13.156), 2.985 (95% CI: 0.771–11.556), 5.401
(95% CI: 1.984–14.703), and 2.583 (95% CI: 0.475–14.056) on omeprazole, pantoprazole, lansoprazole,
rabeprazole, and esomeprazole, respectively.

To clarify the association between PPI exposure and pancreatic cancer risk, we analyzed the
dose–response and duration–response data. Of the 10 studies, five showed dose–response results,
while the other five showed duration–response results. However, each study presented a different
cutoff value of dose and duration. Therefore, we could not perform the subgroup analysis for both
dose and duration of PPI.

3.5. Publication Bias

To detect publication bias, we employed the Egger’s regression and created the Begg’s funnel
plots. As showed in Figure 3, the distribution of studies on both sides was relatively symmetric,
indicating that our meta-analysis had no possible bias (p = 0.840). When four studies were added using
Duval and Tweedie’s trim-and-fill methods, the adjusted OR was 2.243 (95% CI: 2.179–2.308); hence,
the impact of this bias was probably trivial.



Cancers 2020, 12, 2220 8 of 14

Cancers 2020, 12, x 8 of 14 

 
Figure 3. Funnel plot and Egger’s regression intercept. 

4. Discussion 

This meta-analysis aimed to elucidate that the use of PPIs, one of the widely used medications 
for treating gastrointestinal disorders, has a possibility to increase the risk of pancreatic cancer. This 
study is meaningful in concluding the results of the prior observational studies. It analyzed 10 studies, 
which included a total of 948,782 patients, by using a random-effects model and showed that PPI 
exposure was associated with a high pancreatic cancer risk of 69.8%. 

This result could be supported by some theories whereby the PPIs may influence pancreatic 
cancer [44]. Indeed, several mechanisms have suggested that PPIs have potential carcinogenic effects 
in pancreatic cancer. Such effects include the increased production of gastrin and the effects of gastric 
hypoacidity on microbes. 

4.1. Increased Production of Gastrin 

The first mechanism—that is, increased gastrin production—has a carcinogenic effect on 
pancreatic cancer pathophysiology. Gastrin is produced in neuroendocrine G cell in the antrum and 
acts physiologically as a hormone to stimulate acid secretion. As the released gastrin binds to CCK2 
receptors on enterochromaffin-like (ECL) cells, ECL cells secrete histamine, which binds to H2 
receptor on parietal cells and stimulates acid secretion [45]. Furthermore, the gastrin–CCK receptor 
stimulates gastric epithelial cell migration, fibroblast growth factor release, and protein kinase 
pathway activation [46]. Gastrin is associated with the development and progression of 
gastrointestinal malignancies, including gastric cancer and colorectal cancer [47,48]. Indeed, gastrin 
is related to pancreatic cancer tumorigenesis. PPIs inactivate the H+/K+ ATPase (proton pump) on 
parietal cells in the stomach; thus, gastric acid secretion is reduced. Gastric acid suppression creates 
a strong stimulus for gastrin production in G cells, resulting in hypergastrinemia [49]. In addition, 
human pancreatic cancer cells express gastrin receptors [50]. Through the gastrin receptor, gastrin 
stimulates the growth of human pancreatic cancer cells [51–53], as shown in cultures and tumors 
transplanted in nude mice [51]. Moreover, the following also supports the effects of gastrin as a 
growth factor for pancreatic cancer. The specific gastrin-receptor antagonist L-365,260 blocks the 
stimulation of cell replication by gastrin, thereby inhibiting pancreatic cancer cell growth [51]. 
Additionally, the gastrin-receptor antagonist gastrazole (JB95008) increased the survival time of 
pancreatic cancer compared with placebo [54]. In patients with pancreatic cancer, responders to 
gastrin-17-diphtheria toxoid immunogen (G17DT), which is an anti-gastrin antibody, showed a 
significantly longer survival than antibody non-responders [55,56]. 

Figure 3. Funnel plot and Egger’s regression intercept.

4. Discussion

This meta-analysis aimed to elucidate that the use of PPIs, one of the widely used medications for
treating gastrointestinal disorders, has a possibility to increase the risk of pancreatic cancer. This study
is meaningful in concluding the results of the prior observational studies. It analyzed 10 studies, which
included a total of 948,782 patients, by using a random-effects model and showed that PPI exposure
was associated with a high pancreatic cancer risk of 69.8%.

This result could be supported by some theories whereby the PPIs may influence pancreatic
cancer [44]. Indeed, several mechanisms have suggested that PPIs have potential carcinogenic effects
in pancreatic cancer. Such effects include the increased production of gastrin and the effects of gastric
hypoacidity on microbes.

4.1. Increased Production of Gastrin

The first mechanism—that is, increased gastrin production—has a carcinogenic effect on pancreatic
cancer pathophysiology. Gastrin is produced in neuroendocrine G cell in the antrum and acts
physiologically as a hormone to stimulate acid secretion. As the released gastrin binds to CCK2
receptors on enterochromaffin-like (ECL) cells, ECL cells secrete histamine, which binds to H2
receptor on parietal cells and stimulates acid secretion [45]. Furthermore, the gastrin–CCK receptor
stimulates gastric epithelial cell migration, fibroblast growth factor release, and protein kinase pathway
activation [46]. Gastrin is associated with the development and progression of gastrointestinal
malignancies, including gastric cancer and colorectal cancer [47,48]. Indeed, gastrin is related to
pancreatic cancer tumorigenesis. PPIs inactivate the H+/K+ ATPase (proton pump) on parietal cells
in the stomach; thus, gastric acid secretion is reduced. Gastric acid suppression creates a strong
stimulus for gastrin production in G cells, resulting in hypergastrinemia [49]. In addition, human
pancreatic cancer cells express gastrin receptors [50]. Through the gastrin receptor, gastrin stimulates
the growth of human pancreatic cancer cells [51–53], as shown in cultures and tumors transplanted
in nude mice [51]. Moreover, the following also supports the effects of gastrin as a growth factor
for pancreatic cancer. The specific gastrin-receptor antagonist L-365,260 blocks the stimulation of
cell replication by gastrin, thereby inhibiting pancreatic cancer cell growth [51]. Additionally, the
gastrin-receptor antagonist gastrazole (JB95008) increased the survival time of pancreatic cancer
compared with placebo [54]. In patients with pancreatic cancer, responders to gastrin-17-diphtheria
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toxoid immunogen (G17DT), which is an anti-gastrin antibody, showed a significantly longer survival
than antibody non-responders [55,56].

As gastrin binds to CCK-2 receptor, the stimulated CCK-2 receptor activates several kinases and
signaling pathways that are related to pancreatic adenocarcinoma upregulation [57]; some of them are
the JAK2/STAT3 pathway [58], Src-related tyrosine kinases, and p125FAK, which play a crucial role in
gastrin effects [59]. Recently, alphaV integrin, which is a new gastrin target gene in human pancreatic
cancer cells, has been identified [60].

4.2. Bacterial Overgrowth and Nitrosamine

The second mechanism is that microbe overgrowth according to gastric hypoacidity induces
nitrosation. The association between nitrosamine and cancer was previously investigated, particularly
in the cancer of the stomach, esophagus, nasopharynx, urinary bladder, and colon [61,62]. Exposure to
N-nitroso compounds (NOCs) or endogenous formation produces nitrosamine. One may be exposed
to NOCs through diet, certain occupational exposure, tobacco products, cosmetics, pharmaceutical
products, and agricultural chemicals. Nitrosamine could also be produced endogenously through
acid-catalyzed N-nitrosation at acidic gastric conditions (<pH 2.5) or through bacterially catalyzed
N-nitrosation at gastric pH increases from 5 to 8 [63,64]. Moreover, nitrosamine delivered by smoking
and dietary sources, especially smoked and processed meat, has carcinogenic effects in pancreatic
cancer [11,65]. Gastric hypoacidity favors the overgrowth of nitrate-reducing bacteria in the stomach [66].
The nitrate-reducing bacteria convert nitrate into nitrite, leading to the reduction of luminal nitrate
and the rapid production of nitrite. Faster nitrosation of luminal amines triggers the production of
potentially carcinogenic N-nitrosamines in the lumen [66]. Pancreatic ductal adenocarcinomas have
been found in nitrosamine-exposed mice and human pancreatic cells (in vitro) [67]. N-nitrosamine
carcinogens attribute DNA damage by forming methyl and 2-hydroxypropyl adducts. Indeed, they are
linked to the synthesis and replication of adduct-bearing DNA, particularly in the pancreatic ductular
epithelium [68,69].

Furthermore, secretin acts as a carcinogen of pancreatic cancer. PPIs could induce the increase
in secretin levels, consequently affecting pancreatic cell growth. Chronic secretin stimulation and
NOC exposure potentially overwhelm DNA repair capabilities, acting synergistically to induce tumor
development [70].

Histamine-2-receptor antagonist (H2RA), an anti-acid agent similar to PPIs, induces
hypergastrinemia and hypoacidity; hence, H2RA is also reportedly associated with pancreatic cancer;
the studies are still underway [36].

4.3. The Biological Link Between PPI Use and Other Cancers

These mechanisms suggesting a biological link between PPI use and cancer risk have been found
in other cancers [71]. In addition, gastrin and cancer correlation has been demonstrated in gastric,
colorectal, and hepatocellular cancers [47,72–75]. Gastrin is associated with gastric cancer proliferation
by an autocrine mechanism [73]. It is also expressed in liver tumor; this expression may be associated
with tumor proliferation [74]. Indeed, tumor induction by endogenously formed N-nitrosamine is also
found in these cancers [29,76]. These findings support the carcinogenic effects of PPIs, and further
studies are required to investigate this association.

4.4. Data Interpretation

In this meta-analysis, the significant association of PPI use and pancreatic cancer risk was
maintained in the sensitivity analysis, which excluded each study separately. In addition, the effect
size in the subgroup analysis based on the type of study design, quality of study, and country of
publication was also statistically significant. Interestingly, in the subgroup analysis based on PPI
type, only rabeprazole showed a significant association between PPI use and pancreatic cancer risk.
The reason could be that the number of studies (two studies) concerning rabeprazole was less than
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that in other PPI types, both studies were conducted in the same country, and one of these studies in
particular had a very high OR. Otherwise, the peculiar pharmacodynamics that rabeprazole has the
highest pKa could explain this result. The pKa is the pH at which 50% of the drug becomes ionized
(protonated). According to the Henderson–Hasselbalch equation, the amount of drug ionized form,
which cannot cross cell membranes and results in drug accumulation, depends on the pKa at a given
pH. The pKa of the PPIs ranges from approximately 4.0 for omeprazole to around 5.0 for rabeprazole.
Therefore, at any given pH, rabeprazole accumulation within the parietal cells would be approximately
tenfold that for omeprazole. Given its higher pKa, rabeprazole is activated over a wider pH range;
consequently, it is converted into the active metabolite more efficiently. Their accumulation in the
parietal cell or acid-induced activation of the PPI prodrug contributes to faster onset and greater gastric
acid suppression compared with the other PPIs [77,78].

4.5. Limitations

However, this meta-analysis has several limitations. First, each study was inconsistent in defining
the dose and duration of PPIs. Regarding the dose, one study used “pills/day” [32], whereas four
studies used “defined daily dose (DDD)” as a unit [33–36]. Moreover, the cutoff value of dose was
different in each study. For instance, Peng et al. used <30, 30–65, 65–150, and >150 DDD [33], whereas
Hicks et al. used 1–99, 100–499, 500–999, 1000–2000, and >2000 DDD [34], as cutoff values. Considering
the carcinogenic effect of PPIs on cancer, the risk of pancreatic cancer could be increased when using
high-dose or long-term PPIs. If with some uniform measurement, we could conduct the dose- or
duration-response analysis to evaluate the linear relationship, which helps quantify the association.
Second, a significant heterogeneity was found in this meta-analysis. Moreover, the inconsistent cutoff

value of dose and duration that we mentioned above could contribute to this heterogeneity. Hence,
we used a random-effects model that considers the average effect size as the estimated mean value
of the distribution of effect sizes for heterogeneous populations. Third, this meta-analysis included
only 10 studies for the final analysis, thus the statistical power might not be enough to draw a definite
conclusion. Fourth, this meta-analysis included only studies published in English, and small studies
with cumulative results tend not to be published, resulting in potential bias.

Despite these limitations, this meta-analysis is meaningful for assessing the effect of PPIs, which
are commonly used in clinical trials, on its relationship with pancreatic cancer with high mortality.

5. Conclusions

In conclusion, PPI use may be associated with the increased risk of pancreatic cancer. Therefore,
medical professionals should carefully consider the prescription of PPIs for patients with a high risk of
pancreatic cancer.
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