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Gastric carcinoma (GC) is a severe tumor of the digestive tract with high morbidity and
mortality and poor prognosis, for which novel treatment options are urgently needed.
Compound Kushen injection (CKI), a classical injection of Chinese medicine, has been
widely used to treat various tumors in clinical practice for decades. In recent years,
a growing number of studies have confirmed that CKI has a beneficial therapeutic
effect on GC, However, there are few reports on the potential molecular mechanism
of action. Here, using systems pharmacology combined with proteomics analysis as a
core concept, we identified the ceRNA network, key targets and signaling pathways
regulated by CKI in the treatment of GC. To further explore the role of these key
targets in the development of GC, we performed a meta-analysis to compare the
expression differences between GC and normal gastric mucosa tissues. Functional
enrichment analysis was further used to understand the biological pathways significantly
regulated by the key genes. In addition, we determined the significance of the key
genes in the prognosis of GC by survival analysis and immune infiltration analysis.
Finally, molecular docking simulation was performed to verify the combination of CKI
components and key targets. The anti-gastric cancer effect of CKI and its key targets
was verified by in vivo and in vitro experiments. The analysis of ceRNA network of
CKI on GC revealed that the potential molecular mechanism of CKI can regulate
PI3K/AKT and Toll-like receptor signaling pathways by interfering with hub genes such
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as AKR1B1, MMP2 and PTGERR3. In conclusion, this study not only partially highlighted
the molecular mechanism of CKI in GC therapy but also provided a novel and advanced
systems pharmacology strategy to explore the mechanisms of traditional Chinese
medicine formulations.

Keywords: compound Kushen injection, gastric cancer, ceRNA network, system pharmacology, meta-analysis

INTRODUCTION

Gastric carcinoma (GC) is a malignant tumor of the digestive
system that poses a serious threat to human health (Ajani et al.,
2017). According to the statistics of International Agency for
Research on Cancer, there were about 1.08 million new cases
of gastric cancer worldwide in 2020, and about 0.77 million of
people die from gastric cancer (Bray et al., 2018; Sung et al.,
2021). The morbidity and mortality of GC have declined sharply
in recent decades in some Western countries, while it is still
relatively high in East Asia and represents a significant medical
burden (Ferro et al., 2014; Torre et al., 2015). Among the factors
that increase the risk of human GC, Helicobacter pylori gastric
infection plays a vital role, and 75% of GC cases worldwide are
caused by Helicobacter pylori infection (Plummer et al., 2015).
Although early stage GC is highly treatable, the median survival
time of advanced GC is only 9–10 months. Unsatisfactorily,
the global 5-year survival rate of patients is still less than 30%
(Verdecchia et al., 2007). The combination of different forms
and different drugs of chemotherapy, radiotherapy and surgery
are common treatment methods to treat GC (Coccolini, 2016).
However, because of the internal metastasis and changes of the
tumor, the heterogeneity of different patients and the side effects
of radiotherapy and chemotherapy, patients’ options in clinical
practice are minimal (Ajani et al., 2017).

Compound Kushen injection (CKI), also called Yanshu
injection, consists of Kushen (Radix Sophorae flavescentis) and
Baituling (Rhizoma Smilacisglabrae) (Zhao et al., 2014). CKI has
been adopted clinically for a decade to treat various solid tumors,
including GC, liver cancer, lung cancer, breast cancer and other
cancers (Xu et al., 2011; Sun et al., 2012; Wang et al., 2015).
It is worth mentioning that CKI can also relieve cancer pain,
regulate immunity, and improve conventional chemotherapy to
reduce tumor efficacy and chemotherapy toxicity (Tu et al.,
2016; Yang et al., 2020). The anti-tumor effect of CKI has been

Abbreviations: ceRNA, competing endogenous RNA; CI, confidential interval;
CKI, Compound Kushen injection; DEMs, differentially expressed miRNAs;
ECM, extracellular matrix; EMT, epithelial-tomesenchymal transition; GC, gastric
carcinoma; GEO, Gene Expression Omnibus; GMP, Good Manufacturing Process;
GO, Gene Ontology; GS, Gene Significance; KEGG, Functional and Kyoto
Encyclopedia of Genes and Genomes; lncRNA, long noncoding RNA; M, mean;
ME, Module eigengene; miRNA, microRNA; MM, Module Membership; ncRNA,
noncoding RNA; NMPA, Chinese Medicine Administration of China; PDB,
Protein Data Bank; SD, standard deviation; STITCH, Search Tool for Interactions
of Chemicals; SMD, standardized meta-difference; STRING, Search Tool for the
Retrieval of Interacting Genes/Proteins; PPI, protein-protein interaction; TAMs,
tumor-associated macrophages; TCGA, The Cancer Genome Atlas; TCMSP,
Traditional Chinese Medicine Systems Pharmacology Database and Analysis
Platform; TOM, Topological Overlap Measure; WGCNA, weighted gene co-
expression network analysis.

confirmed while the underlying molecular mechanism is still
poorly understood.

Molecular studies have provided a vast quantity of new
information for potential mechanisms to use in cancer
treatment. Microarray and high-throughput sequencing
technologies provide a reliable guarantee for the deciphering
of significant genetic or epigenetic alterations in carcinogenesis
and the discovery of potential biomarkers for cancer diagnosis,
treatment, and prognosis (Cancer Genome Atlas Research
Network, 2014). MicroRNA (miRNA) and long noncoding RNA
(lncRNA) are the two most common subtypes of noncoding
RNA (ncRNA). Their abnormality leads to the inability of mRNA
to be transcribed normally and may contribute to unhindered
growth, and invasion of cancer cells (Schmitt and Chang, 2016;
Rupaimoole and Slack, 2017). At present, studies have confirmed
that the lncRNA-miRNA-mRNA network plays a vital role in
the occurrence and development of cancer, which may have
substantial clinical prospects for identifying potential biomarkers
and therapeutic targets of various tumors (Liu et al., 2019, 2020).

Thus, in this study, we firstly analyzed the microarray
dataset in the Gene Expression Omnibus (GEO) database and
The Cancer Genome Atlas (TCGA) to find miRNAs that are
differentially expressed in GC compared to normal tissues.
Secondly, we applied weighted gene co-expression network
analysis (WGCNA) and merged with differentially expressed
miRNAs (DEMs) predicted targets to identify genes associated
with GC progression systematically. Afterward, we undertake
a systematic study of the molecular mechanism of CKI in the
treatment of GC using a network pharmacology analytical model
and proteomics analysis. Drawing on the above research, we
conducted a meta-analysis of key targets to verify their expression
changes in GC and conduct immune infiltration to explore their
prognostic impact on GC patients. At last, to better analyze and
predict the molecular mechanism of CKI on GC, enrichment
analysis, molecular docking and biological experiments were
exploited to discover and verify the involved pathways and the
binding of CKI components to key targets. Figure 1 depicts
a workflow of the advanced systems pharmacology strategy
used in this study.

MATERIALS AND METHODS

Detection of Ingredients in Compound
Kushen Injection
Compound Kushen injection (batch number: 20200329) was
supplied by Zhendong Pharmaceutical Co., Ltd. (Shanxi,
China). UPLC-QE-Orbitrap-MS Separation was performed on
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FIGURE 1 | The workflow of the advanced systems pharmacology strategy.

a Waters HSS T3 UPLC C18 analytical column (1.7 µm,
2.1 mm × 100 mm, Milford, MA, United States). The oven was
set at 40◦C; the injection volume was 5 µL; the flow rate was set
at 0.3 mL/min; the mobile phase was consisted of 0.1% formic
acid in water (A) and carbinol (B). The eluting program was:
5–5% B for 0–1 min, 5–95%B for 1–12 min, 95–95%B for 12–
15 min. The ion source was electrospray ionization (ESI); MS was
operated in positive mode; the scan mode was Full scan/ddMS2,
the scan range was 100–1200 Da; The capillary temperature was
350◦C; The spray voltage in negative mode was 3800 V; The spray
voltage in positive mode was 3200 V; The sheath gas was 35 arb;
The aux gas was 15 arb; three collision energies of low, medium
and high were used for MS2. The positive ion mode was 30,

40, 50 eV, and the negative ion mode was 30, 50, 70 eV. The
resolution of the full scan was 70000 FWHM, and the resolution
of MS2 was 17500 FWHM. The reference marker compounds
present in the sample were identified based on retention time, MS
fragmentation and UV spectra.

Construction of Compound Kushen
Injection Ingredient Prediction Target
Network
For a more profound and comprehensive study, we input the
3D structure of chemical composition in Traditional Chinese
Medicine Systems Pharmacology Database and Analysis Platform
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(TCMSP) (Ru et al., 2014), Search Tool for Interactions
of Chemicals (STITCH) (Szklarczyk et al., 2016), SuperPred
(Nickel et al., 2014), SwissTargetPrediction (Gfeller et al., 2014)
for target prediction. Moreover, the predicted multiple target
information of the compounds and the obtained information was
introduced into Cytoscape 3.6.1 (Franz et al., 2016)1 to obtain
an intermolecular interaction network and carry out complex
network analyses.

Differentially Expressed MicroRNA
Analysis and Target Prediction of Gastric
Carcinoma
Differential Expression of MicroRNAs in Gastric
Carcinoma
Microarray data for gene expression GSE23739 were downloaded
from the GEO database. A total of 80 samples were obtained,
including 40 primary tumors and 40 normal samples. After
the raw data has undergone background correction and
standardization, the Limma (Ritchie et al., 2015) R package was
applied to analyze the difference between cancer and normal
tissues. The miRNA-seq data in TCGA contains 446 tumor
samples and 45 normal samples. To verify and obtain DEMs, the
edgeR (Robinson et al., 2010) package was used to analyze the
difference between the groups.

Differentially Expressed MicroRNAs Target Genes
Prediction
MiRWalk2.0 (Dweep and Gretz, 2015) is a comprehensive
archive that fully integrates the interactions of multiple existing
miRNA target prediction databases and provides predictive and
experimentally verified miRNA target prediction. On the one
hand, the interactions between miRNAs and genes from 12
servers were speculated and only the genes predicted by more
than six of the servers were identified as target genes. On
the other hand, 5 servers using miRWalk, miRanda, PITA,
RNAhybrid and Targetscan were utilized to predict miRNA-
lncRNA targets.

Weighted Gene Co-expression Network
Analysis for Gastric Carcinoma mRNA
Data Collection and Preprocessing
The TCGA-STAD RNA-seq data includes 407 samples of
its HTSeq-Counts data and associated clinical information
downloaded in February 2020. After removing samples that
contained incomplete analytical data and/or other malignancies,
375 samples were retained. Because, some genes without
significant changes in expression between samples, we selected
the top 5000 genes that are most relevant to differential
expression for the following WGCNA analysis.

Weighted Gene Co-expression Network Analysis and
Module Preservation
The gene co-expression networks were constructed using
the WGCNA package (Langfelder and Horvath, 2008). The

1http://www.cytoscape.org/

similarity between gene expression profiles was used to construct
a similarity matrix based on pairwise Pearson correlation
coefficient matrices. To improve co-expression similarity and
achieve a scale-free topology, an appropriate soft threshold
power β was selected by using the integration function
(pickSoftThresshold) in the WGCNA software package (Jeong
et al., 2001). We also reconstructed the topological overlap matrix
by calculating the Topological Overlap Measure (TOM) which
is a robust measure of network interconnectedness (Li and
Horvath, 2007; Yip and Horvath, 2007). Finally, the Dynamic
Tree-Cut algorithm method was applied to identify the module of
gene co-expression with maxBlockSize of 6000, minModuleSize
of 30 and mergeCutHeight of 0.2.

Identification of Clinical Significant Modules
The module eigengene (ME) is the first principal component
of each gene module and the expression of ME is considered
representative of all genes in one module. The Module
Membership (MM) is the correlation between the ME and the
gene expression profile. Gene Significance (GS) is the absolute
value of the correlation between a specific gene and a clinical
trait. According to ME, GS, MM, we can associate modules with
clinical traits, not only to calculate the correlation between ME
and clinical traits, but also to analyze clinically vital modules
(Langfelder and Horvath, 2008).

Prediction of Competing Endogenous
RNA Network of Compound Kushen
Injection Intervention in Gastric
Carcinoma
To systematically describe GC-associated underlying molecular
mechanism, a competing endogenous RNA (ceRNA) network
was conducted by merging the predictive correlation of
DEMs and key modules in WGCNA. The target network
predicted for CKI active component was combined with the
ceRNA network of GC for CKI intervention in GC ceRNA
network prediction, and the overlapping proteins in the two
networks are likely to be the potential key gene for GC
treatment by CKI active ingredients. Cytoscape constructed
a potential ceRNA network for CKI treatment of GC, and
the potential targets for CKI treatment of gastric cancer were
systematically analyzed.

Functional Enrichment Analysis
To analyze the enrichment of key proteins, we first used the
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) 10.52 database to construct a protein-protein
interaction (PPI) network for key proteins (Szklarczyk et al.,
2017). The STRING database aims to collect, score, and integrate
all publicly available sources of protein–protein interaction
information, and to complement these with computational
predictions. Its goal is to achieve a comprehensive and objective
global network, including direct (physical) as well as indirect
(functional) -interactions. We performed the Gene Ontology

2https://string-db.org/
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(GO) Functional and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis for the predicted key
targets of CKI compounds used in GC therapy to identify their
biological functions. In addition, the R package clusterProfiler
was used to perform GO and KEGG functional enrichment
analysis. Particularly, the function and pathway enrichment
analyses of the validated target genes of miRNAs, were used
by the DIANA tool, which is based on the collaboration of the
previously mentioned database (TarBase v7.0) and mirPathv3.0
(a miRNA pathway analysis web server deciphering miRNA
function with experimental support) (Paraskevopoulou et al.,
2016; Vlachos and Hatzigeorgiou, 2017).

Comprehensive Meta-Analysis of the
Hub Gene
Data Collection
A microarray search for hub genes was conducted in
the GEO database with the following terms: (“stomach
neoplasms”[MeSH Terms] OR gastric cancer[All Fields]) AND
“Homo sapiens”[porgn] AND (“gse”[Filter] AND “Expression
profiling by array”[Filter]) and the latest searching time was April
5, 2020. The criteria for inclusion were as follows: (1) patients
diagnosed with gastric cancer were investigated; (2) cancerous
and noncancerous samples were involved; (3) datasets samples
were no less than 20. In addition, the following conditions
caused the exclusion of a study: (1) lack of original data; (2) the
patients with gastric cancer were accompanied by other tumors
(3) the interventions included surgery, radiotherapy or other
cancer treatments.

Statistical Analysis and Comprehensive
Meta-Analysis
The expression profiling information of the datasets were
exploited to calculate the mean (M) and standard deviation
(SD) for each hub gene in the experimental control group.
Then, the meta package of R software was brought into play
the standardized meta-difference (SMD) and 95% confidential
interval (CI) analysis. In addition to determining a reasonable
choice of random effects and fixed effects models and evaluate
heterogeneity, the chi-squared test of Q and the I2 statistic
were calculated.

Survival Analysis of Hub Genes
The correlation between hub gene expression and overall survival
was assessed using the Kaplan-Meier estimation method, based
on the “survival” package in R. A significant difference in survival
curves was assessed using a log-rank test. P value less than 0.05
was considered statistically significant.

Immune Infiltrates Analysis
TIMER3 is a database that can comprehensively study the
molecular characterization of tumor-immunity interactions. Not
only can the association between immune infiltrates and a variety
of factors be explored interactively, but also the dynamic analysis

3https://cistrome.shinyapps.io/timer/

and visualization of these associations can be performed using a
TIMER. In this study, we evaluated the hub gene expression in
GC and its correlation with the abundance of tumor-infiltrating
immune cells, via gene modules (Li et al., 2017).

Molecular Docking
Molecular docking can reflect the binding energetics of drug
molecules to protein receptors by calculating the binding
affinity between ligands and receptors and the corresponding
intermolecular interactions (Huang and Zou, 2010; Ferreira et al.,
2015). The crystal structure of the key gene was downloaded
from Protein Data Bank (PDB)4 database. The 3D protein crystal
structure had to be determined by X-ray crystallography and
the crystal resolution was less than 3 Å. The protein receptor
and ligand files were pre-processed by AutoDock Tools and then
Autodock vina was used for molecular docking (Trott and Olson,
2010; Forli et al., 2016). In addition, Pymol and Ligplot were used
to visualize the results to show the intermolecular interaction and
docking more clearly (Laskowski and Swindells, 2011; Mooers,
2016).

Cell Lines and Compound Kushen
Injection Administration
Human GC cell lines HGC-27 and BGC-823 were purchased
from Procell Life Science&Technology Co., Ltd. (Wuhan, China),
and cultured in RPMI-1640 medium (Corning, United States)
containing 10% fetal bovine serum (Corning, United States)
and 1% penicillin/streptomycin (Gibco, United States) in a
saturated humidity environment at 37◦C and 5% CO2. For CKI
incubation (Yang et al., 2020), CKI (total alkaloid concentration
of 25 mg/mL) was diluted with culture medium (CKI
concentrations: 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 mg/mL,
using the doubling dilution method, based on the total alkaloid
concentration in CKI).

Assessment of the Anticancer Effect of
Compound Kushen Injection in vivo
The Institute of Hydrobiology, Chinese Academy of Sciences,
provided normal AB wild-type zebrafish. The zebrafish were
raised and bred under the conditions recommended in The
Zebrafish Book: A guide for the laboratory use of zebrafish (Danio
rerio). The experiment was in accordance with the Animal
Management Rules of the Ministry of Science and Technology of
the People’s Republic of China for experimental care and use of
animals and approved by the Animal Ethics Committee of Beijing
University of Traditional Chinese Medicine.

According to the 1:1 ratio of males to females, healthy
adult zebrafish were arranged for natural spawning. Then,
zebrafish embryos were collected and cultured in a constant
temperature incubator at 28.5◦C for the construction of the
zebrafish xenograft GC model. Before tumor cell injection, the
GC cells HGC-27 were labeled using Cell Plasma Membrane
Staining Kit with DiO (Green Fluorescence) (Beyotime, China),
and incubated at 37◦C in the dark for 20 min. Then the

4https://www.rcsb.org/
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labeled cells were washed with PBS, and digested with trypsin.
Subsequently, the cells were resuspended in fresh RPMI-1640
medium (10% FBS, 1% PS) to prepare a cell suspension of 3× 106

cells/mL liquid. Larva zebrafish at 2 days post fertilization (dpf)
were randomly selected for microinjection. The labeled HGC-
27 cells were injected into the yolk sac of the zebrafish. After
24 h, the larva zebrafish were placed under a stereofluorescence
microscope (Axio Zoom.V16, Carl Zeiss) to observe and image
their tumors (63×) at 1 day post-injection (dpi).

The selected tumor-bearing zebrafish were randomly grouped
and placed in a 12-well plate with 10 embryos per well. CKI 150,
50, 25, 0 µg/mL (model group) and cisplatin 100 ng/mL (positive
control group) were given, respectively. Zebrafish embryo culture
water was used for drug preparation and dilution. The treated
zebrafish were incubated in a 31◦C incubator, and the drug was
changed every 24 h. With 4 dpi as the end point of the experiment,
the tumor-bearing zebrafish were photographed again with a
stereoscopic fluorescence microscope. The tumor fluorescence
area and fluorescence intensity in the zebrafish yolk sac area
were quantified by Image pro-Plus 6.0 software. Using the tumor
fluorescence area and integral optical density (IOD) at 1 dpi as a
starting point, the tumor growth rate was calculated.

tumour growth rate =
IOD (4 dpi)
IOD (1 dpi)

− 1

tumour growth rate =
Area (4 dpi)
Area (1 dpi)

− 1

Cell Viability Assay
The viability of HGC-27 and BGC-823 cells was detected by
Cell Counting Kit-8 (CCK-8, Dojindo, Japan) assay. Cells were
blown into single cell suspension (0.6 × 104 cells/mL) after
routine digestion and seeded in 96-wells plates (100 µL/well), and
cultured for 24 h, routinely. Then the cells were cultured with a
drug-containing medium for 24, 48, and 72 h, respectively. After
the drug treatment, the CCK-8 solution was added into 96-well
plates (10 µL/well) and incubated at 37◦C for 4 h. The optical
density (OD) was detected at 450 nm by using a microplate reader
(Molecular Devices, United States).

Proteomics Analysis
The BGC-823 cells after CKI intervention were used for Tandem
Mass Tag (TMT) labeling proteomics and Proteome Discoverer
1.4 software was performed for identification and quantitation
analysis. A detailed description of the method was shown in the
Supplementary Method 1.

Real-Time Quantitative PCR Analysis
RNA Easy Fast Cell Kit (Tiangen, China) was applied for total
RNA isolation according to the manufacturer’s instruction.
The quality of total RNA was accredited by SpectraMax
Quick Drop readers (Molecular Devices, United States). Of
the total RNA, 1 µg was used for cDNA synthesis following
the ReverTra Ace qPCR RT Kit (Toyobo, Japan) instruction.
RT-qPCR was performed to measure the relative expression
of mRNA, using SYBR Green Realtime PCR Master Mix

(Toyobo, Japan). GAPDH was used as a control and the 2−11Ct

method was conducted for the data analysis. The primer
sequence of target genes was synthesized as follows: human
AKR1B1 (fwd, 5′-CATGCAGAGGAACTTGGTGGTGAT-3′;
rev, 5′-TGTTGTAGCTGAGTAAGGTGGTCATATC-3′), human
PTGER3 (fwd, 5′-GGTAAACCCAAGGATCCAAGA-3′; rev,
5′-CATCAGTTGAGCACTGCAAGA-3′), human MMP2 (fwd,
5′-TACAGGATCATTGGCTACACACC-3′; rev, 5′-GGTCACAT
CGCTCCAGACT-3′), and human GAPDH (fwd, 5′-TGGAGTC
CACTGGCGTCTTCAC-3′; rev, 5′-TTGCTGATGATCTTGAG
GCTGTTGTC-3′).

Western Blot Assay
Cells were collected in RIPA lysis buffer and centrifuged at
12000 rpm and 4◦C for 20 min. The supernatants were preserved
and used for western blot assay. Total protein concentration was
gauged by BCA Protein Assay Kit (Solarbio, China). 10 µg of total
protein was mixed with 5× sample buffer, boiled at 99◦C for 5 min
and loaded onto 10% SDS-PAGE gels. Then the protein bands
were transferred onto NC membranes and blocked with 5%
non-fat milk for 2 h at room temperature. The NC membranes
with proteins were incubated with diluted primary antibodies
(Proteintech, China) at 4◦C overnight, including anti-AKR1B1
(1:1000), anti-PTGER3 (1:1500), anti-MMP2 (1:1000) and anti-
GAPDH (1:2000) antibodies. Then, membranes were incubated
with relative sources of secondary antibodies (1:5000) at room
temperature for 1.5 h. At last, the specific protein bands were
recognized with immobilon western chemiluminescent HRP
substrate (MilliporeSigma, United States). Image J software was
used for image analysis and the signals of specific proteins were
normalized to GAPDH or β-Tubulin.

Statistical Analysis
Data were presented as mean ± SD and statistical analysis was
performed with the two-tailed unpaired Student’s t-test using
GraphPad Prism 8.0 software. In all statistical analyses, statistical
significance was pinpointed by a single asterisk (∗: P < 0.05), two
asterisks (∗∗: P < 0.01).

RESULTS

Identification of Major Compounds in
Compound Kushen Injection by
UPLC-MS
In this study, 10 marker ingredients of CKI were identified
by UPLC-MS (Figure 2 and Table 1). Simultaneously, we also
supplemented the chemical ingredients by a literature research
(Ma et al., 2013; Wang et al., 2015). Finally, a total of 16
active ingredients in CKI were selected for the next in-depth
study, which included 9α-hydroxymatrine, adenine, baptifoline,
isomatrine, lamprolobine, piscidic acid and 10 compounds
detected by UPLC-QE-Orbitrap-MS chromatography, and the
three-dimensional structures of these active ingredients were
derived from PubChem database (Kim et al., 2016).
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FIGURE 2 | The UPLC-QE-Orbitrap-MS chromatography of CKI (A) and standard substances (B). 10 compounds were identified by UPLC-QE-Orbitrap-MS
chromatography, including oxysophocarpine, matrine, sophocarpine, sophoridine, oxynamatrine, N-methylcytisine, sophoranol, liriodendrin, trifolirhizin and
macrozamin.

Compound Kushen Injection-Predicted
Target Network
The active compound-predicted target network (Figure 3A)
consists of 301 nodes (16 compound points and 285 gene points)
that constitute 636 active compound-predicted target linkages.
Details of active compound-predicted targets can be viewed in
Supplementary Table 6.

Screening of Differential MicroRNA in
Gastric Carcinoma
In this study, GSE23739 and TCGA were adopted to analyze
the DEMs in GC. | log2FC| ≥ 1, P value < 0.05 and adjust
P value < 0.05 were considered statistically significant for
the DEMs. For GSE23739, a total of 13 up-regulated gene
and 15 down-regulated genes were found. Furthermore, there
are 107 up-regulated genes and 56 down-regulated genes in
the TCGA analysis (Figures 3B,C). Overlapping DEMs (hsa-
miR-20a, hsa-miR-30a, hsa-miR-21, hsa-miR-145) between the
GSE23739 and TCGA analysis were retained for further study.

From miRWALK2.0, 9431 mRNA and 31879 ncRNA targeted
by DEMs (hsa-miR-20a-3p, hsa-miR-20a-5p, hsa-miR-30a-3p,
hsa-miR-30a-5p, hsa-miR-21-3p, hsa-miR-21-5p, hsa-miR-145-
3p, hsa-miR-145-5p) in GC were predicted by more than half of
total algorithms (Supplementary Tables 1, 2).

Construction and Screening of Weighted
Gene Co-expression Network Analysis
Key Modules
After normalization, no outlier samples were eliminated in
the present study. To build a scale-free network, the power
of β = 6 (scale free R2 = 0.85) was chosen as the soft-
thresholding parameter (Figures 3D,F). A total of 9 modules were
identified via average linkage hierarchical clustering. Clinical
traits including vital status, new tumor events, cancer status,
pathologic T, pathologic N, pathologic M, stage, H pylori, barretts
esophagus were selected to calculate the correlation between
the module and Pearson test. Evaluated by Pearson test, if
P < 0.05, the module and clinical characteristics were considered
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TABLE 1 | Identified major compounds in CKI by UPLC-MS.

No. Rt (min) Theoretical value PPM Molecular Formula Structure Rresumption

1 0.729 204.12645 7.03 C15H22N2O2 Oxysophocarpine

2 1.075 248.18910 6.88 C15H24N2O Matrine

3 1.157 246.17360 7.16 C15H22N2O Sophocarpine

4 1.197 248.18896 7.29 C15H24N2O Sophoridine

5 1.970 264.18394 6.66 C15H24N2O2 Oxymatrine

6 5.609 218.10577 6.92 C12H16N2O N-methylcytisine

7 7.860 264.18395 6.77 C15H24N2O2 Sophoranol

8 9.920 742.25163 6.31 C34H46O18 Liriodendrin

9 10.746 446.12215 6.45 C22H22O10 Trifolirhizin

10 11.243 384.22630 2.96 C13H24N2O11 Macrozamin

statistically significant. As shown in Figure 3E, the blue, turquoise
and brown modules were highly correlated with clinical traits
and were identified as key modules. Figure 3G indicated the
topological overlap measurement (TOM) heat map of adjacency
or topological overlap. TOM plot was made up of randomly
selected 400 genes. Each row and column represented a module
and the genes of the module. The TOM of co-expressed RNA in
the key modules was high, and the internal RNA correlation was
also stronger. The network building the key modules was filtered
with a weight Cutoff = 0.1 between genes. The blue module
consists of 632 genes and 74485 gene linkages. The turquoise
module consists of 1239 genes and 126102 gene linkages and the
brown module consists of 232 genes and 11316 gene linkages
(Supplementary Tables 3–5).

Construction of Competing Endogenous
RNA Network of Compound Kushen
Injection Intervention in Gastric
Carcinoma
The intersection of the WGCNA key module network and the
hub DEMs prediction target constitutes the ceRNA Network of
the lncRNA-miRNA-mRNA Axis in GC. Moreover, the ceRNA
network and CKI-predicted target network were merged by
Cytoscape to obtain the prediction of the ceRNA network of
CKI intervention in GC (Figure 4A). As shown in Figure 4B,
the prediction of the ceRNA network of CKI intervention in
GC involved 73 nodes and 203 linkages between genes. The
overlapping targets (AKR1B1, TLR4, ESR1, PRKCQ, PIK3CD,
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FIGURE 3 | Network pharmacology analysis related to CKI and WGCNA analysis of GC. (A) Prediction target network of CKI component. Orange dots indicate the
components in CKI, and green dots indicate their predicted targets. (B) Volcano map of GSE23739 and TCGA. (C) Heat map of GSE23739 and TCGA.
(D) Soft-thresholding power analysis. R2 = 0.85. (E) Module-trait relationship. Each row corresponds to a ME, and each column corresponds to a clinical trait. Each
cell contains a corresponding correlation and p value of modules with various clinical traits. (F) Clustering dendrogram. corFnc = “pearson”; power = 6;
minModulesize = 30; mergeCutHeight = 0.2. (G) Network TOM heatmap plot.

CTSK, MMP2, ADRB2, PDE1C, ITGB3, PDE10A, PTGFR, AR
and PTGER3) were considered as the key genes for the CKI
treatment of GC.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis
A total of 14 putative targets were uploaded to the STRING
database to identify the functional partnerships and interactions
between them. The key genes and their interacting proteins
from the PPI network were showed in Supplementary Figure 1.
To further interpret the function of the key gene, KEGG
and GO annotations were performed in the R software.
A total of 127 GO entries were identified, including 93
biological process (BP), 25 molecular function (MF), and
9 cellular component (CC) (FDR < 0.01 and P < 0.01).
The top ten GO terms were tissue homeostasis, anatomical
structure homeostasis, toll-like receptor signaling pathway,
bone resorption, intracellular receptor signaling pathway,

multicellular organismal homeostasis, integrin complex, a
protein complex involved in cell adhesion, tissue remodeling,
response to ketone (Figures 4C–E). The KEGG results
demonstrated that 37 entries satisfy FDR < 0.05 and P < 0.05
(Figure 4F). These targets were significantly enriched in many
pathways related to cancer and signaling pathways, such as the
PI3K/AKT signaling pathway. In addition, the Toll-like receptor
signaling pathway related to immunity was also significantly
enriched (Figure 4G).

We also conducted a modular analysis of the lncRNA-miRNA-
mRNA Axis intervened by CKI in Cytoscape by Mcode. A total of
key modules were analyzed, including CTSK, ITGB3, PTGER3,
hsa-miR-20a-5p and hsa-miR-30a-5p five targets (Figure 4H).
To gain insights into the pharmacological mechanisms of CKI
on GC, we performed KEGG analysis for two key miRNAs.
The results illustrated that the validated targets of hsa-miR-
20a-5p and hsa-miR-30a-5p were associated with signaling
pathways closely related to cancer and development, such as
Pathways in cancer, Hippo signaling pathway and p53 signaling
pathway (Figure 4I).
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FIGURE 4 | ceRNA network analysis of CKI intervention in GC. (A) The Venn diagram of the prediction targets of DEMs and the key modules of WGCNA and the
prediction targets of CKI. (B) The prediction of ceRNA network of CKI intervention in GC. Orange dots are the components of CKI, and pink arrows indicate miRNAs
that may be involved in regulation. Blue, turquoise and brown nodes indicate the key genes of CKI intervention in GC, and the different colors correspond to the
module colors in WGCNA. The gray nodes represent the intersection lncRNA in DEMs prediction and WGCNA module. (C) The clustering map of the first ten GO
pathways. (D) GO bubble chart of function enrichment for key genes. (E) The circular map of the key genes distribution of the top ten GO pathway. (F) KEGG bubble
chart of function enrichment for key genes. (G) Regulatory pathways mainly involved in the CKI treatment of GC. (H) Module analysis of CKI intervention ceRNA. The
genes in the pink box constitute the key module. (I) Enrichment analysis of key miRNAs pathways.
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The Mechanism of Compound Kushen
Injection Anti-Gastric Carcinoma in
Cellular Proteome
To further explore the potential mechanism underlying CKI in
GC treatment, TMT labeling proteomics was utilized to detect
proteome differences between CKI-treated and CKI-untreated
GC cells. Quality control, identification and quantification data of
proteomics were shown in Supplementary Figure 2. The number
of up-regulated DEPs was 490, and down-regulated DEPs was 304
(Figures 5A,B). 210 targets were shared by the proteomic results
with those predicted by main active compounds and 561 linkages
were attributed to main active compounds and common targets
(Supplementary Table 7), which supported the credibility of our
network pharmacology results.

Subcellular organelles are micro-organs with specific
morphology and function, such as mitochondria, endoplasmic
reticulum, etc. They are important sites for proteins to realize
various functions. Different subcellular organelles often perform
different cellular functions, the analysis of subcellular localization
of proteins is helpful to explore the functions of proteins in cells.
We found that 416 DEPs were located in the nucleus, 205
DEPs were located in the cytoplasm, 124 DEPs are located
in plasma membrane and 119 DEPs were located outside the
cells (Figure 5C).

Interactions between proteins and proteins or other ligands
with low molecular weight are often based on domains, so
domain prediction is of great significance for studying the key
functional regions of proteins and their potential bioactivity.
Interproscan, a domain prediction software, was used to predict
the domain of differentially expressed proteins. Figure 5E shows
the first 20 protein domains. And Figure 5F exhibited the
domain enrichment characteristics of DEPs, which determine the
significance level of protein enrichment.

Proteins, that play a biological regulatory role can interact
with other proteins to achieve their function. Systematic analysis
of the interaction relationships of a large number of proteins
in biological systems is important to understand how proteins
work in biological systems, and the response mechanisms
of biological signals and metabolism of energy substances in
special physiological states, for example, the diseases, and the
functional links between proteins. DEPs were brought into the
STRING database for PPI annotation, and the PPI network was
constructed by Cytoscape software. This network consists of 709
protein nodes and 3125 connections (Figure 5D).

To comprehensively understand the functions, localization
and biological pathways involved in DEPs, GO was used for
the biological annotation of proteins. Blast2GO is a high-
throughput functional annotation and data mining software. And
its features are the combination of various annotation strategies
and tools controlling type and intensity of annotation, and
the numerous graphical features such as the interactive GO-
graph visualization for gene-set function profiling or descriptive
charts (Götz et al., 2008). Blast2Go software was utilized to
annotate the GO function of DEPs, and counted the number
of DEPs at the GO secondary function annotation level
(Figure 6A). Fisher’s exact test was applied to analyze the

GO functional enrichment of DEPs. The overall functional
enrichment characteristics of DEPs were revealed by evaluating
the significant level of protein enrichment of a GO functional
item. As flashed in Figure 6B, the enrichment analysis
revealed that the top five enrichment entries of DEPs were
associated with multiple biological processes (BP, including
mitotic karyokinesis, regulation of mitotic karyokinesis, sister
chromatid separation, mitotic sister chromatid segregation,
respiratory electron transport chain), cell compositions (CC,
including extracellular matrix containing collagen, mitochondrial
respiratory chain complex I, NADH dehydrogenase complex,
respiratory chain complex I, oxidoreductase complex) and
molecular functions [MF, including structural components of the
extracellular matrix, ubiquitin-like protein ligase binding, NADH
dehydrogenase activity, NADH dehydrogenase (panquinone)
activity, NADH dehydrogenase (quinone) activity]. Figure 6C
exhibited the top 25 GO entries (P value), including 18 BP entries,
6 CC entries and 1 MF entry.

Kyoto Encyclopedia of Genes and Genomes pathway
annotation and enrichment analysis were utilized to clarify
the protein-related pathways of DEPs. KEGG Automatic
Annotation Server (KAAS) is an online annotation tool
provided by KEGG database itself, which is convenient and
precise (Moriya et al., 2007). KEGG pathway annotation
revealed that DEPs were enriched in cancer-related pathways,
cell growth and death-related pathways, such as PI3K-AKT
signaling pathway, MAPK signaling pathway, etc. (Figure 6D).
KEGG pathway enrichment analysis exhibited that the top
10 pathways (P < 0.05) were the retrograde endogenous
cannabinin signaling pathway, complement and coagulation
cascade pathway, non-alcoholic fatty liver disease pathway,
oxidative phosphorylation pathway, ABC transporter pathway,
glycosphingolipid biosynthesis-ganglion series pathway, ECM-
receptor interaction pathway, fever pathway, aldosterone
synthesis and secretion pathway, and glycosaminoglycan
degradation pathway (Figure 6E).

Meta-Analysis of Key Genes
We selected microarray datasets of gastric cancer tissues from the
GEO database for meta-analysis to demonstrate the differential
expression of key genes in gastric cancer tissues. A total of
8 microarrays from the GEO database met the entry criteria.
The features of the included GEO datasets are depicted in
Table 2. The expression data from the tumor and control groups
were collected based on the GEO database. Meta-analysis was
conducted based on the expression data of the 8 included
microarrays. The results (Figure 7A) demonstrated that 7 of
the key genes exhibited remarkable abnormal regulation in
the gastric cancer groups. Given the apparent heterogeneity, a
random effects model was applied. On the one hand, ADRB2
(SMD = −1.46; 95% CI −2.02, − 0.91; P < 0.01), PDE1C
(SMD = −0.75; 95% CI – 1.11, −0.39; P < 0.01) and PTGER3
(SMD = −0.58; 95% CI −1.08; −0.07; P < 0.01) were down-
regulate in the cancer groups, which might be a tumor suppressor
gene. On the other hand, AKR1B1 (SMD = 0.3; 95% CI
0.01; 0.60; P < 0.01), CTSK (SMD = 1.52; 95% CI 0.98;
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FIGURE 5 | The effects of CKI on proteomics in BGC-823 cells. (A) Variance analysis. (B) Cluster analysis of DEPs. Total 3 biological replicates for each group were
performed. (C) Subcellular localization map of DEPs. (D) PPI network of DEPs. Red represents up-regulated proteins, and blue means down-regulated proteins.
(E) Domain analysis of DEPs. (F) Domain enrichment analysis.

2.06; P < 0.01), MMP2 (SMD = 1.02; 95% CI 0.51; 1.53;
P < 0.01), TLR4 (SMD = 0.85; 95% CI 0.34; 1.37; P < 0.01)
were up-regulate in cancer groups, which might be the tumor

proto-oncogene. Later, a sensitivity analysis was performed to
explore whether a particular microarray played a vital role in
the significant heterogeneity. It was found that none of the
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FIGURE 6 | GO and KEGG analysis of DEPs. (A) GO annotation of DEPs. (B) GO function enrichment bubble diagram of DEPs. (C) Top 25 GO entries. (D) KEGG
pathway annotation statistics of DEPs. (E) KEGG pathway enrichment bubble diagram of DEPs.

included studies had a decisive role. A funnel plot was generated
to estimate publication bias (Figure 7B). The points in the funnel
were asymmetrically distributed on both sides of the midline,

indicating that the bias was mainly related to publication bias,
but there could be other reasons such as the lack of included
literature (Figure 8A).
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Survival Analysis of Key Genes
A Kaplan–Meier curve was later used to identify the effects
of hub genes expression on survival time. As shown in
Figure 8B, AKR1B1 (p = 0.000988), AR (p = 0.0102), ITGB3
(p = 0.0389), MMP2 (p = 0.0465), PTGER3 (p = 0.0449), and
PTGFR (p = 0.0439) with the p values were all less than 0.05,
suggesting that these genes may be the key targets affecting the
survival of GC patients.

Immunoinfiltration Analysis
Analysis using TIMER showed that hub genes were negatively
associated with purity, and ADRB2 (cor = −0.275) was most
negatively correlated with tumor purity. In addition, key genes
were strongly correlated with macrophages and dendritic cells.
Where PTGER3 correlated most strongly with macrophages
(cor = 0.637) and CTSK (cor = 0.624) for dendritic cell (Table 3
and Figure 8C). The Univariate Cox survival analysis showed
that among the six types of immune cells, only macrophages were
associated with survival of GC patients, which was an indicator of
survival of GC patients.

Molecular Docking
Docking studies were carried out between CKI and hub genes.
The 3D protein structures of PTGFR and PDE1C were not found
in the PDB database. The molecular docking results are shown in
Table 4. AR, ITGB3, AKR1B1, ADRB2, and PTGER3 were five
genes with the highest predicted for interaction between each of
the five protein targets and corresponding CKI components.

As shown in Figure 9, oxysophocarpine binds to a pocket in
AR, which consists of Met895, Asn705, Trp741, Leu704, Gly708,
Leu707, Gln711, Met745, Met749, Phe764, Val746, Met787,
and Leu873. The interaction between AR and sophocarpine
is centered on a stable hydrophobic core consisting of
several nonpolar residues (Met787, Asn705, Met895, Leu704,
Leu707, Gly708, Gln711, Met745, Met749, Phe764, Met780, and
Leu873). The fifteen hydrophobic bonds, including Met780,
Leu704, Asn705, Met895, Gly708, Leu707, Trp741, Met745,
Gln711, Met749, Phe764, Val746, Leu873, Met787, and Met742
are formed in the interaction between sophoranol and AR.
Hydrophobic interactions with eleven residues in AR (Leu704,
Trp741, Met742, Val746, Gln711, Met749, Phe764, Arg752,
Leu707, Met745, and Gly708) and one hydrogen bonds (Asn705).
In addition, Oxymatrine can bind to ITGB3 by forming a

TABLE 2 | Features of the enrolled Gene Expression Omnibus datasets.

Accession GPL Year GC-count Control-count Source

GSE2685 GPL80 2005 22 8 tissue

GSE19826 GPL570 2010 12 12 tissue

GSE27342 GPL5175 2011 80 80 tissue

GSE33335 GPL5175 2012 25 25 tissue

GSE54129 GPL570 2017 111 21 tissue

GSE63089 GPL5175 2014 45 45 tissue

GSE79973 GPL5175 2016 10 10 tissue

GSE29998 GPL6947 2012 50 49 tissue

hydrophobic interaction with the surrounding residues Glu536,
Arg515, Asn508, Phe547, Tyr571, and Lys548. Oxymatrine was
able to form H-bonds with Tyr571 and Ser507.

The docking results in this study demonstrate that the
receptor–ligand interaction between liriodendrin and AKR1B1
involves both hydrophobic and polar interactions. Their
interaction is centered on a stable hydrophobic core consisting
of several nonpolar residues in AKR1B1 (Pro24, Gln49, Ala212,
Lys21, Val47, Trp20, Cys298, Leu301, Trp219, Pro23, and Asn50).
Moreover, the hydroxyl groups within the main chains of Leu300,
Ala299, Lys211, Trp20, and Ser22 form five hydrogen bonding
contacts with the liriodendrin, which further stabilizes the entire
interaction region. And 9α-hydroxymatrine was observed to
form hydrophobic interactions with eleven residues in ADRB2
(Phe290, Ser203, Ser204, Phe289, Phe193, Asn312, Asp113,
Val117, Val114, Trp286, and Ser207) and one hydrogen bonds
with Thr118. The fifth genes PTGER3 bind to sophoranol with
ten hydrophobic bonds, including Gln339, Ser336, Met58, Ile340,
Gln103, Thr107, Val110, Met137, Phe133, and Thr106.

Anti-Gastric Carcinoma Effect of
Compound Kushen Injection
Zebrafish has great advantages in real-time monitoring of tumor
cell growth in vivo and is widely used in human cancer
research through the tumor xenograft technique. In this study,
different concentrations of CKI and the positive drug cisplatin
were used to treat tumor-bearing zebrafish. After 72 h of
continuous exposure to the drug, the fluorescence area and
intensity of the tumor in the yolk sac area of the low-, medium-,
and high-dose groups and the positive control group were
decreased, compared with the model group, indicating that 25–
150 µg/mL CKI had an inhibitory effect on the growth of
the transplanted tumor (Figure 10). And the inhibitory effect
was concentration-dependent. Figure 11A, showed that CKI
treatment had no significant inhibitory effect for 24 h, except
for the 2.0 mg/mL group. At 48 h, 1.0 and 2.0 mg/mL had
a significant inhibitory effects on BGC-823 cells. After 72 h,
concentrations above 0.5 mg/mL showed significant inhibitory
effects. As shown in Figure 11D, the concentration of CKI
reached above 0.25 mg/mL, it began to produce apparent
inhibitory effect on cell proliferation of HGC-27 cells. The
inhibitory effect on cell proliferation gradually increased with the
increase of drug concentration.

Effect of Compound Kushen Injection on
the Expression of AKR1B1, MMP2,
PTGER3 in Gastric Carcinoma Cells
BGC-823 and HGC-27 cells were used to analyze the regulatory
effects of CKI on key genes (AKR1B1, MMP2, and PTGER3) in
GC cells to evaluate the mechanism of CKI in GC treatment.
After 48 h of CKI treatment, compared with the control group
in BGC-823 cells (Figure 11B), mRNA expression levels of
AKR1B1 decreased significantly in CKI 2.0 and 4.0 mg/mL
groups (P < 0.05), MMP2 declined significantly in CKI 1.0
and 2.0 mg/mL groups (P < 0.05), and PTGER3 increased
significantly in all CKI groups (P < 0.05). Similarly, we obtained
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FIGURE 7 | Meta analysis for key genes. (A) Forest plot of meta-analysis of key genes. (B) Sensitivity analysis of GEO chips of meta-analysis of key genes.
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FIGURE 8 | Bioinformatics analysis of key genes. (A) A funnel plot was applied to evaluate the publication bias of GEO datasets. (B) Survival analysis of key genes.
(C) Immunoinfiltration analysis.

the same validation in HGC-27 cells (Figure 11E). To further
confirm the regulatory effects of CKI on key genes (AKR1B1,
MMP2, and PTGER3), a western blot assay was used to detect the

extent of protein variation intervened by CKI in BGC-823 and
HGC-27 cells. After 48 h of CKI treatment, protein expression
levels of AKR1B1 were significantly reduced (P < 0.05) in
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TABLE 3 | Immunoinfiltration analysis of key targets in TIMER.

Gene Purity B Cell CD8+ T Cell CD4+ T Cell Macrophage Neutrophil Dendritic Cell

ADRB2 −0.275 0.246 0.321 0.516 0.521 0.310 0.454

AKR1B1 −0.100 −0.099 0.337 0.245 0.419 0.359 0.495

AR −0.143 0.129 0.129 0.484 0.618 0.169 0.352

CTSK −0.229 −0.162 0.311 0.292 0.624 0.433 0.530

ESR1 −0.216 0.139 0.461 0.608 0.615 0.489 0.621

ITGB3 −0.149 0.134 0.159 0.500 0.471 0.252 0.349

MMP2 −0.182 −0.123 0.183 0.285 0.513 0.273 0.361

PDE10A −0.115 0.072 0.176 0.306 0.442 0.233 0.340

PDE1C −0.174 0.303 0.122 0.527 0.432 0.116 0.229

PIK3CD −0.230 0.065 0.504 0.566 0.409 0.518 0.665

PRKCQ −0.122 0.031 0.443 0.317 0.239 0.356 0.459

PTGER3 −0.130 0.061 0.194 0.448 0.637 0.199 0.398

PTGFR −0.192 0.119 0.280 0.486 0.573 0.352 0.445

TLR4 −0.146 −0.121 0.389 0.340 0.548 0.537 0.641

TABLE 4 | Molecular docking information.

Protein Name PDB ID Test Compounds Affinity Protein Name PDB ID Test Compounds Affinity

(kcal/mol) (kcal/mol)

AKR1B1 4JRI liriodendrin −7.8 ITGB3 6BXJ isomatrine −6.9

TLR4 5IJD oxymatrine −7 ITGB3 6BXJ lamprolobine −6.4

ESR1 4XI3 piscidic acid −6.7 ITGB3 6BXJ matrine −7.1

PRKCQ 1XJD lamprolobine −7 ITGB3 6BXJ oxymatrine −8.2

PIK3CD 5IS5 adenine −5.2 ITGB3 6BXJ sophoranol −7.1

CTSK 2FTD isomatrine −6.2 ITGB3 6BXJ sophoridine −6.8

CTSK 2FTD lamprolobine −6.2 PDE10A 4MVH 9α-hydroxymatrine −6.2

CTSK 2FTD matrine −6.6 PDE10A 4MVH lamprolobine −6.4

CTSK 2FTD oxymatrine −6.5 PDE10A 4MVH sophoranol −6.5

CTSK 2FTD sophoridine −6.4 AR 4OEA 9α-hydroxymatrine −7.5

MMP2 1QIB adenine −6.3 AR 4OEA baptifoline −8.2

MMP2 1QIB matrine −7.3 AR 4OEA oxysophocarpine −9.8

ADRB2 3NY9 9α-hydroxymatrine −7.8 AR 4OEA sophocarpine −9.4

ADRB2 3NY9 sophoranol −6.6 AR 4OEA sophoranol −9

PDE1C 1LXS lamprolobine −7.8 PTGER3 6AK3 9α-hydroxymatrine −7.4

ITGB3 6BXJ 9α-hydroxymatrine −7.3 PTGER3 6AK3 sophoranol −7.7

BGC-823 cells compared with the control group (Figure 11C)
in the 2.0 and 4.0 mg/mL CKI groups, MMP2 was significantly
decreased (P < 0.05) in all CKI groups, and PTGER3 was
significantly increased (P < 0.05) in the 1.0 and 2.0 mg/mL CKI
groups. Approximately, we obtained the comparable validation
in HGC-27 cells (Figure 11F).

DISCUSSION

Gastric cancer is one of the most common cancers and its
mortality rate remains high (Waldum et al., 2017). Since GC
is difficult to detect in the early stages, there is always a delay
in diagnosis in patients with gastric cancer (Zhang L. et al.,
2019). Therefore, due to the crisis situation of GC with low
chance of cure and poor prognosis, there is an urgent need to
develop new therapies. CKI is a prescribed drug approved by the

Chinese Medicine Administration of China (NMPA). It has also
passed the standardized Good Manufacturing Process (GMP)
certification and is widely used clinically to treat gastric cancer
(Zhao et al., 2014). According to several systematic reviews and
meta-analysis studies, it has been found that CKI can not only
improve the clinical efficacy in gastric cancer patients but also
mitigate the adverse effects of radiotherapy and chemotherapy
(Zhang et al., 2017, 2018; Huang and Wei, 2019).

Cancer is a complex disease that results from changes in
multiple biological networks (Pache et al., 2012). Therefore, in
this study, we established an advanced systems pharmacology
strategy that was used to reveal the mechanism underlying
the effects of CKI on GC. In detail, this initiative strategy
was integrated WGCNA, molecular target prediction
technology, microarray analysis, meta-analysis, molecular
docking technology, proteomics and experimental verification
in vivo and in vitro. The high-throughput data analysis method
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FIGURE 9 | Molecular docking of the key genes with its corresponding component.
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FIGURE 10 | Anti-tumor proliferation effect of CKI in zebrafish. (A) Tumor growth exhibited by DiO fluorescence. (B) Tumor growth rate calculated by DiO
fluorescence Area. (C) Tumor growth rate calculated by DiO fluorescence IOD. Data were presented as mean ± SD. n = 24. *P < 0.05; ****P < 0.0001.

was used to find miRNAs closely associated with gastric cancer
for target prediction and overlapped with the key modules of
WGCNA analysis in TCGA to identify ceRNA networks closely
related to GC. Finally, considering network pharmacology as
a core concept, the key target of CKI in gastric cancer was
identified, and 14 intersection genes were identified as hub
genes. To further explore the impact of CKI on gastric cancer,
we conducted a meta-analysis of key targets to compare the
differential expression of key genes in gastric cancer tissues and
normal tissues. Second, we performed functional analysis to
understand the biological regulatory pathways involved in key
genes. In addition, survival analysis and immune infiltration
analysis were used to analyze the relationship between key
genes and the prognosis of gastric cancer. Finally, molecular
docking simulation was used to verify the binding of CKI
components to key targets.

Network pharmacology can explain the effects of drugs on the
disruptions of biological networks from the perspective of macro
or overall regulation, and explain the treatment of diseases from
the perspective of multi-component-multi-target-multi-pathway

(Jing et al., 2019). We discovered through network pharmacology
that 14 intersection genes could be the key targets for CKI
treatment of GC. After meta-analysis of GC gene expression
profile chip, it was found that 7 of these genes, including AKR1B1,
CTSK, MMP2, TLR4, ADRB2, PDE1C, and PTGER3, had
significant differences in gastric cancer tissues. Besides, AKR1B1,
MMP2 and PTGER3 were found to be important in the analysis
of gastric cancer survival, so the above three genes are considered
to be the most significant hub genes for CKI to treat gastric cancer
and improve the prognosis of GC. AKR1B1 as a common high-
expressed gene in cancer, including gastric cancer, may lead to
increased proliferation, metastasis and invasion of tumor cells
by driving the epithelial-tomesenchymal transition (EMT) (Wu
et al., 2017; Schwab et al., 2018). Studies have shown that ADRB2
can directly interact with and upregulate AKR1B1 in pancreatic
cancer cells, promoting cell proliferation and inhibiting apoptosis
through the ERK1/2 pathway (Xiao et al., 2018). In addition,
the expression of MMP2 in AKR1B1 knockdown cancer cells
also decreased significantly compared with the control group
(Schwab et al., 2018). MMP2 has been implicated in tumor
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FIGURE 11 | The expressions of AKR1B1, MMP2, and PTGER3 were detected in GC cells. In BGC-823 cells, (A) Dose-inhibition curves of CKI. For 24 h,
IC50 = 1.72 ± 0.22 mg/mL; for 48 h, IC50 = 1.20 ± 0.11 mg/mL; for 72 h, IC50 = 0.79 ± 0.05 mg/mL. (B) mRNA level of key genes was measured by RT-qPCR
after CKI intervention. (C) Protein level of key genes was determined by western blot after CKI intervention. In HGC-27 cells, (D) Dose-inhibition curves of CKI. For
24 h, IC50 = 0.98 ± 0.17 mg/mL; for 48 h, IC50 = 0.64 ± 0.13 mg/mL; for 72 h, IC50 = 0.62 ± 0.22 mg/mL. (E) mRNA level of key genes was measured by
RT-qPCR after CKI intervention. (F) Protein level of key genes was determined by western blot after CKI intervention. Data were presented as mean ± SD. n = 3.
∗P < 0.05; ∗∗P < 0.01.
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development and morphogenesis (Zhao et al., 2019). It has
been demonstrated that MMP-2 can regulate the extracellular
matrix (ECM) degradation, which plays an important role in
cancer development (Zhang et al., 2012). Previous studies have
confirmed that matrine, an important component of CKI, can
downregulate the abnormal expression of MMP2 and thus inhibit
tumor cell invasion and metastasis (Qian et al., 2015; Huang
et al., 2017; Gao et al., 2018). Whole-genome analysis showed
that PTGER3 is abnormally low in gastric cancer. PTGER3 can
inhibit the secretion of gastric parietal cells and gastric acid (Kim
et al., 2018). The lack of PTGER3 leads to abnormal secretion of
gastrin and gastric acid and accelerates the occurrence of gastric
cancer (Nishio et al., 2007). In addition, PTGER3 can also up-
regulate the expression of related MMP2 and AR to promote
the proliferation of cancer cells and the deterioration of gastric
cancer (Robertson et al., 2010; Kashiwagi et al., 2013). Indeed,
we also found that CKI could induce the changes of intracellular
AKR1B1, MMP2 and PTGER3 at mRNA and protein levels in
GC cell lines BGC-823 and HGC-27, and the change trends were
consistent in these two levels. Therefore, we consider that these
may be important approaches of CKI treatment of GC.

In this study, we performed GO enrichment and KEGG
pathway analysis to elucidate the multiple mechanisms of CKI
against GC from a systematic level. The key genes of CKI on
GC were enriched in the PI3K/AKT signaling pathway, Toll-
like receptor signaling pathway and other pathways, as indicated
by the functional enrichment analysis. With frequent alterations
identified in GC, the PI3K/AKT pathway is significantly involved
in gastric carcinogenesis and progression (Matsuoka and Yashiro,
2014). The PI3K/AKT pathway can be activated by various
factors, including hormone and ECM signaling pathways,
thereby regulating several basic cellular activities such as cell
proliferation, apoptosis and metastasis (Fresno et al., 2004).
As the most common dysregulatory pathway in cancer, the
PI3K/AKT pathway has received increasing attention due to
its potential for targeted therapy in many malignancies (Hu
et al., 2019). We proposed that CKI plays a therapeutic role
in the treatment of GC mediated by the PI3K/AKT pathway,
and this has been previously confirmed experimentally. Previous
studies have confirmed that the active ingredients of matrine,
oxymatrine and sophoridine in CKI can treat various tumors
by inhibiting the PI3K/AKT signaling pathway (Wang et al.,
2017; Dai et al., 2018; Zhang X. et al., 2019). Peng et al. (2016)
found that matrine can inhibit the proliferation and metastasis of
gastric cancer cell SGC7901 via PI3K/Akt pathway. Accordingly,
by comparing the proteomics results between the CKI group
and the control group, we found that DEPs were significantly
enriched in the PI3K/AKT signaling pathway, MAPK signaling
pathway, ABC transporter pathway, ECM receptor interaction
pathway and other signaling pathways. Excessive activation of
the PI3K/AKT signaling pathway leads to over-expression of
P-gp (ABC carrier), which affects the normal function of the
ABC transporter signaling pathway (Sui et al., 2014). Abnormal
ABC transporter pathway is common in multidrug resistance.
MAPKs transduce signals through tertiary kinase cascades, and
activated MAPKs maintain normal cellular functioning in the
nucleus (Meister et al., 2013). MAPK subgroups, including ERK

and JNK, and their signaling pathways are intimately associated
with the regulation of ABC transporters, affecting multidrug
resistance (Huang et al., 2014; Ji et al., 2015). Accordingly,
we speculate that PI3K/AKT, MAPK, ABC transporters, ECM-
receptor interaction pathways and the crosstalk between them are
the potential mechanisms of CKI that regulate the basic activities
(proliferation, migration, invasion) of GC cells and reverse the
drug resistance of GC cells.

From a comprehensive analysis of the above results, we
also found that immunization may be an important potential
influencing factor in CKI treatment of GC, therefore we
performed an analysis of the immune invasion of key genes
for gastric cancer. The analysis revealed that the degree of
macrophage infiltration affects the prognosis of GC patients, and
the expression of key genes is positively correlated with the degree
of macrophage infiltration. Consistent with this, sophoridine has
been shown to polarize tumor-associated macrophages (TAMs)
into M1-TAMs and suppress M2-TAMs polarization through the
TLR4/IRF3 axis. In addition, it can inhibit the migration ability of
macrophages and reshape the immunological microenvironment
of gastric cancer (Zhuang et al., 2020). Taken together, we propose
that CKI can not only directly inhibit the proliferation and
metastasis of gastric cancer tumor cells, but also improve the
prognosis of cancer patients through immunotherapy.

In addition to the key mRNAs, we found two significant
miRNAs possibly involved in CKI regulation of gastric cancer,
namely hsa-miR-20a-5p and hsa-miR-30a-5p, by module
analysis. KEGG pathway analysis of miRNA’s demonstrated that
most of the target genes were enriched in the Hippo signaling
pathway and p53 signaling pathway, which are closely associated
with cancer cell proliferation and metastasis. Matrine plays an
important role in regulating the p53 signaling pathway to inhibit
cell proliferation in liver cancer, lung cancer and esophageal
cancer (Wang et al., 2014; Xie et al., 2015; Lu et al., 2017).
Besides, matrine can also promote apoptosis of colorectal cancer
cells via the Hippo signaling pathway (Zhang Y. et al., 2019). It
is worth mentioning that the study found that sophoridine can
significantly activate the Hippo and p53 signaling pathways and
inhibit the progression of lung cancer and enhance the effect of
the anticancer drug cisplatin against lung cancer cells (Zhu et al.,
2020). However, there are few studies on the direct effect of CKI
and its active ingredients on miRNA in the treatment of gastric
cancer, which needs to be confirmed by experiments in vivo and
in vitro.

CONCLUSION

This study explored the potential molecular mechanism of
CKI in the treatment of GC and established a new advanced
system pharmacology strategy. Based on the traditional network
pharmacology, the potential molecular mechanism of CKI in
the treatment of GC was initially determined by the analysis
of high-throughput chip data and WGCNA. Moreover, chip
meta-analysis methods and survival analysis were used to verify
the expression and prognosis of key genes in GC. Functional
enrichment analysis and immune infiltration analysis focus
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on the functional impact of key genes. Finally, molecular
docking was employed to verify the strong binding between the
target and the components. By using network pharmacology
combined with multiple integrated bioinformatics methods, we
systematically revealed that CKI might be involved in regulating
the ceRNA network for the treatment of GC. Among them,
mRNA (including AKR1B1, MMP2 and PTGER3) and miRNA
(including hsa-miR-20a-5p and hsa-miR-30a-5p) may play an
essential role in the therapy. Our preliminary conclusion is
that CKI could be used for GC therapy by activating signaling
pathways such as PI3K/AKT, MAPK, ABC transporter and ECM-
receptor interaction pathways to inhibit cancer cell proliferation
and regulate immunity. Based on a multidisciplinary approach,
this study might provide a new perspective for the profound
exploration and provide a reference for multicomponent-
multitarget-multipathway clinical research.
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