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Association between urinary
metals and leukocyte telomere
length involving an artificial
neural network prediction:
Findings based on NHANES
1999–2002

Fang Xia, Qingwen Li, Xin Luo and Jinyi Wu*

Department of Public Health, Wuhan Fourth Hospital, Wuhan, China

Objective: Leukocytes telomere length (LTL) was reported to be associated

with cellular aging and aging related disease. Urinemetal alsomight accelerate

the development of aging related disease. We aimed to analyze the association

between LTL and urinary metals.

Methods: In this research, we screened all cycles of National Health and

Nutrition Examination Survey (NHANES) dataset, and download the eligible

dataset in NHANES 1999–2002 containing demographic, disease history,

eight urine metal, and LTL. The analysis in this research had three steps

including baseline di�erence comparison, multiple linear regression (MLR)

for hazardous urine metals, and artificial neural network (ANN, based on

Tensorflow framework) to make LTL prediction.

Results: The MLR results showed that urinary cadmium (Cd) was negatively

correlated with LTL in the USA population [third quantile: −9.36, 95%

confidential interval (CI) = (−19.7, −2.32)], and in the elderly urinary

molybdenum (Mo) was positively associated with LTL [third quantile: 24.37,

95%CI= (5.42, 63.55)]. An ANNmodel was constructed, which had 24 neurons,

0.375 exit rate in the first layer, 15 neurons with 0.53 exit rate in the second

layer, and 7 neurons with 0.86 exit rate in the third layer. The squared error loss

(LOSS) andmean absolute error (MAE) in the ANNmodel were 0.054 and 0.181,

respectively, which showed a low error rate.

Conclusion: In conclusion, in adults especially the elderly, the relationships

between urinary Cd and Mo might be worthy of further research. An accurate

prediction model based on ANN could be further analyzed.
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Introduction

As far as we know, toxic metals had cumulative biological

effects in human, and essential metals supported normal

physiological body functions. However, metal binding proteins

lack specificity, which were responsible for absorption and

transportation of essential metals and, final control of their

homeostasis (1). These metallothioneins could conduct

molecular simulations so that nutritious essential metal could be

replaced by toxic metal. Deficiency or excess of essential metals

would cause damage to biological processes, and non-essential

metals might have toxic effects (2). Toxic metals entered the

human body in many ways, such as food, drinking water, and

air. It was reported that exposure to heavy metals would result

in varying degrees of lipid peroxidation, DNA damage, and

protein modification. Epidemiological surveys suggested that

accumulated heavy metals lead to damage of organs, and further

resulted in chronic kidney disease, neurological development

disorders, cardiovascular disease (CVD), neuronal damage,

diabetes, and cancer (3, 4).

Telomeres were DNA protein complexes that protected

the ends of eukaryotic chromosomes. Telomeres shortened

each time a cell divided, partly because the ends of telomeric

DNA could not replicate. Oxidative stress promoted telomere

shortening, while telomerase could prolong telomere. However,

the expression of telomerase was low in most human cells,

making telomeres vulnerable to oxidative stress (5). When

telomeres were severely shortened, cell senescence was triggered.

Cell senescence led to functional defects and the secretion of

inflammatory factors. Telomere shortening was not only a key

mechanism of cell senescence, but also contribute to body’s

senescence. In epidemiological studies, researchers reported

that the shortening of leukocytes telomere length (LTL) was

associated with aging and several diseases including CVD, type

2 diabetes, dementia, and cancer. Although a twin study showed

that the LTL was partly heritable, the heritability of twins

decreased with age growth and lead to their differences in LTL,

indicating that environmental factors played a role in LTL (6).

Leukocytes telomere length was also associated with behavioral

risk factors, such as smoking, alcohol, and socioeconomic status.

Abbreviations: CVD, cardiovascular disease; LTL, leukocytes telomere

length; NHANES, National Health and Nutrition Examination Survey;

BMI, body mass index; PIR, poverty income ratio; Ba, barium; Cd,

cadmium; Co, cobalt; Cs, cesium; Mo, molybdenum; Pb, lead; Sb,

antimony; Tl, thallium; NCHS, National Center for Health Statistics; CDC,

Centers for Disease Control and Prevention; PCR, polymerase chain

reaction; ICP-MS, Inductively coupled plasma mass spectrometry; GM,

geometric mean; CI, confidential interval; LOD, limit of detection; ANN,

artificial neural network; ReLU, logical and rectified linear unit; MAE,

mean absolute error; MLR, multiple linear regression; GSSG/GSH, redox

glutathione ratio; ROS, reactive oxygen species.

Chronic diseases and tumors caused by toxic heavy metals

were consistent with LTL-related diseases. Telomere attrition

might be an important mechanism of metal accelerating

telomere shortening. Harmful heavymetals aggravated oxidative

stress and cytokines production (7). Therefore, analyzing the

relationship between heavy metals and LTL was an important

direction to elaborate the mechanism of heavy metals and

diseases. Urinary heavy metals were excreted by the body after

absorbing, which could reflect the metal accumulated in kidney

and other tissues (8). Therefore, this analysis would focus on the

relationship between urinary heavy metals and LTL.

Deep learning was an important part of artificial intelligence.

It became the main solution in image recognition, language

recognition, and natural language processing (9). Deep

learning algorithm was based on the traditional algorithm, the

deep convolution neural network was invented to meet the

requirements of feature extraction and learning with a big data

(10, 11). In terms of hardware configuration, people proposed

distributed computing and cloud computing to meet the high

requirements for training environment, so that more people can

participate in the research of deep learning. Many of the world’s

top high-tech companies set up laboratories to find a more

convenient and rapid development mode for deep learning

(12, 13). Tensorflow was a symbolic mathematical system,

which was originally developed by Google brain group for deep

neural networks in mechanical learning. It was an open-source

software platform that uses data flow graphs to calculate

numerical values (10–13). Tensorflow was a complete toolkit

that could realize the training, testing, parameter adjustment

and prediction of convolutional neural networks, and make the

modularization deep learning. The principle of modularization

made it easy to modify and expand the model network layer

and loss function. Consequently, we made the prediction of LTL

based on Tensorflow framework.

Previous studies focused on the risk factors exploration

on LTL with limited methods to make prediction. We firstly

screened the possible hazardous urinary metal for LTL. Since the

prediction of LTL was also important, we tried to use the popular

ANN platform Tensorflow.

Methods

Dataset

National Health and Nutrition Examination Survey

(NHANES) was a nationally representative cross-sectional

survey of the nutritional and health status of non-hospitalized

civilians in the United States, conducted annually by the

National Centers for Health Statistics (NCHS) and the Centers

for Disease Control and Prevention (CDC). All the data could be

obtained in the official website of American Centers for Disease

Control and Prevention (https://www.cdc.gov/nchs/nhanes).
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FIGURE 1

Flowchart of dataset selection.

In this research, the NHANES in 1999–2002 containing

demographic, disease history, urine metal, and leukocyte

telomere length (LTL) was achieved.

The demographic data included age, gender, race, education

level, marital status, alcohol, smoking, body mass index (BMI),

poverty income ratio (PIR), diabetes mellitus, and hypertension.

Urine metal contained barium (Ba), cadmium (Cd), cobalt

(Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony

(Sb), and thallium (Tl). The outcome of LTL was skew

continuous variable.

To screen LTL and related datasets, we searched related

data in NHANES 1999–2002. In the raw data, there were 5,352

participants, 5,157 respondents having lab data, and 2,555 with

OA status data. Finally, 2,420 participants having demographic,

disease history, eight urine metal, and outcome of LTL were

included (Figure 1).

Evaluation of LTL

From description of LTL detection in NHANES website,

the telomere length test was carried out in Dr. Elizabeth

Blackburn at the University of California, San Francisco, using

the quantitative polymerase chain reaction (PCR) method to

measure telomere length relative to standard reference DNA

(T/S ratio) (14). Each sample was tested three times in three

different days. Samples were tested in duplicate wells, resulting

in six data points. The sample plates were tested in groups of

three plates. Each test plate contained 96 control wells with eight

control DNA samples. Tests with eight or more invalid control

wells were excluded from further analysis. The control DNA

values were used to normalize the variability between the series.

Executions with more than four control DNA values less than

2.5 standard deviations from the mean of all test were excluded

from the additional analysis. For each sample, any potential

outliers were identified and excluded from the calculations.

The mean and standard deviation of the T/S ratio were then

calculated normally.

Assessment of urine metals

Urinary metal was used as an exposure assessment in this

research, because it was a substitute for cumulative exposure

and reflected the metal accumulated in the kidney and other

tissues. Inductively coupled plasma mass spectrometry (ICP-

MS) was a multi-element analysis technology (15). The liquid

sample was introduced into the ICP through a nebulizer and a

spray chamber carried by a flowing argon stream. By coupling

RF power to flowing argon, a plasma was produced, in which the

main components were positive argon ions and electrons. The

sample passed through a plasma region with a temperature of

6,000–8,000K. Heat atomized the sample and then ionized the

atoms. Ions and argon entered the mass spectrometer through

the interface, which separated the ICP working at atmospheric

pressure from the mass spectrometer working at 10−6 Torr

pressure. The mass spectrometer allowed the detection of ions

in a rapid sequence to determine the individual isotopes of the

elements. The electrical signal generated by the ion detection

processed into digital information to indicate the strength of the

ion and the subsequent element concentration. Seven elements

in urine, including barium (Ba), cobalt (Co), cesium (Cs),

molybdenum (Mo), lead (Pb), antimony (Sb), and thallium

(Tl), were measured by ICP-MS according to the method of

Mulligan et al. Urine samples were diluted 1 + 9 with 2% v/V

double distilled concentrated nitric acid (GFS chemicals Inc.,

Columbus, OH), which contained iridium and rhodium for

multiple internal standardization. In addition, Urine cadmium

(Cd) levels were corrected for interference from molybdenum

oxide. Corrected cadmium levels = original value for the

cadmium – [(0.00175∗ Molybdenum) – 0.0136].

Covariates

Information on demography and disease history was

collected by questionnaires. Demographic data were age

(continuous), BMI (continuous), PIR (continuous), gender

(male, female), race (non-Hispanic white, non-Hispanic black,

other Hispanic, Mexican American, others), education (more

than high school, high school or equivalent, and less than

school), marital status (married, widowed/divorced/separated,

and never married), smoking status (yes and no), alcohol status

(yes and no), hypertension (yes and no), diabetes (yes, no,

and borderline). The BMI (kg/m2) was classified as normal

weight <25, overweight 25 to <30, and obesity ≥30. The

Department of Health and Human Services’ poverty guidelines
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were used as the poverty measure to calculate PIR. Diabetes was

defined as reaching a fasting glucose level of ≥126 mg/dl or

reporting a previous diagnosis (16). Hypertension was defined as

resting blood pressure persistent at 140/90 mmHg or reporting a

previous diagnosis (17).

Statistical analysis

To analyze the association between LTL and 8 urine metals

including barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs),

molybdenum (Mo), lead (Pb), antimony (Sb), and thallium (Tl)

in the two groups (whole and aging population ≥60 years old),

we conducted a three-step analysis.

We firstly describe the demographic and disease history

data in overall and aging groups. Meanwhile, we analyzed

the geometric mean (GM), LOD, and four quantiles of

eight urine metals. Based on these results, chi-squared test,

Cochran-Mantel-Haenszel test, and t-test were used to analyze

the difference of demographic data in overall and aging

population groups. Secondly, we conducted multiple linear

regression (MLR) to find association between natural log-

transformed LTL and quantiles of urine metals. Moreover,

subgroupMLRs adjusted gradually for demographic and disease

history were carried out to identify meaningful hazardous

urine metals associated with changes of LTL. Thirdly, to

make an accurate prediction of LTL, artificial neural network

(ANN) was trained. All the variables in MLRs were put into

the ANN model and three hidden layers were established

to make a reliable prediction. All the analysis above were

conducted in R software 4.1.2 (The R Foundation for Statistical

Computing, USA). Two-sided P < 0.05 was considered

statistically significant.

Artificial neural network prediction

In this research, an ANN framework: Tensorflow (developed

by Google brain team based on the idea of a dataflow

graph for building models) was adapted. Artificial neural

network had three main components: (1) A group of

synapses or connections was characterized by “weight,” in

which the input signal was connected to the neuron through

connection weight; (2) An adder would add all weighted signal

contributions; (3) The activation function (transfer function)

affected neurons, which limited the amplitude of the network

output and provided a permissible range for the output signal

of finite value (18, 19). The common activation functions

included linear, quadratic, geometric, logical, and rectified linear

unit (ReLU).

The input layer and dense hidden layer used the activation

function ReLU, which included specifying the value of neurons

<0 as 0, and respecting the value of neurons ≥0 when its value

is 0, as shown in the equation

ReLU(x) =

{

x, x ≥ 0

0, x < 0

Finally, in order to verify the results of ANN, three indicators

were generated, including LOSS function (Squared error loss),

MAE (mean absolute error), and scatter plot of actual and

predicted values. Artificial neural network was mainly trained

by reducing the iterations of LOSS function using gradient

method. The commonly used techniques for calculating the

LOSS function included mean square error, MAE, binary cross

entropy, and Poisson.

In this study, after analyzing the relationship between

urinary metal and telomere length, we carried out further

prediction analysis. Artificial neural network became a popular

prediction algorithm in recent years. In this study, “keras”

(a high-level ANN application programming interface written

in python) and “neuralnet” package (flexible ANN training

program) were used to deploy the “Tensorflow” framework,

setting hidden layers, and calculating with logistic function in

each layer. The data was divided into training set and test set

according to 8:2, 2,420 participants were divided into 1,936 in

the training set and 404 in test set. Then the data sets were

normalized, respectively. Firstly, the preliminary model was

constructed, 25 variables were input (demographic, behavioral,

disease, and urinary metal data included in this study), one

hidden layer with five neurons and one output result were set,

and the model compilation indicators were reported including

LOSS function and MAE. Then we carried out model fitting and

set the number of iterations to 100. Finally, we put the test set

data into the trainedmodel for prediction and verification. Based

on the above steps, we also optimized the model parameters to

reconstructed the model, changing one hidden layer to three

hidden layers (100 neurons and 0.76 dropout rate in the first

layer, 15 neurons and 0.5 dropout rate in the second layer, and

7 neurons and 0.2 dropout rate in the third layer). All layers

adopted ReLU, and finally got an output. The whole process

was conducted using R 4.1.2 (The R Foundation for Statistical

Computing, USA).

Results

Characteristics of participants

The characteristic distribution of the study population (n =

2,420) in the total sample and aging sample (n= 821) was shown

in Table 1. In overall group, the sample was mainly composed of

the middle aged (49.5± 18.7), middle income (PIR 2.66± 1.64),

overweight (37.36%), female (51.53%), White, Non-Hispanic

(50%), more than high School (41.78%), married (59.01%),

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.963138
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Xia et al. 10.3389/fpubh.2022.963138

TABLE 1 Comparison between overall and aging population in weighted characteristics of the NHANES 1999–2002.

Overall (N = 2,420) Weighted Aging (N = 821) Weighted t or chi-squared value

Age

49.5± 18.7 71.4± 7.93 −46.58*

PIR

2.66± 1.64 2.63± 1.57 0.47

BMI

747 30.87% 226 27.53% 7.23*

904 37.36% 349 42.51%

769 31.78% 245 29.84%

Gender

Male 1,173 48.47% 437 53.23% 5.36*

Female 1,247 51.53% 384 46.77%

Ethnicity

Mexican American 609 25.17% 182 22.17% 12.85*

Other Hispanic 122 5.04% 31 3.78%

White, Non-Hispanic 1,210 50.00% 465 56.64%

Black, Non-Hispanic 409 16.90% 128 15.59%

Other 70 2.89% 15 1.83%

Education

Less than high school 815 33.68% 347 42.27% 24.88*

High school diploma 594 24.55% 204 24.85%

More than high school 1,011 41.78% 270 32.89%

Marital status

Married 1,428 59.01% 527 64.19% 228.26*

Widowed 208 8.60% 187 22.78%

Divorced 207 8.55% 66 8.04%

Separated 79 3.26% 17 2.07%

Never married 350 14.46% 14 1.71%

Living with partner 144 5.95% 8 0.97%

Alcohol

Yes 1,631 67.40% 506 61.63% 8.67*

No 788 32.56% 314 38.25%

Smoking

Yes 1,189 49.13% 434 52.86% 3.35

No 1,224 50.58% 384 46.77%

Hypertension

Yes 714 29.50% 403 49.09% 102.9*

No 1,704 70.41% 418 50.91%

Diabetes

Yes 238 9.83% 146 17.78% 42.32*

No 2,141 88.47% 652 79.42%

Borderline 41 1.69% 23 2.80%

*p < 0.05.

alcoholic (67.4%), non-smoking (50.58%), non-hypertension

(70.41%), and non-diabetes (88.47%). In aging group, the main

compositions included the elderly (71.4± 7.93), middle income

(PIR 2.63 ± 1.57), overweight (42.51%), male (53.23%), Non-

Hispanic White (56.64%), less than high school (42.27%),

married (64.19%), alcoholic (61.63%), smokers (52.86%), non-

hypertension (50.91%), and non-diabetes (79.42%). Between

overall and aging groups, several characteristics had significant

difference including BMI distribution, gender, race, education,

marital status, alcohol, hypertension, and diabetes.

Distribution of urine metals

Table 2 showed the limit of detection (LOD), GM,

95% confidential interval (CI), and four quantiles of the
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TABLE 2 Urine metals (ng/ml) in overall and aging population of the NHANES 1999–2002.

Overall (N = 2420) ≥LOD (%) GM (95%CI) Quartile 1 Quartile 2 Quartile 3 Quartile 4

LTL 0.99(0.99, 1.01) ≤0.84 0.84–0.99 0.99–1.17 >1.17

Barium 0.084 1.29(1.24, 1.35) ≤0.66 0.66–1.39 1.39–2.65 >2.65

Cadmium 0.055 0.31(0.3, 0.33) ≤0.17 0.17–0.32 0.32–0.62 >0.62

Cobalt 0.024 0.36(0.35, 0.37) ≤0.22 0.22–0.38 0.38–0.59 >0.59

Cesium 0.13 4.46(4.33, 4.6) ≤3.01 3.01–4.96 4.96–7.26 >7.26

Molybdenum 0.8 42.46(40.97, 44) ≤25.4 25.4–47.4 47.4–77.2 >77.2

Lead 0.03 0.82(0.79, 0.85) ≤0.5 0.5–0.9 0.9–1.5 >1.5

Antimony 0.022 0.13(0.12, 0.13) ≤0.09 0.09–0.13 0.13–0.19 >0.19

Thallium 0.018 0.16(0.15, 0.16) ≤0.11 0.11–0.18 0.18–0.26 >0.26

Aging (N = 821) ≥LOD (%) GM (95%CI) Quartile 1 Quartile 2 Quartile 3 Quartile 4

LTL 0.88(0.87, 0.90) ≤0.75 0.75–0.88 0.88–1.02 >1.02

Barium 0.084 1.1(1.02, 1.18) ≤0.59 0.59–1.1 1.1–2.2 >2.2

Cadmium 0.055 0.41(0.38, 0.43) ≤0.24 0.24–0.44 0.44–0.75 >0.75

Cobalt 0.024 0.31(0.29, 0.33) ≤0.2 0.2–0.32 0.32–0.5 >0.5

Cesium 0.13 4.16(3.97, 4.37) ≤2.9 2.9–4.55 4.55–6.65 >6.65

Molybdenum 0.8 39.17(36.85, 41.63) ≤23.2 23.2–41.1 41.1–71.1 >71.1

Lead 0.03 0.87(0.82, 0.93) ≤0.5 0.5–0.9 0.9–1.6 >1.6

Antimony 0.022 0.11(0.11, 0.12) ≤0.08 0.08–0.11 0.11–0.16 >0.16

Thallium 0.018 0.14(0.13, 0.14) ≤0.09 0.09–0.14 0.14–0.22 >0.22

eight urine metals among total and aging participants in

our study. All eight urinary metals were recorded using

ng/ml. Besides, we analyzed the correlation among all the

variables in the regression model. Supplementary Figure 1

showed that all urine metals and creatinine had some

correlations.

Associations of urine metal metabolites
with LTL

In this section, we fittedMLR in steps to validate the stability

of result. The dependent variable LTL was log transformed and

normalized, but the normality analysis showed that all variables

did not obey normality. In Model 3 of overall group included

all covariates and only Cd was found significant in association

with shortening LTL (third quantile: −9.36, 95%CI = [−19.7,

−2.32)]. In aging group, Mo was associated with prolonging

LTL in model 3 [third quantile: 24.37, 95%CI = (5.42, 63.55)]

(Table 3).

Artificial neural network for predicting
mean T/S ratio

As shown in Figure 2, based on the risk factors analysis using

MLR, we developed an ANN algorithm taking 25 items as the

input parameters (data about demography, behavior, disease,

and urinary metal). In the hidden layer setting, there were 24

neurons with 0.375 exit rate in the first layer, 15 neurons with

0.53 exit rate in the second layer, and 7 neurons with 0.86 exit

rate in the third layer. Logical and rectified linear unit was

used in all layers, and finally an output result was obtained.

After the model was fitted, we evaluated the importance of the

input variables on the model. From Figure 3, it could be seen

that the greatest negative impact was urinary cadmium and the

greatest positive impact was urinary molybdenum, which were

consistent with the significant heavy metals analyzed by MLR.

In the process of model fitting, the relationship between

the iterations and MAE was conducted in Figure 4. It could be

seen that when the iterations reached 10, the minimum values

of LOSS and MAE were 0.054 and 0.181, respectively. Since

then, MSE would not change with the increase of iteration

times, so 10 times iteration was selected as the parameter of

model fitting. Finally, we took put test dataset into the model

to get the predicted mean T/S ratio. Then scatter plot of

predicted value with the original value with trend line was made.

Supplementary Figure 2 showed that the scatter points had

obvious linearity, indicating that the predicted value was reliable.

Discussion

The MLR results of the total population showed that there

was a negative correlation between urinary Cd and LTL inmodel

1 (adjusted for urine creatinine), model 2 (adjusted for creatinine
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TABLE 3 Percent di�erence (95% CI) in leukocyte telomere length (T/S ratio) by urine metals (ng/mL) in overall and aging population of the NHANES 1999–2002.

Overall Aging

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Urinary barium

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 −0.32 (−10.8, 11.4) −1.85 (−11.42, 8.75) −1.67 (−11.3, 8.99) 7.36 (−12.7, 32.02) 8.33 (−11.46, 32.55) 4.46 (−10.58, 22.04)

Quartile 3 1.79 (−9.35, 14.31) 3.32 (−7.1, 14.91) 3.37 (−7.05, 14.97) 0.93 (−15.46, 20.49) 1.19 (−14.47, 19.71) 2.97 (−17.83, 29.05)

Quartile 4 0.02 (−3.51, 3.68) −0.06 (−3.26, 3.25) −0.17 (−3.38, 3.15) −0.89 (−6.1, 4.61) −1.88 (−6.92, 3.45) −2.76 (−8.23, 3.03)

p trend 0.74 0.17 0.23 0.62 0.65 0.67

Urinary cadmium

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 −7.51 (−18.16, 4.52) −3.55 (−14.27, 8.52) −3.46 (−14.24, 8.67) −10.67 (−25.92, 7.72) −8.88 (−24.09, 9.37) 1.41 (−18.43, 26.08)

Quartile 3 −18.47 (−27.89, −7.83)* −8.99 (−19.38, −2.73)* −9.36 (−19.7, −2.32)* −5.6 (−24.64, 18.26) −9.48 (28.1, 13.97) −5.67 (−21.95, 14)

Quartile 4 −4.09 (−8.59, −0.63)* 3.05 (−1.52, −7.83)* 2.68 (−1.93, 7.5) 1.94 (−6.96, 11.68) 5.25 (−3.92, 15.29) 0.74 (−6.76, 8.85)

p trend <0.0001* 0.4 0.31 0.01* 0.03* 0.04*

Urinary cobalt

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 7.37 (−6.42, 23.19) 8.56 (−4.43, 23.3)* 8.61 (−4.39, 23.39) 2.08 (−22.4, 34.29) −3.21 (−26.21, 26.96) 6.53 (−13.02, 30.48)

Quartile 3 −1.53 (−17.24, 17.16) −6.87 (−20.57, 9.18) −7.97 (−21.49, 7.88) −8.46 (−30.3, 20.23) −10.54 (−31.89, 17.5) −15.5 (−37.78, 14.76)

Quartile 4 2.4 (−2.44, 7.48) −0.9 (−5.13, 3.53) −0.87 (−5.11, 3.55) −6.35 (−12.69, 0.44)* −3.65 (10.1, 3.27) −4.17 (−11.59, 3.88)

p trend 0.29 0.89 0.83 0.15 0.6 0.66

Urinary cesium

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 −0.91 (−17, 18.3) −0.03 (−14.94, 17.49) 0.33 (−14.67, 17.96) −13.33 (−34.44, 14.57) −9.24 (−30.95, 13.92) −3.71 (−24.93, 23.51)

Quartile 3 −9.47 (−25.13, 9.48) −8.72 (−23.54, 8.98) −10.07 (−24.71, 7.43) 1.64 (−26.39, 40.33) −6.55 (−32.05, 28.52) −8.01 (−34.48, 29.16)

Quartile 4 −1.91 (−7.95, 4.53) 3.5 (2.17, 8.86)* −3.87 (−9.21, 1.78) −6.16 (−18.7, 8.31) −7.16 (−19.4, 6.95) −1.25 (−16.15, 16.3)

p trend 0.03* 0.69 0.71 0.38 0.45 0.47

Urinary molybdenum

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 −6.31 (−16.66, 5.33) 7.91 (−2.53, 17.29)* −5.13 (−14.89, 5.76) −5.09 (−24.14, 18.74) −2.05 (−21.65, 22.47) −1.2 (−17.77, 18.72)

Quartile 3 14.22 (−1.89, 32.98)* 11.02 (−3.32, 27.48)* 10.23 (−3.98, 26.55) 3.15 (−17.79, 29.42) 11.51 (−10.97, 39.68) 24.37 (5.42, 63.55)*

Quartile 4 −0.9 (−7.1, 5.71) 2.23 (−3.48, 8.28) 2.09 (−3.61, 8.12) −0.09 (−9.02, 9.73) 0.17 (−8.53, 9.69) 1.2 (−8.4, 11.8)

(Continued)
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TABLE 3 (Continued)

Overall Aging

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

p trend 0.11 0.03* 0.03* 0.08 0.09 0.12

Urinary lead

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 0 (−18.7, 23) 7.23 (−11.67, 30.17) 5.67 (−13.01, 28.36) 1.1 (−30.53, 47.12) −2.5 (−30.4, 36.57) −1.58 (−30.13, 38.63)

Quartile 3 −0.28 (−16.76, 19.46) 15.67 (−2.13, 36.7) 15.29 (−2.5, 36.33) 30.57 (−1.02, 72.24) 32.62 (0.5, 75.01) 31.18 (−0.81, 73.49)

Quartile 4 −0.59 (−5.08, 4.1) 2.22 (−2.05, 6.67) 1.97 (−2.31, 6.43) −0.48 (−7.52, 7.1) 2.71 (−4.71, 10.71) 1.54 (−5.23, 8.79)

p trend 0.0001* 0.12 0.13 0.22 0.73 0.69

Urinary antimony

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 0.67 (−20.16, 26.94) −3.01 (−20.81, 18.8) −0.03 (−21.18, 18.5) −23.31 (−42.59, 2.43)* −22.4 (−41.52, 2.97) 8.1 (−22.1, 50.01)

Quartile 3 −11.03(−28.76. 11.12) −14.12(−30.08, 5.48) −0.15(−30.06, 5.63) −13.41(−46.52, 40.2) −18.12(−48.69, 30.67) −15.3 (−44.6, 29.48)

Quartile 4 0.11(−4.86, 5.35) 0.77(−3.87, 5.64) 0.005(−4.17, 5.34) 1.75(−5.15, 9.15) 1.25(−5.48, 8.46) 2.112 (−5.41, 10.24)

p trend 0.13 0.7 0.71 0.04* 0.04* 0.04*

Urinary thallium

Quartile 1 Reference Reference Reference Reference Reference Reference

Quartile 2 1.89 (−14.26, 21.08) −1.75 (−16.15, 15.13) −1.3 (−15.82, 15.72) 7.87 (−13.47, 34.48) 7.43 (−13.3, 33.12) 2.58 (−17.4, 27.4)

Quartile 3 13.44 (−14.02, 49.67) 12.85 (−12.7, 45.86) 13.75 (−12.08, 47.16) 6.34 (−20.24, 41.77) −3.32 (−27.19, 28.38) −0.58 (−40.94, 67.39)

Quartile 4 1.46 (−6.19, 9.73) 4.16 (−3.42, 12.34) 3.6 (−3.93, 11.72) −3.59 (13.14, 7.01) −3.29 (−12.96, 7.46) −4.3 (−16.76, 10.03)

p trend 0.04* 0.53 0.41 0.04* 0.19 0.16

Bold values were statistically significant with P value < 0.05. *p < 0.05.

F
ro
n
tie

rs
in

P
u
b
lic

H
e
a
lth

0
8

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fpubh.2022.963138
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Xia et al. 10.3389/fpubh.2022.963138

FIGURE 2

Architecture of multilayer artificial neural network of urinary metal for LTL prediction.

FIGURE 3

Variable importance plot of ANN.
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FIGURE 4

Plot of LOSS and MAE with iterations.

and demographic factors), and model 3 (adjusted for creatinine,

demographic, and disease factors), indicating the higher the

urinary Cd, the shorter the LTL. This result was biologically

reasonable because Cd was associated with mechanisms that

promoted telomere shortening, including oxidative stress,

inhibition of DNA repair, and inflammation. Due to the high

level of guanine, telomere was particularly sensitive to oxidative

stress. At the same time, telomeremight have defects in repairing

single strand breaks. Inflammation might accelerate leukocyte

telomere shortening by promoting cell renewal, replicative

aging, and inducing oxidative stress. Cadmium could stimulate

the inflammatory cytokines. Cadmium was a recognized human

carcinogen and had been proved to interfere in DNA repair

system. Zota et al. analyzed the NHANES 1999–2002 data set

and reported the highest quartile of Cd in blood and urine

was correlated with shorter LTL, and there was evidence of

dose-response relationship (P < 0.05) (20).

In the elderly population, model 3 showed a high positive

correlation betweenMo and LTL [24.37, 95%CI= (5.42, 63.55)].

Domingo Raloso et al. found that the increase of urinary Mo

level was related to the increase of redox glutathione ratio

(GSSG/GSH), indicating that Mo might reduce the effect of

metal oxidative stress. Nakadaira et al. investigated the levels

of Mo and Se in sediments and the cancer mortality in 19

areas of Niigata Prefecture, Japan. It was found that Mo could

inhibit gastrointestinal cancer (21). Meanwhile, Mo compounds

could be used as drugs for detecting and treating tumors. Dhas

et al. reviewed MoS2 nanocomposites had attracted extensive

attention in the fields of optics, catalysis, electrochemistry, and

cancer treatment (22). According to the literature search results,

there was little research on association between Mo and LTL,

which might be a direction worthy of exploration.

There was no correlation between urinary Co, Cs, Pb,

and LTL in overall population and the elderly population,

respectively. This was consistent with the research of Zota et al.

(20). However, Herlin et al. believe that urinary Pb would affect

telomere shortening in children, especially boys (23).

There was no correlation between urinary Sb, Tl, Ba, and

LTL in the total population. There was no correlation between

urinary Tl, Ba, and LTL in the overall and elderly population. It

was reported that ANN could be used for age prediction based

on DNA methylation (18). Leukocytes telomere length was

closely related to human aging. Perhaps it was meaningful to put

urinary metal, demographic data, behavior, and disease history
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to predict LTL, since the close correlation between LTL and life

expectancy. Compared with MLR, ANN especially Tensorflow

framework is a brand new technique to make prediction. But, in

exploration of risk factors, MLR had good performance which

ANN is not good at. Artificial neural network might have better

performance than MLR in prediction, since it could include all

possible variables and large sample size (10–13).

To our knowledge, this was the first ANN analysis for LTL

prediction based on urinary metal. Based on the analysis of

the correlations between urinary metal and LTL above in this

study, it was suitable for deep learning model. Artificial neural

network was a classical algorithm framework of deep learning. It

was widely used in categorical variable classifying, continuous

variable regression, and time-series data prediction (24–27).

Because ANN had the ability to introduce non-linearity in high-

dimensional space, large scale factors could be considered to

improve the prediction sensitivity and specificity (28, 29).

In the process of model setting, it was found that three

hidden layers had good accuracy. The hidden nodes of three

layers were reduced from 25 to 24, 24 to 15, and 15 to 7,

and the final output result was obtained (Figure 2). This was

the best setting after many comparisons in parameters. The

training result on the variable importance was also in line with

the expectation that Cd had the strongest negative correlation

and Mo had the strongest positive correlation (Figure 3). After

10 iterations, LOSS and MAE reach stable minimum values

of 0.054 and 0.181, respectively (Figure 4). Finally, the ANN

prediction model was obtained. Based on the model, we put the

test set into the model and got the scatter diagram of the real

value and predicted value. From the diagram, it could be seen

that the scatter has good linearity and had a reliable prediction

(Supplementary Figure 2).

However, there were several limitations of our search. First,

the data used in this study were cross-sectional design, which

was impossible to infer the causal relationship between urinary

metals and LTL. Secondly, the participants’ urine samples were

collected and detected at one time, and the single point of

metal might not reflect the participants’ continuous exposure.

Thirdly, although we adjusted some demographic, medical

history, and lifestyle factors in linear regression, there were still

some confounding variables that affected the results. Fourthly,

the lack of information among participants might lead to the

exclusion of results. Finally, for the over fitting problem of ANN,

it was difficult for us to find the parameters to get high accuracy

without over fitting, so we could only choose the relatively

best parameters.

Conclusion

Overall, the main findings in our study were as follows:

urinary Cd was negatively correlated with LTL in the total

population and urinary Mo was positively correlated with LTL.

No correlations were found between urinary Co, Pb, Sb, Cs,

Tl, Ba, and LTL. Therefore, in adults especially the elderly, the

relationships between urinary Cd, Mo, and LTLmight be worthy

of further research. In addition, we also constructed an ANN

model to make predictions of LTL based on urinary metals,

demography, behavior, and disease history, which might help

to make prediction of people involving the aging. This could be

used in primary prevention of people especially the elderly.
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