
Clinical Infectious Diseases

M A J O R  A R T I C L E

Received 5 November 2021; editorial decision 8 February 2022; published online 17 February 
2022.

a A. B. and M. O.’D. contributed equally to this work.
Correspondence: A. Brizzi, Department of Mathematics, Imperial College London, London, 

UK (ab1820@ic.ac.uk).

Clinical Infectious Diseases®  
© The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society 
of America. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://doi.org/10.1093/cid/ciac138

Refining Reproduction Number Estimates to Account 
for Unobserved Generations of Infection in Emerging 
Epidemics
Andrea Brizzi,1,a Megan O’Driscoll,2,3,a and Ilaria Dorigatti2

1Department of Mathematics, Imperial College London, London, United Kingdom;2MRC Centre for Global Infectious Disease Analysis and Jameel Institute, School of Public Health, Imperial College 
London, London, United Kingdom;3Department of Genetics, University of Cambridge, Cambridge, United Kingdom

Background.  Estimating the transmissibility of infectious diseases is key to inform situational awareness and for response pla-
nning. Several methods tend to overestimate the basic (R0) and effective (Rt) reproduction numbers during the initial phases of an 
epidemic. In this work we explore the impact of incomplete observations and underreporting of the first generations of infections 
during the initial epidemic phase.

Methods.  We propose a debiasing procedure that utilizes a linear exponential growth model to infer unobserved initial genera-
tions of infections and apply it to EpiEstim. We assess the performance of our adjustment using simulated data, considering different 
levels of transmissibility and reporting rates. We also apply the proposed correction to severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) incidence data reported in Italy, Sweden, the United Kingdom, and the United States.

Results.  In all simulation scenarios, our adjustment outperforms the original EpiEstim method. The proposed correction re-
duces the systematic bias, and the quantification of uncertainty is more precise, as better coverage of the true R0 values is achieved 
with tighter credible intervals. When applied to real-world data, the proposed adjustment produces basic reproduction number esti-
mates that closely match the estimates obtained in other studies while making use of a minimal amount of data.

Conclusions.  The proposed adjustment refines the reproduction number estimates obtained with the current EpiEstim imple-
mentation by producing improved, more precise estimates earlier than with the original method. This has relevant public health 
implications.
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The wide-ranging impacts of the current coronavirus disease 
2019 (COVID-19) pandemic have highlighted the threats posed 
by infectious diseases to our society. The impacts of such threats 
are not exclusively confined to the domain of public health: 
in addition to the millions of confirmed deaths worldwide, 
COVID-19 has caused severe economic and societal disruption 
around the world. As such, it is crucial that the properties of 
all emerging pathogens are adequately characterized as soon as 
possible, making the best use of the limited data that are typi-
cally available in the early phases of an epidemic. In particular, 
understanding the transmissibility of a novel pathogen allows 
for the evaluation of the risks involved, to inform public health 
decision making and the implementation of interventions. In 

this context, the basic and instantaneous reproduction num-
bers, R0 and Rt, represent key epidemiological parameters. Rt 
represents the average number of secondary infections caused 
by a single infectious individual at time t, and R0 represents the 
average number of secondary infections generated by a typical 
infection in a completely susceptible population. These param-
eters relate to important quantities such as the final size of an 
epidemic [1] and the critical herd immunity threshold [2, 3]  
and are essential to project the expected future number of cases, 
hospitalizations and deaths. In the last couple of decades, sev-
eral methods have been developed to estimate Rt. EpiEstim, 
developed by Cori et al [4], has been recommended as one of 
the best methods for near real-time estimation of Rt to detect 
changes in transmissibility patterns [5]. However, EpiEstim 
and other commonly used statistical methods can suffer from 
systematic overestimation of the basic reproduction number 
in the early stages of an epidemic [6]. In the initial epidemic 
stages, EpiEstim is outperformed by simpler inference methods 
based on exponential growth [7], which produce smaller bias 
and better quantify uncertainty in R0 estimates. Following the 
theory of exponential growth [7], we propose an adjustment to 
EpiEstim to account for missing initial generations of infections 
and use simulated data to test its effectiveness. We show how 
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the adjustment entails a reduction in the bias of both the R0 and 
early Rt estimates produced by the original EpiEstim method. 
Finally, we compare the estimates produced with and without 
the proposed adjustment on early COVID-19 data in Europe 
and in the United States.

METHODS

Several methods, based upon different frameworks, have been 
developed to estimate the reproduction number. One of the 
simplest methods assumes exponential growth of the number 
of new infections, which can be characterized by applying a 
simple linear regression on the log-transformed incidence data. 
Wallinga and Teunis [8] base their methodology on deter-
mining likelihoods of chains of infections, White and Pagano 
[9] use branching process theory, whereas Bettencourt and 
Ribeiro [10] base their approach on SIR differential equations. 
In this work we focus on EpiEstim, the method developed by 
Cori et al [4], which has been recommended for near real-time 
estimation [5] and has been applied extensively during the on-
going and past epidemics [11].

Despite differences in the mathematical formulations, all 
methods described above infer Rt or R0 from case incidence data 
using assumptions on the generation interval or the serial in-
terval distributions. The generation interval is defined as the av-
erage length of time between the moment an individual becomes 
infected and the moment in which they infect a secondary case. 
Similarly, the serial interval corresponds to the difference be-
tween symptom onsets of the primary case and symptom onset 
of the secondary case. Under weak assumptions, the distribu-
tions of the 2 intervals are equivalent [4]. Therefore, we here 
focus on the generation interval distribution, denoted w.

Exponential Growth

One of the simplest methods to characterize the speed of an 
epidemic, as measured by the growth rate r, is to fit the log-
transformed incidence data by linear regression. The growth 
rate r can then be used to estimate the reproduction number 
R0 if the generation interval w is known [12]. The assumption 
of exponential growth is justifiable in a first epidemic period 
where the proportion of susceptible individuals in a popula-
tion is large. As more individuals get infected and immunity 
accumulates in the population, the growth of the number of 
new cases slows down and deviates from being exponential. A 
rule of thumb to identify the time window of the exponential 
growth, proposed by White and Pagano [9] and based on the 
theoretical work of Ball and Donnelly [13], is that the cumula-
tive number of infected individuals does not exceed the square 
root of the population size.

EpiEstim

Cori et al [4] model observed infections as a Poisson pro-
cess, where the mean is defined via 2 quantities: the 

effective reproduction number Rt, and population infectious-
ness Λt = ∑s = 0

n It-s ws. The reproduction number is assumed to 
remain constant over sliding windows of time with length τ, 
allowing for data aggregation over time and reduced variance. 
Assuming a Gamma prior distribution on Rt,τ, the posterior dis-
tribution is Gamma distributed with parameters:

apost = aprior +
t∑

s=t−τ+1

Is, bpost =

(
t∑

s=t−τ+1

Λs + bprior
−1

)−1

,

 � (1)
where a and b refer to the shape and scale parameters, respec-
tively. Considering τ = 1 and uninformative priors (ie, letting 
aprior, bprior tend to 0) yields the posterior mean: It

Λt
= It∑t−1

s=0
wsIt−s

.

Thus, we can effectively think of EpiEstim’s estimates of Rt as 
closely related to the ratio between the number of observed in-
fections on day t over the population infectiousness on the same 
day. Given enough data, this estimator can accurately identify Rt 
and detect abrupt changes in transmissibility [5]. However, the 
method can suffer from systematic bias in the initial period of 
estimation, as described by O’Driscoll et al [6]. When the first 
chains of infections are not observed, the estimator will tend to 
attribute all new cases to the first observed cases, overestimating 
the reproduction number.

EpiEstim: Proposed Adjustment

We propose an adjustment to account for unobserved initial in-
fections and exponential growth similar to the one developed 
in Dorigatti et al [14]. Specifically, we assume that the epidemic 
is growing exponentially to back-impute infections in the pe-
riod prior to the fist observation. Note that this assumption 
is theoretically justified in the early stages of an epidemic [7], 
and exponential growth inference methods are between the 
most accurate in this initial period, as observed in O’Driscoll 
et al [6]. Our procedure can be summarized in 3 simple steps 
and is visualized in Figure 1. First, we fit a linear model on the 
log-transformed incidence data to estimate the growth rate, as 
shown in Figure 1A. Second, we use this linear model to back 
impute incidence data, prior to the time of the first observed 
case. In particular, we obtain an estimate of the number of cases 
for S days, where S is the largest possible generation interval 
length, i.e., the largest value such that ws > 0. We highlight that 
it is not necessary to round the output of the inferred number 
of cases, and estimates lower than 1 should not be removed. 
Finally, we apply EpiEstim to the extended epidemic curve (in-
cluding the back imputed incidence data).

Simulations

To evaluate the effects of our correction, we compared the per-
formance of EpiEstim with and without the adjustment on 
simulated data. We additionally compared the results to those 
obtained by fitting a linear exponential growth model, as the 
performance of our correction strongly depends on the accu-
racy of the estimates of the growth rate. We used a stochastic 
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SEIR simulator to generate 200 epidemic curves for each R0 
values in {1.5, 2, 2.5, 3}.

We considered a large population of 106 individuals and epi-
demics initiated by 5 initial infections. We assumed 3 days and 
3.5 days as the mean times spent in the exposed and infectious 
compartments respectively, yielding a 6.5 mean generation in-
terval commonly used to model COVID-19 [6]. To account for 
imperfect reporting, we simulated 2 types of issues commonly 
affecting the observed data: underreporting and unobserved in-
itial generations of infections. We simulate unobserved initial 
generations by considering the simulated data from day 15 to 
day 28, corresponding to two generation intervals worth of data 
after having missed the first two generations. Furthermore, we 
simulated underreporting by considering a constant reporting 
rate ρ in {0.15, 0.3, 0.5, 1}. Daily observations were sampled as 
binomial realizations of true incidence with success probability 
equal to the reporting rate ρ.

RESULTS

Method Comparison

We fitted the exponential growth, EpiEstim and adjusted 
EpiEstim methods to the simulated data assuming a Gamma dis-
tributed generation interval matching the mean and variance of 
the generating process (ie, 6.5 mean generation interval). Figure 2 
shows the effect of our adjustment when the reporting rate is 50% 

and shows that the initial bias observed in the estimates obtained 
with EpiEstim is strongly reduced by the proposed adjustment, 
and the mean estimates are comparable with those produced by 
the exponential growth method. These trends are observed for 
each value of ρ, implying consistency in the estimates obtained 
with different reporting rates (Figure 2 and Supplementary 
Figures 4–6). Our adjustment not only improves the accuracy of 
the central estimates of R0, but also improves uncertainty quantifi-
cation. Average credible/confidence interval widths and coverage 
are reported in Figure 3. Coverage remains constant across dif-
ferent values of the reporting rate for the estimates obtained with 
the exponential growth and adjusted EpiEstim methods. On the 
other hand, the large bias observed in the estimates obtained with 
EpiEstim implies that as credible intervals get narrower, coverage 
decreases dramatically (Figure 3B and 3C). The EpiEstim adjust-
ment proposed in this article produces generally narrower cred-
ible intervals as compared to the exponential growth method, at 
the price of a slight decrease in coverage. This trade-off is in favor 
of our adjustment for values of R0 larger than 2, when coverage 
among the 2 methods is similar. Furthermore, we highlight that 
the proposed adjustment does not influence later estimates of Rt 
produced by EpiEstim (Figure 1).

Impact of Missed Generations

Beyond simulating undetected cases, reflecting a surveil-
lance system which may be unprepared or unaware of a newly 

Figure 1.  Visualization of the exponential growth adjustment method applied to simulated data obtained with R0 = 2.5, reporting rate ρ = 1 and resulting changes in 
posterior estimates having assumed 2 unobserved generations. A, Logarithms of the first reported data (those in the green region) are used to fit a linear model (black solid 
line). The linear model is then used to back-impute unobserved cases (red dots) to complement the available data (blue dots). B, True Rt value (black solid line) is compared 
to EpiEstim estimates without (blue) and with (red) adjustment using sliding windows of 7 days. The back-imputation reduces the initial mean estimates (dotted lines) and 
95% credible interval widths (ribbons). The adjusted method then converges to the original method as the importance of the imputed datapoints vanishes. Abbreviations: 
EpES, EpiEstim; EpEsAdj, adjusted EpiEstim.
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unfolding epidemic, we investigated the impact of the number 
of unobserved generations on the estimates obtained with our 
adjustment using simulated data generated under a scenario 
with perfect reporting rate (ρ = 1) and R0 = 2.5. From each ep-
idemic trajectory, we considered 3 different left truncations 
of the data to account for 0, 1, and 2 unobserved generations. 
We then applied EpiEstim with and without the proposed ad-
justment using biweekly time windows starting on weeks 0, 
1, and 2.

Figure 4 shows the distribution of the mean estimates for the 
100 simulations. Each row identifies the number of unobserved 
generations, whereas on the x-axis we show the time window 
used to obtain the estimate. Figure 4 also shows that the ad-
justment is particularly useful when larger numbers of initial 
generations are unobserved. Although the proposed adjust-
ment produces comparable estimates to those obtained with 
EpiEstim when all generations are observed (top row of Figure 
4), its dependence on the exponential growth method intro-
duces a layer of stochasticity that increases the variance of the 
mean estimates. On the other hand, when 1 or 2 generations are 
unobserved, the proposed adjustment adequately compensates 
for EpiEstim’s bias, and the median estimates become closer to 
the true R0 value used to simulate the data.

Application to Reported COVID-19 Data

In addition to validating the proposed adjustment on simulated 
data, we applied it to real-world COVID-19 incidence case data 
reported in the John Hopkins Center for Systems Science and 
Engineering database [15, 16]. During the initial phases of the 
outbreak, surveillance systems of several countries were unpre-
pared to detect infectious individuals, and it is likely that the 
first generations of infections were not observed, justifying 
our back-imputation adjustment. We selected Italy, Sweden, 
United Kingdom, and the United States as case studies. For each 
country, we fitted the log-transformed incidence case count re-
ported for the first sequential 7 days of sustained transmission 
(no days with 0 new cases in the selected time window) with a 
linear regression model. We then inferred the number of un-
observed cases before the selected time window and applied 
EpiEstim with and without adjustment to the observed and im-
puted data, using weekly sliding windows and assuming a gen-
eration interval with mean 5.7 days and standard deviation of 
1.72 days [17]. Figure 5 shows that the adjustment lowers the 
estimates of R0 in every scenario, suggesting a role for unob-
served generations of infections in overestimating the early R0 
estimates of SARS-CoV-2, which in turn also affect the early 
estimates of Rt. We obtained average R0 estimates of 3.6 with 

Figure 2.  Distribution of mean R0 estimates assuming a fixed reporting rate ρ = 50%. Each panel shows the distribution of the mean R0 estimates obtained using 200 simu-
lations for a given true R0 value (red dashed line). Abbreviations: EG, linear exponential growth rate method; EpES, EpiEstim; EpEsAdj, adjusted EpiEstim.
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95% credible interval (CrI) (2.8, 4.6) in the United Kingdom, 
5.2 (95% CrI 4.9, 5.6) for Italy, 8.7 (95% CrI 7.8, 9.6) for the 
United States, and 3.9 (95% CrI 3.5, 4.3) in Sweden.

DISCUSSION

We propose a correction for the systematic overestimation of 
R0 that occurs in the early stages of an epidemic when using 
EpiEstim and other common inferential methods, utilizing a 
back-imputation procedure that relies on exponential growth. 
The proposed correction aims to account for unobserved gen-
erations of infections. For this reason, we deem it to be most ap-
plicable in scenarios where generations of infections may have 
been missed due to emergency situations and limited testing, 
and generation intervals are relatively short. In practice, the ad-
justment will prove especially useful to evaluate transmissibility 
of diseases that are either asymptomatic or cause mild symp-
toms for a large proportion of infected individuals. Similarly, the 
adjustment may prove applicable to diseases characterized by 
long time lags between infection to symptom onset, especially if 

infectiousness develops significantly earlier than symptoms. In 
this article, we demonstrate the application of this adjustment 
to the EpiEstim method, although it can be applied to other sta-
tistical methods where this bias may occur. The resulting ad-
justed EpiEstim method combines the best features of EpiEstim 
and the exponential growth method, which is more adequate 
for the early phases of an epidemic. In particular, the long-run 
Rt estimates of the original EpiEstim method are preserved, 
whereas the initial bias observed in the estimates is reduced by 
the proposed adjustment. This was confirmed in all scenarios 
of our simulation experiments, independently of the reproduc-
tion number and the reporting rate values used to simulate the 
data. The adjusted estimates of R0 strongly outperformed the es-
timates obtained with the original EpiEstim method in terms of 
bias and coverage, and produced tighter 95% credible intervals. 
Our results show that the R0 estimates obtained with the ad-
justed EpiEstim and linear exponential growth method are very 
similar. This is likely due, in part, to the fact that the proposed 
adjustment relies on linear regression, which is used for the 
back imputation of the unobserved generations of infections.

Figure 3.  Median (point) and 95% CrI (interval range) of the basic reproduction number (R0) mean estimates (A), mean coverage (B) and mean 95% CI/CrI widths (C) for 
different values of R0 and reporting rates ρ. Each panel represents distinct values of R0, whereas different colors represent different reporting rates. Abbreviations: CI, confi-
dence interval; CrI, credible interval; EG, linear exponential growth rate method; EpEs, EpiEstim; EpEsAdj, adjusted EpiEstim.
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The proposed method does not currently incorporate un-
certainty in the growth rate estimate nor in the imputed cases. 
Further work is required to understand how the uncertainty in 
our correction may be best propagated throughout the R0 or Rt 
estimation process.

The effect of our adjustment was evident when working 
with early COVID-19 data from Italy, the United Kingdom, 
Sweden, and the United States. The adjusted estimates were 
significantly lower than the estimates obtained with the 
original EpiEstim method and were found to be largely con-
sistent with estimates derived in Ke et al [18]. This is espe-
cially encouraging considering that our adjusted R0 estimates 
were obtained by making use of 7 days’ worth of data, while 
those of Ke et al [18]. were obtained on both case and death 
time series data spanning months. This suggests that our 
method can yield improved precision with limited infor-
mation, which may prove valuable in emerging epidemics. 
Although several papers and meta-analyses reported es-
timates of the exponential growth rate for the 4 countries 
[19–21], the parametrization of the generation interval used 
and the reproduction number estimates were often lacking 
[22] thus hindering further comparisons. Furthermore, the 
adjustment alone was not enough to explain the estimated 
decrease in Rt in the study period considered (see Figure 5), 

possibly suggesting that changes in individual behavior and 
governmental interventions lowered transmissibility of the 
disease. However, other biases may be playing a role, such 
as changes in reporting rates, overestimation due to import-
ations [23], or model misspecification.

Critically, the results are sensitive to the choice of EpiEstim 
parameters, such as the generation interval and the length of 
the time window used. As expected, longer generation intervals 
produce larger reproduction number estimates, and we observe 
larger discrepancies between the estimates obtained with the 
original and adjusted EpiEstim methods, even if the coefficient 
of variation is kept constant (Supplementary Figures 1–3).

Concerning the choice of the sliding window, the larger time 
windows produce smoother estimates, which reduces the im-
pact of the imputed cases. This means that our adjustment has 
a much smaller effect when considering sliding windows cov-
ering 2 generation intervals worth of data or more.

To test the sensitivity of the estimates to the exponential 
growth assumption, we explored the performance of the method 
applied to case data obtained assuming sub-exponential growth 
[24, 25]. The results of this sensitivity analysis, which are re-
ported in the Supplementary Information, show that our ad-
justment performs well in cases of moderate departures from 
the exponential growth assumption.

Figure 4.  Distribution of mean R0 estimates, obtained using biweekly time windows (x-axis) and a variable number of unobserved generations (0, 1, and 2; see rows), as-
suming R0 = 2.5 and reporting rate ρ = 1. EpiEstim estimates are shown in blue, adjusted EpiEstim estimates are shown in red. On the axis, the sliding window used to fit the 
method is shown. Each window contains 14 consecutive data points, starting at week 0, or week 1, or week 2. Abbreviations: EpEs, EpiEstim; EpEsAdj, adjusted EpiEstim.
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Here we have used a linear exponential growth method to 
infer missing initial generations of infection, improving the ac-
curacy of early R0 and Rt estimates produced by commonly used 
statistical methods such as EpiEstim. Our analysis shows how 
a simple adjustment can reduce the initial bias in reproduction 
number estimates in a newly emerging epidemic when the in-
terpretation of reproduction number estimates is crucial for 
public health decision making.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
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