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Abstract

Histones and associated chromatin proteins have essential functions in eukaryotic genome
organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack
a phylogenetically-comprehensive understanding of chromatin evolution. Here, we combine
comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea.
Proteomics uncovers the existence of histone post-translational modifications in Archaea.
However, archaeal histone modifications are scarce, in contrast with the highly conserved and
abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-
associated catalytic functions (e.g., methyltransferases) have pre-eukaryotic origins, whereas
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histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin
evolution is characterized by expansion of readers, including capture by transposable elements and
viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its
archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor,
to the diversification of chromatin regulators and their hijacking by genomic parasites.

Introduction

The access to genetic information in eukaryotes is controlled by a manifold nucleoproteic
interface called chromatin. This nucleosomal chromatin environment defines a repressive
ground state for transcription and other DNA-templated processes in eukaryotic genomes®-2.
Multiple components associated with chromatin underlie elaborate eukaryotic genome
regulation, allowing the differential access to genetic information in time/space and the
maintenance of the resulting regulatory states®-6. Moreover, chromatin-based regulation is
essential in repressing parasitic genomic elements, like transposons and viruses’—11,

The main protein components of eukaryotic chromatin are histones. All eukaryotes have
four major types of histones (H2A, H2B, H3 and H4), which are combined as an octamer
to form the basic repetitive unit of the chromatin: the nucleosome. Canonical histones

are among the most highly conserved proteins across eukaryotes!2 and, in addition,
unique histone variants (paralogs of one of the four major histone types) are found in
many species, often associated with particular regulatory states'3-17. Histone chemical
modifications, including acetylations and methylations play a central role in genome
regulation and transgenerational epigenetic inheritance3-18-21, These chemical moieties,
known as histone post-translational modifications (hPTMs), are added and removed by
specific enzymes (‘writers’, e.g., histone methyltransferases or acetylases; and ‘erasers’,
e.g., histone demethylases and deacetylases). Some hPTMs (e.g., most acetylations) have
a generic effect on nucleosome stability, while others are bound by specific proteins or
protein complexes. These are often referred to as ‘readers’ and include proteins like HP1,
which binds to H3K9me3, as well as a myriad of other proteins encoding Chromo, PHD,
Tudor and Bromo structural domains, among others22-24, Finally, nucleosome remodellers
(like SNF2 proteins) and histone chaperones are additional important players in chromatin
regulation, by mediating chromatin opening, nucleosomal assembly, and histone variant
interchanges2>-28,

All eukaryotes studied to date possess histone-based chromatin organization, with the
sole exception of dinoflagellates, which nonetheless encode for histone proteins in their
genomes??. Beyond eukaryotes, histones have also been identified in Archaea, where
they have been shown to form nucleosomal structures3%-32, However, unlike eukaryotic
histones, the few archaeal histones experimentally characterized so far (/) generally lack
disordered A-terminal tails; (/i) do not have any known post-translational modifications34;
and (/i) do not seem to impose a widespread, genome-wide repressive transcriptional
ground state33:35, Thus, chromatin-based elaborate genome regulation is often considered
a eukaryotic innovation36:37,
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From a phylogenetic perspective, our understanding of chromatin components and
processes derives from a very small set of organisms, essentially animal, fungal and

plant model species plus a few parasitic unicellular eukaryotes. Additional efforts have
sampled specific aspects of chromatin regulation, such as histone modifications or their
genome-wide distribution, in non-model animal species38:39, fungi (Neurospora crassa and
Fusarium graminearum)*%41, and five other eukaryotes: the unicellular holozoan Capsaspora
owczarzaki*?, the dinoflagellate Hematodiunium sp.2%, the brown alga Ectocarpus
siliculosus*3, the amoebozoan Dictyostelium discoideun?*, and the ciliate Tetrahymena
thermophila*>*8. However, these organisms represent a tiny fraction of eukaryotic diversity.
Hence, we lack a systematic understanding of the evolution of eukaryotic chromatin
modifications and components?’.

In order to infer the origin and evolutionary diversification of eukaryotic chromatin, we
performed a joint comparative analysis of histone proteomics data from 30 different
eukaryotic and archaeal taxa, including new data for 23 species. In parallel, we analyzed
the complement of chromatin-associated gene families in an additional 172 eukaryotic
genomes and transcriptomes. This comprehensive taxon sampling includes representatives
of all major eukaryotic lineages, as well as multiple free-living members of enigmatic
early-branching eukaryotes (e.g., jakobids, malawimonads, Meteora sp. and ancyromonads,
as well as Collodictyonida, Rigifilida and Mantamonadida (CRuMS); Fig. 1a). In addition,
in order to trace the pre-eukaryotic origins of these chromatin gene families, we
systematically searched for orthologs in archaeal, bacterial and viral genomes. Specifically,
we reconstructed the evolutionary history of enzymes involved in chromatin modification
and remodelling; as well as the conservation of the hPTMs effected by these enzymes. Our
comparative genomics and proteomics suggest a concurrent and early origin of canonical
histones, a core of quasi-universal hPTMs, and their corresponding enzymatic effectors. We
also identify independent expansions in hPTM reader gene families across eukaryotes and
document evidence of the capture of these reader domains by parasitic genomic elements.
Overall, this work provides a phylogenetically-informed framework to classify and compare
chromatin components across the eukaryatic tree of life, and to further investigate the
evolution of hPTM-mediated genome regulation.

Comparative proteomics of eukaryotic histone modifications

We analyzed the phylogenetic distribution and evolutionary history of histone proteins. To
this end, we surveyed the presence of histone-fold proteins across 172 eukaryotic and 4,226
archaeal taxa, using HMM searches (Fig. 1a,b and Supplementary Data 1). Histone proteins
are found in all eukaryotic genomes. We clustered the identified 8,576 histone-encoding
proteins using pairwise local alignments and then classified individual sequences in these
clusters based on pairwise alignments to a reference database*® (Fig. 1a and Extended

Data Fig. 1a). This reveals four broad clusters corresponding to the four main eukaryotic
histones (H2A, H2B, H3, and H4) and their variants (H2A.Z, macroH2A, and cenH3), as
well as a fifth cluster composed of archaeal HMfB homologs. Finally, this classification
also uncovers three large connected components composed of transcription factors with
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histone-like DNA binding domains, which are widely distributed in eukaryotes (POLE3,
POLE4, DR1) and/or archaea (NFYB). Further analysis of the genomic distribution of these
histone genes shows a frequent occurrence of H3-H4 and H2A-H2B pairs in head-to-head
orientation (5'to 5", strongly indicating co-regulation across eukaryotes (Extended Data Fig.
1b,c and Supplementary Data 2).

Next, we investigated the distribution and conservation of hPTMs across major eukaryotic
groups and Archaea, including methylations, acetylations, crotonylations, phosphorylations,
and ubiquitylations. To this end, histones from 19 different eukaryotic species were
extracted, chemically derivatized*® and analyzed by mass-spectrometry (Fig. 1c and
Supplementary Data 3), adding to previously available hPTM proteomics data for additional
seven species. Our extensive taxon sampling covers all major eukaryotic groups, as well

as hitherto unsampled early-diverging eukaryatic lineages—such as the malawimonad
Gefionella okellyi, the discoban Naegleria gruberi, or the ancyromonad Fabomonas tropica
—, thus providing a comprehensive comparative framework for evolutionary inference.

We focused first on hPTMs present in canonical histones, as defined by their highly
conserved A-terminal regions, phylogenetic analyses, and sequence similarity to curated
reference canonical histones (Fig. 1d; see Methods). hPTMs are detected in all canonical
histones from all species. After correcting by sequence coverage, we observe that hPTMs
are particularly abundant in H3 canonical histones (median = 23.5 hPTMSs per species, mean
= 24.3), compared with H2A, H2B and H4 (medians between 6.5 and 9, means between

9.5 and 13.4; Extended Data Fig. 2a). Holozoan canonical H2As (Homo sapiens, Sycon
ciliatum and Capsaspora owczarzaki) represent an exception to this trend and contain similar
number of modifications to H3s in these species. We also examined the reproducibility of
hPTM detection across replicate samples, showing that the majority of hPTMs (87.5%)

can be found in more than one sample (Extended Data Fig. 2b,c). Despite this, it is

worth emphasizing that our data may contain false negatives, beyond the lack of coverage
for particular residues that we systematically report. For example, some marks might be
globally too scarce in the nucleosomes of a particular species, while other modifications

like phosphorylations and ubiquitination are difficult to detect by mass-spectrometry without
dedicated peptide-enrichment protocols.

Canonical H3 and H4 Aterminal tails contain the majority of phylogenetically-conserved
hPTMs, in stark contrast with the relative paucity of conserved hPTMs in canonical H2A
and H2B. A striking example of paneukaryotic conservation comes from the acetylation of
the H4 K5, K8, K12 and K16 residues (Fig. 1d, second panel), all of which mark gene
expression-permissive chromatin environments in multiple eukaryotic species?2. A similar
conservation pattern is observed in the acetylation of a group of A-terminal H3 lysines (K9,
K14, K18, K23, K27) associated with similar functions, while other H3 acetylations are
only found in a few species (e.g., residues K4, K56 and K79). While acetylations are highly
conserved, only seven histone H3/H4 methylations are broadly conserved across eukaryotic
lineages: H3K4me1/2/3, H3K9me1/2/3, H3K27mel1/2/3, H3K36me1/2/3, H3K37mel1/2/3
and, more sparsely, H3K79me1/2 and H4K20mel. Many of these broadly conserved marks
have conserved roles in demarcating active (e.g., H3K4me) and repressive chromatin states
(e.g., H3K9me and H3K27me)22:42:50, The scarcity of conserved hPTMs in H2A and H2B
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canonical histones can partially explained by their higher degree of sequence divergence
(Fig. 1e), which is reflected in many non-homologous lysine residues (Fig. 1d). But even
among homologous positions, we found little evidence of conservation, with the exception
of H2A K5ac (associated to active promoters®L) and, in fewer species, methylation of H2A
K5 and H2B K5. Finally, we were also able to identify phosphorylations in serine and
threonine residues and a few instances of ubiquitylation. In general, these marks show

more restricted phylogenetic distributions than lysine acetylation or methylation, even in

the tightly conserved H3 and H4 histones. We can identify conserved phosphorylations in
H2A T120 and S122, which are shared by most opisthokonts, and the ubiquitylation of H2A
K119 only in some holozoan species.

Mass-spectrometry analysis detected histone variants in all species included in our study,
suggesting that they are relatively abundant in the chromatin of these eukaryotes (Fig. 1e).
Most of these variants are lineage-specific, with the exception of the paneukaryotic variants
H2A.Z, H3/cenH3 and H3.3; and the macroH2A variant found in holozoans and Meteora
sp. (belonging to an orphan eukaryotic lineage). Interestingly, we find hPTMs in the vast
majority of detected variants, both conserved and lineage-specific, particularly acetylations
and methylations (Fig. 1e and Extended Data Fig. 2d). Overall, our comparative proteomic
analysis suggests the existence of a highly conserved set of canonical hPTMs of ancestral
eukaryotic origin in H3 and H4, which co-exists with less conserved hPTMs in H2A, H2B,
and lineage-specific modifications in variant histones.

Archaeal histone post-translational modifications

In contrast with the paneukaryotic distribution of histones, sequence searches show that
only a fraction of archaeal genomes encode for histones (28.1% of the taxa here examined;
Fig. 2a). Archaeal histones exhibit a patchy phylogenetic distribution, similar to other gene
families shared with eukaryotes®2. Among others, histones are present in Euryarchaeota,
the TACK superphylum and Asgard archaeal2°3-56_ Asgard are generally are considered
to be the closest known archaeal relatives of eukaryotes®’-8, although this sister-group
relationship has been challenged by some studies®®. Our extended sampling revealed that
Asgard archaea histones, particularly in the Lokiarchaeota and Heimdallarchaeota clades®®,
often have lysine-rich Aterminal tails in the manner of eukaryotic histones (Fig. 2a-c).
These Asgard histones appear to be conserved across multiple taxa, albeit without direct
sequence similarity compared to canonical eukaryotic histones (Extended Data Fig. 1d).
When compared against eukaryotic sequences classified in HistoneDB?8, these archaeal
histones clearly cluster in a separate group and are most similar to either eukaryotic H4 or, to
a lesser degree, H3 canonical histones, in line with previous findings2:55.60,

To identify potential archaeal hPTMs, we performed proteomics analysis of histones

in three Euryarchaeota (the Methanobacteriota Methanobrevibacter cuticularis and

the Halobacteriota Methanospirillum stamsii and Methanosarcina spelaei) and one
Thaumarchaeota species (Nitrososphaera viennensis,; Fig. 2b). Mass-spectrometry detects
histone proteins in all of them: 2-4 in the euryarchaeotes (with 27-90% protein coverage)
and one in the thaumarchaeote (80% protein coverage), including homologs with A-terminal
tails encoded by each of the three euryarchaeotes in our survey (22-40 aa, 0.09-28 lysines
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per residue; Fig. 2¢). Moreover, this proteomics analysis finds evidence of hPTMs in
archaeal histones. However, in comparison with eukaryotic histones, hPTMs are extremely
scarce in archaeal histones. Specifically, we identify no hPTMs in . viennensis and M.
spelaei (one and two histones detected, respectively), three acetylations and one methylation
in M. stamsii (in three out of four histones detected), and one acetylation and two
methylations in M. cuticularis (in two out of four histones; Fig. 2b, top). Interestingly,

we find conserved lysine residues with shared modifications in M. stamsiiand M. cuticularis
(methylation in K54 and acetylation in K57; Fig. 2b, bottom). This result indicates

that highly-abundant hPTMs represent a eukaryotic innovation, likely linked to dynamic
nucleosomal regulation in eukaryotes but not in Archaea.

Taxonomic distribution of chromatin-associated proteins

hPTMs are deposited and removed by specific modifying enzymes (‘writers’ and ‘erasers’),
while ‘reader’ protein domains found in diverse proteins bind and recognize specific hPTMs.
For example, Bromo and Chromo domains bind acetylated and methylated lysine residues,
respectively. In addition, the control of histone loading/eviction from specific genomic /oci
is mediated by chromatin remodellers, like SNF2 proteins?’, and histone chaperones26. To
date, the classification and evolutionary analysis of this chromatin machinery has been based
on biased, partial taxonomic samplings and has not employed phylogenetic methods®? (with
rare exceptions!2:27), often resulting in inaccurate orthologous relationships and confounded
classification and naming schemes.

We sought to obtain a systematic, phylogenetics-based classification of histone remodellers,
chaperones, readers, and modifiers in order to understand the evolutionary history of
eukaryotic chromatin (Fig. 3a). To this end, we (/) compiled a taxa-rich dataset of 172
eukaryotic genomes and transcriptomes, covering all major eukaryotic supergroups and
devoting particular attention to early-branching, non-parasitic lineages (Supplementary Data
1), as well as genomic data from 4,226 Archaea, 24,886 Bacteria and 185,579 viral taxa; (//)
defined a protein structural domain as a proxy for each gene family (Supplementary Data

4) and retrieved all genes in these genomes that contained these domains; and (/) inferred
accurate orthology groups from phylogenetic analyses of each gene class (next section).

We examined the taxonomic distribution and abundance of the major gene classes (Fig.
3b,c¢). Many domains with chromatin-associated functions in eukaryotes are also present

in Archaea and Bacteria, albeit with scattered phylogenetic distributions (Fig. 3b and
Extended Data Fig. 3a,b). Families with prokaryotic homologs include mostly catalytic gene
classes (writer, eraser and remodeller enzymes), whereas readers and histone chaperones are
virtually absent from prokaryotes (Fig. 3b). Histone fold-encoding genes constitute a case

in point for this patchy distribution of chromatin proteins in prokaryotes: they are present in
most archaeal phyla, but are absent in about half of the sampled genomes within each (Fig.
3b). Yet, there is a qualitative difference between the phylogenetic distribution of archaeal
and bacterial chromatin-associated gene classes: whereas archaeal histones tend to co-occur
with chromatin-associated gene classes, the bacterial complement of writers and erasers is
much less conserved and is uncorrelated with the extremely rare presence of histone-like
genes (Fig. 3d).
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Within eukaryotes, most gene structural classes associated with chromatin functions are
ubiquitously distributed across all lineages here surveyed, supporting an early eukaryotic
origin for the core chromatin machinery (Fig. 3b and Extended Data Fig. 3d). In fact,

the total number of chromatin writer, eraser and remodeller enzymes remains remarkably
stable across eukaryotes (Fig. 3e). The only exception is the marked increase in genes
encoding reader domains observed in lineages exhibiting complex multicellularity: animals,
streptophyte plants, and, to a lesser degree, phaeophyte brown algae (Stramenopila). This
occurs partially due to the addition of new gene classes (e.g., SAWADEE in the Plantae s./. +
Cryptista lineage, or ADD_DNMT3 in bilaterians and cnidarians), but also via the expansion
of ancient, widely-distributed reader gene classes (e.g., Tudor, PHD, Chromo or Bromo
domains). These taxonomic patterns indicate that chromatin modifying and remodelling
catalytic activities originated in prokaryotes, while reader and chaperone structural domains
are eukaryotic innovations.

Phylogenetics of chromatin modifiers and remodellers

To gain detailed insights into the origin and evolution of chromatin gene families, we

used phylogenetic analysis to define orthology groups from paneukaryotic gene trees. We
surveyed 172 eukaryotic species and defined a total of 1,713 gene families (orthogroups),
95% of which were conserved in two or more high-ranking taxonomic groups (as listed in
Fig. 1a), and which included 51,426 genes in total (Supplementary Data 5). We annotated
each gene family according to known members from eukaryotic model species. For
simplicity, we use a human-based naming scheme throughout the present manuscript (unless
otherwise stated), but we also provide a dictionary of orthologs in three additional model
species (Arabidopsis thaliana, Saccharomyces cerevisiae and Drosophila melanogaster, see
Supplementary Data 5). This phylogenetic classification scheme of eukaryotic chromatin
gene families, as well as the sequences and associated phylogenetic trees, can be explored
and retrieved in an interactive database: https://sebe-lab.shinyapps.io/chromatin_evolution

We first investigated the potential pre-eukaryotic origins of these gene families/orthogroups
by comparing their phylogenetic distance to prokaryotic sequences and to other eukaryotic
orthogroups (Fig. 4a). Most eukaryotic gene families are more closely related to other
eukaryotes than to prokaryotic sequences, supporting the idea that writers, erasers,
remodellers and readers diversified within the eukaryotic lineage, as previously noted

for histones2. This analysis also reveals a substantial fraction of eukaryotic gene

families with close orthogroups in Archaea and Bacteria, which pinpoints components
that were (/) inherited from a prokaryotic ancestor during eukaryogenesis; (/i) laterally
transferred between eukaryotes and prokaryotes at later stages; or (/) a combination of
both phenomena. For example, we identified a well-supported sister-group relationship
between the eukaryotic SIRT7 deacetylase and a clade of Asgard archaea Sirtuin enzymes
(Heimdallarchaeota and Lokiarchaeota), a topology compatible with an archaeal origin or
ancient transfers to/from Asgard and eukaryotes®2; whereas SIRT6 appears nested within
other eukaryotic sequences (Fig. 4b, left). Likewise, the KAT14 acetylase is more closely
related to bacterial enzymes than to other eukaryotic acetylases (Fig. 4b, right).
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Next, we mapped the phylogenetic distribution of orthogroups in order to infer the origin
and diversification of individual chromatin gene families (Fig. 4c and Extended Data Fig.
4a). Using probabilistic inference of ancestral gene content, we reconstruct a rich Last
Eukaryotic Common Ancestor (LECA) complement of chromatin-associated gene families:
65 acetylases (amongst which 61 were conserved in at least two of the most deeply sampled
eukaryotic early-branching lineages, namely Amorphea, Diaphoretickes, and Discoba);

20 deacetylases (19 in these early-branching eukaryotic lineages); 59 methyltransferases
(55); 42 demethylases (38); 33 remodellers (33); and 25 chaperones (18) (Fig. 4c and
Supplementary Data 5). The subsequent evolution of these families is characterized by
relative stasis, with few new orthologous families emerging in later-branching eukaryotic
lineages. Notable exceptions include the origin of KAT5 deacetylases and KMT5B/C SET
methyltransferases in Opisthokonta; KAT8 and SIRT7 in Holozoa; and Viridiplantae-specific
deacetylases (homologs of A. thalianaHDA7 and HDA14 deacetylases) and SETs (A.
thaliana PTAC14); among others.

In spite of their broad distributions across eukaryotes, many chromatin modifier families
exhibit variation in their protein domain architectures, likely conferring them functional
properties such as distinct binding preferences (Extended Data Fig. 4b). For example, most
CREBBP/EP300 acetylases consist of a catalytic HAT KAT11 domain and two TAZ and
ZZ7 zinc finger domains, but different lineages have acquired different reader domains:

an acetylation-reading Bromo domain in holozoans and stramenopiles, PHD in plants and
some stramenopiles, and no known reader domains in other lineages (e.g., in the fungal
orthologs of the S. cerevisiae protein RTT109). A similar pattern is apparent in SET
methyltransferase families sharing a core catalytic domain (SET) harboring variable DNA-
and chromatin-interacting domains — animal SETDB1/2 homologs have MBD domains that
bind CpG methylated DNA, while plants have SAD_SAR domains with the same function;
and holozoan ASH1L homologs encode Bromo and BAH readers, whereas phaeophytes
encode PHD domains (Extended Data Fig. 4b). Other architectures, however, are much more
conserved, as exemplified by the presence of Tudor-knot and MYST zinc finger domains

in most KAT5 deacetylases; or the ubiquitous co-occurrence of Helicase-C and SNF2_N
domains in most remodellers (Extended Data Fig. 4b).

Specific examples of evolutionarily conserved chromatin gene families include the catalytic
core and the subunits of well-studied chromatin complexes® like PRC1 (RING1/AB,
PCGF), PRC2 (EZH1/2, SUZ12, EED, RBBP4/7) and Trithorax/MLL (MLL1/2/3/4,
WRDS5, ASH2L, RBBP5, DPY-30; Fig. 4d,e). However, when we compared the distribution
of these complexes with the hPTMs they are related to, we found a generally poor
co-occurrence (Fig. 4f-h). For example, organisms like Dictyostelium discoideum and
Creolimax fragrantissima lack EZH1/2 orthologs, but we detected H3K27me3 in these
species; while Thecamonas trahens and Naegleria gruberilack Dotl orthologs but have
H3K79me marks. A poor correlation is also observed between the occurrence of H3K9me
and that of SUV39H1 orthologs. An exception to this pattern is the ubiquitous distribution
of H4K16ac and the acetylase family KAT5/8%4 (Fig. 4h). These patterns suggest that the
specificity between hPTMs and their writers might not be completely conserved across
eukaryotes, with distinct members of the same gene classes (e.g., methyltransferases)
performing similar roles. In this context, reading domains present in writing/erasing
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enzymes (directly in the same protein or as part of multi-protein complexes) are likely
to play a major role in the re-purposing of chromatin catalytic activities.

Evolutionary expansion of chromatin readers

Multiple protein structural domains have been involved in the recognition of hPTMs, such as
Bromo domains binding to acetylated lysines or Chromo, MBT and Tudor domains binding
to methylated lysines?3.24, These are generally small domains and can be found both as
stand-alone proteins as well as in combination with other domains, often catalytic activities
such as hPTM writers, erasers and remodellers. Thus, they are central in the establishment
of functional connections between chromatin states. To understand the contribution of these
reading domains to the evolutionary diversification of chromatin networks, we studied in
detail the phylogeny and protein architecture of reader domains across eukaryotes.

We quantified the co-occurrence frequency of reader and catalytic domains, finding (/)
that most reader domains are present in genes without writer, eraser or remodeller
domains (87%, Fig. 5a); and (//) that most cases of reader-catalytic co-occurrence involve
PHD, Chromo and Bromo domains (Extended Data Fig. 5a). For example, the conserved
architecture of the paneukaryotic CHD3/4/5 re-modellers includes Chromo readers in
most species and PHD domains specifically in animals and plants (Extended Data Fig.
4b). Likewise, PHD domains are often present in the KMT2A/B and KMT2C/D SET
methyltransfrase; and the ASH1L family has recruited Bromo and BAH domains in
holozoans, and PHD in multicellular stramenopiles (Extended Data Fig. 4b). In spite of
these redundancies, reader families typically have independent evolutionary histories, as
illustrated by the fact that most reader domain-containing genes encode only one such
domain (92%, Extended Data Fig. 5b).

We next performed phylogenetic analyses of individual reader domains and reconstructed
the gains and losses of these reader gene families/orthogroups (Fig. 5a). Compared to the
relative stasis of catalytic enzyme families, this reader-centric analysis revealed a strikingly
different evolutionary pattern of lineage-specific bursts of innovation, particularly amongst
PHD, Chromo and Bromo genes, as well as Tudor in animals (Fig. 5a and Extended Data
Fig. 5¢). PHD, Chromo and Bromo families also appeared as the most abundant in the
reconstructed LECA reader domain repertoire, which amounted to 89 gene families (Fig.
5a, left). The distribution of gene family ages in extant species also corroborates that more
readers have emerged at evolutionarily more recent nodes of the tree of life than catalytic
gene families (Fig. 5b).

Co-option of chromatin machinery by transposable elements

Further examination of the domain co-occurrence networks of readers revealed that Chromo
and PHD domains are often present together with protein domains found in transposable
elements (TEs; Fig. 5¢ and Supplementary Data 6), including retrotransposons (e.g.,
retrotranscriptases and integrases; orange modules in Fig. 5¢) and DNA transposons (e.g.,
DNA binding domains and transposases; red modules). It is known that some TEs show
insertion-preferences associated to specific chromatin states8®, often mediated by direct
chromatin tethering mechanisms®®. For example, the Chromo domain of the MAGGY gypsy
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retrotransposon of the fungus Magnaporthe grisea targets H3K9me regions8”. Reciprocally,
some protein domains of TE origin, often DNA-binding domains, have been co-opted

into chromatin and transcriptional regulators®8. Thus, we decided to explore in detail the
occurrence of chromatin-associated domain (readers, but also catalytic domains) linked to
TEs in the 172 eukaryotic genomes in our dataset (Fig. 5d). Moreover, we used available
RNA-seq datasets in many of these species to validate some of these TE fusions (Fig. 5d-e).
A fully validated fusion gene would (/) come from a non-discontinuous gene model in the
original assembly, and (/7)) have evidence of expression, with reads mapping along the entire
region between the TE-associated domain and the chromatin-associated domain (Extended
Data Fig. S6).

We identified 823 predicted gene models containing both chromatin- and TE-associated
domains (Fig. 5d). Whilst these TE fusions were not exclusive of reader domains, most such
fusions involved PHD and Chromo-encoding genes; followed by SNF2_N remodellers, SET
methyltransferases, and others. An homology search against a database of eukaryotic TEs
revealed that most of these candidate TE fusions could be aligned to known retrotransposons
or DNA transposons. For example, by way of validation, our analysis identifies the
SETMAR human gene, a previously-described fusion between a SET methyltranferase

and a Mariner-class DNA transposon®. Overall, 31% of the candidate fusion genes were
supported by valid gene models according to our stringent criteria (Fig. 5d). Interestingly,
we find very few cases of hypothetical fusions between TEs and Bromo domains, which
recognize K acetylations and are otherwise highly abundant across eukaryotes, and none of
them is validated by RNA-seq data. This could be explained by the detrimental effect of
targeting TE insertions to sites of active chromatin demarcated by histone acetylations, such
as promoter and enhancer elements.

Some of these validated fusions have a broad phylogenetic distribution (Fig. 5e), such as a
Gypsy-ERV retrotransposon with a C-terminal Chromo domain (Unk. Chromo 2.1 in Fig.
5e) that is widely distributed in animals and various microbial eukaryotes, and contains
dozens of paralogs in vertebrate Danio rerio or the charophyte Chara braunii, many of which
are expressed. Another widespread Gypsy-ERV retrotransposon with a Chromo domain is
present in multiple expressed and highly similar copies in the fungus Rhizopus delemar (Fig.
5f,e), suggesting a successful colonization of this genome by this TE. By contrast, other TE
fusions are taxonomically restricted to one or few related species, such as the fusion of hAT
activator DNA transposons with Chromo CBX and CDY readers in the sponge Ephydatia
muelleri, or multiple instances of fusions with Chromo and PHD readers in cnidarians. A
common fusion in cnidarians involves different retrotransposon classes with PHD domains
orthologous to the PYGO1/2 protein (Fig. 5e), which is known to recognize specifically
H3K4me’0. Globally, this analysis reveals that recruitment of chromatin reading and even
modifying domains by TE has occurred in many eukaryotic species, in a way that might
facilitate the evasion from suppressing mechanisms in the host genomes as suggested by the
expansion of Chromo-fused TEs in the genomes of Chara braunii (Viridiplantae), Chromera
velia (Alveolata) and Rhizopus delemar (Fungi).
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Chromatin components in viral genomes

In addition to TEs, chromatin is also involved in the suppression of another type of genomic
parasites: viruses. Some chromatin-related genes, including histones, have been found in
viral genomes, especially among the nucleocytoplasmic large DNA viruses — also known as
giant viruses. Eukaryotic core histones have been even hypothesized to have evolved from
giant virus homologs, after the discovery that certain Marseilleviridae genomes encoded
deeply-diverging orthologs of the four canonical histones’.. These viral histones have been
recently shown to form nucleosome-like particles that package viral DNA72.73,

We analyzed the distribution and abundance of chromatin-related protein domains among
viruses, including data from 1,816 giant virus genomes. Based on structural domain
searches, we identified 2,163 viral chromatin-related proteins (Fig. 5g and Supplementary
Data 6). The majority of these proteins are encoded by giant viruses (55%), followed

by Caudovirales (37%). Among these two groups, only giant virus genomes encode
histones — specifically, the Iridoviridae, Marseilleviridae, Mimiviridae, Pithoviridae,

and Phycodnaviridae families. Concordantly with previous studies’4, we also identify
remodellers in all giant virus families; as well as less abundant components of the chromatin
writer/eraser/reader toolkit (Fig. 5g).

We then investigated the phylogenetic affinities of these viral chromatin proteins, starting
with histones (Fig. 5h). Our analysis recovers the phylogenetic affinity of Marseilleviridae
histones with specific eukaryotic histone families’, and makes this pattern extensive to
Mimiviridae, Iridoviridae, and Pithoviridae giant viruses (Fig. 5h), with the caveat of the
ambiguous clustering of the H4-like viral histones with either H4 eukaryotic or archaeal
HMTB genes. In all these lineages, we identify genes encoding two histone-fold domains
orthologous to H2B + H2A (inset table in Fig. 5h), whereas the H4 + H3 histone

doublet genes appears to be exclusive to Marseilleviridae. By contrast, histone homologs
in Phycodnaviridae, Pandoraviridae (also giant viruses), and Polydnaviridae (/incertae sedis)
are never found as either doublets or as early-branching homologs of eukaryotic histones,
suggesting recent acquisition from eukaryotes.

Unlike histones, most of the viral chromatin-associated genes exhibited a mixture of
prokaryotic and eukaryotic phylogenetic affinities and often lack affinity to any specific
eukaryotic gene family (Fig. 5i and Extended Data Fig. 7). Viral readers, on the other hand,
are often embedded within eukaryotic clades in gene trees and are similar to bona fide
eukaryotic families, exhibiting topologies consistent with recent, secondary acquisitions.
This is the case of BIRC2/3/XIAP readers widespread in the Baculoviridae, which encode
BIR domains that are often hijacked from their hosts’®. We also find a number of viral
Chromo-encoding genes, which fall in two main taxonomic categories: (/) giant virus
homologs of the eukaryotic CBX1/3/5 family (present in Mimiviridae, Iridoviridae and
Phycodnaviridae); and (/7) homologs from various Adintoviridae, which are closely related
to animal Chromo genes encoding rve integrase domains’® (Fig. 5i). Finally, we also identify
a handful of eukaryotic-like viral genes with deep-branching positions relative to core
eukaryotic gene families, as seen in histones (Fig. 5h). This includes Mimiviridae homologs
of the eukaryotic methyltransferases SMYD1-5 and DOT1 (Extended Data Fig. 7d,e), as
well as SNF remodeller families with homologs in distinct giant virus clades (HLTF/TTF2
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in Phycodnaviridae, Mimiviridae and Iridoviridae). These results indicate that cases of
horizontal transfer from eukaryotes to viruses are common in different chromatin-related
gene families, including histones. Therefore, it is likely that basally-branching giant virus
histones were similarly acquired from a stem eukaryotic lineage and this would explain
the observed histone tree topology with extant eukaryotic species. In any case, most of the
eukaryotic chromatin machinery appears to have cellular roots.

Discussion

Our comparative proteogenomics study reconstructs in detail the origin and evolutionary
diversification of eukaryotic chromatin components, from post-translational modifications
to gene family domain architectures. We looked first at the pre-eukaryotic roots of
chromatin. Multiple aspects of archaeal chromatin have been studied in recent years,
including nucleosomal patterns3! and the structure of the archaeal nucleosome3C. A recent
taxonomic survey of archaeal nucleoid-associated proteins revealed multiple independent
diversifications of DNA-wrapping proteins and a strong association between high levels of
chromatinization and growth temperature, overall suggesting a structural, non-regulatory
role for archaeal chromatin’’. Our proteomics data support this notion by showing

the scarcity of hPTMs in four species belonging to two different archaeal lineages
(Euryarchaeota and Thaumarchaeota). An earlier proteomics study reported the complete
absence of hPTMs in the euryarchaeote Methanococcus jannaschift®*. Here we do identify a
few instances of modified lysine residues in Euryarchaeota, which is in line with the recently
reported acetylations in 7hermococcus gammatolerans histones’®. It remains to be seen if
hPTMs are frequently present in Asgard and other unsampled archaeal linages, where other
eukaryotic-like features have been found®”:79:80, In fact, some of these Asgard, particularly
Lokiarchaeota, encode for histones with long, K-rich A-terminal tails but that bear no
similarity with eukaryotic histones and are, therefore, most probably the result of convergent
evolution. Interestingly, Lokiarchaeota genomes also frequently encode histone modifiers
such as SET methyltransferases and MOZ_SAS acetylases. However, overall our results
suggest that extensive usage of hPTMs is an eukaryotic innovation (Fig. 6a). Similarly, while
we find the majority of catalytic domains of hPTM writers, hPTM erasers and chromatin
remodellers in Archaea and even Bacteria, these appear only scattered in a small fraction of
the examined taxa. In contrast, hPTM reader domains and histone chaperones are eukaryotic
innovations, further supporting the idea that the functional readout of hPTMs and the role
for histone variants in defining chromatin states are both exclusive to eukaryotes (Fig. 6a).

The origin of eukaryotes represents a major evolutionary transition in the history of life8l.
Thanks to sequencing and comparative analysis of archaeal and eukaryotic genomes, we
also have a detailed reconstruction of the massive innovation in gene repertoires that
occurred at the origin of eukaryotes. This gene innovation in the Last Eukaryotic Common
Ancestor (LECA\) includes cytoskeletal proteins and associated motors like myosins82.83
and kinesins®?, vesicle trafficking apparatus®, splicing machinery®8, ubiquitin signalling
systems8” and a large repertoire of sequence-specific transcription factors3’. Combining
parsimony analysis and knowledge on gene function in extant lineages (mostly vertebrates,
yeast and plants), our results allow us to reconstruct a complex LECA repertoire of hPTMs
and associated writing, eraser and reader gene families (Fig. 6b,c). We infer 23 to 29
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highly-conserved lysine acetylations in canonical histones (e.g., H3K9ac and H3K27ac) and
a repertoire of 65 and 20 histone acetylase and deacetylase families, respectively. With the
exception of H4K16ac®, most histone acetylations are thought to exert a generic, perhaps
additive, effect on the opening of chromatin?2. As such, acetylation marks like H3K27ac
have been found to be enriched in promoters of active genes in diverse eukaryotes?2. In
contrast, histone methylations often have very specific readouts and they can be linked

both to active and repressive chromatin states. We infer between 13 and 25 conserved
methylated lysine residues in LECA histones, including marks typically associated to active
promoters (H3K4mel/me2/me3), gene bodies (H3K36me3, H3K79mel/2, H4K20me1l), and
repressive chromatin states (H3K9me2/me3, H3K27me3, H4K20me3)88:89_ Finally, we also
infer the existence of five histone variants in the LECA (cenH3, H3.3, H2A.Z, macroH2A
and H2A.X), as well 33 chromatin remodellers (e.g., EP400/SWR1 and INO80, involved

in loading and removal of H2A.Z, respectively) and 25 histone chaperones (e.g., ASF1A/B
and NPM1/2/3). This indicates that, in addition to an extensive repertoire of hPTMs, the
regulation of nucleosomal histone composition was also an important feature in the LECA.

Chromatin evolution after the origin of eukaryotes is characterized by an expansion of
lineage-specific histone variants harboring unique hPTMs and a net expansion in the number
of reader gene families, as opposed to the relatively static catalytic gene families (writers,
erasers and remodellers). This is particularly relevant as it suggests extensive remodelling

of chromatin networks during eukaryote evolution, that is, changes in the coupling of
particular hPTMs to specific functional chromatin states. An example of such changing
state-definitions comes from looking at the hPTMs associated to TEs in different organisms:
H3K9me3+H4K20me3 in animals, H3K27me3 in some plants®®, H3K79me2+H4K20me3
in the brown multicellular algae Ectocarpus siliculosus*, and H3K9me3+H3K27me3 in the
ciliate Paramecium tetraureli2®. \n the context of the histone code hypothesis320:92-94 oyr
findings indicate that, while there is an ancient core of conserved hPTMs across eukaryotes,
evidence for a universal code/functional-readout is limited, with perhaps the exception of
the highly conserved configuration of ancient hPTMs around active promoters across many
eukaryotes*2. Another interesting observation related to the evolution of chromatin networks
is the capture of chromatin reader domains by TEs. We find evidence of this phenomenon

in a number of species with a scattered phylogenetic distribution, suggesting that it is a
recurrent process and that it often leads to the successful propagation of the TE in the

host genome. We hypothesize that this process facilitates the targeting of TEs to specific
chromatin states, as it has been described in the case of MBD DNA methylation readers
captured by TEs%:96,

In the future, a broader phylogenetic understanding of the genome-wide distribution of
hPTMs, as well as the direct interrogation of hPTM binders in different species®7-9°, will
be crucial to further clarify questions such as the ancestral role of specific hPTM and the
co-option of ancient hPTMs into novel functions.
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Methods

Eukaryotic cell culture and tissue sources

Capsaspora owczarzaki strain ATCC30864 filopodial cells were grown axenically in 5
ml flasks with ATCC medium 1034 (modified PYNFH medium) in an incubator at 23°C
(Sebé-Pedros et al., 2013a).

Corallochytrium limacisporum strain India was axenically grown in Difco Marine Broth
medium at 23°C, Creolimax fragrantissima strain CH2 was axenically grown in Difco
Marine Broth medium at 12°C, Spizellomyces punctatus strain DAOM BR117 was
axenically grown in (0,5% yeast extract, 3% glycerol,1g/L KoHPQOy, 0,5% EtOH) medium at
17°C, Thecamonas trahens strain ATCC50062 was grown in ATCC medium: 1525 Seawater
802 medium, Chlamydomonas reinhardltii strain CC-503 cw92 mt+ was axenically grown

in Gibco TAP medium at 29°C, Guillardia theta strain CCMP2712 was axenically grown

in L1+500uM NH4CI medium at 18°C, Emiliania huxleyi strain CCMP1516 was grown in
L1-Si medium at 18°C, Thalassiosira pseudonana strain CCMP1335 was axenically grown
in L1 medium at 18°C, Bigelowiella natans strain CCMP2755 was axenically grown in
L1-Si medium at 23°C, Naegleria gruberi strain ATCC30224 was axenically grown in ATCC
medium 1034 (modified PYNFH medium) at 29°C, Gefionella okellyi strain 249 was grown
in 15% Water Complete Cereal Grass Media (WC-CGM3) at 18°C and Fabomonas tropica
strain NYK3C was grown in L1 + YT medium at 18°C. All cells were grown in 250 ml
culture flasks.

In addition, we used frozen tissues/cells from the following species: Homo sapiens (ES cells,
courtesy of Cecilia Ballaré, CRG), Physcomitrella patens (strain Gransden 2004, vegetative
stage, courtesy of Josep Casacuberta, CRAG-CSIC), Sycon ciliatum (adult sponges sampled
from Bergen, Norway, courtesy of Maja Adamska, ANU) and Phytophthora infestans (strain
T30-4, courtesy of Harold J.G.Meijer, Wageningen University).

Archaeal cell culture

Cultures of Methanobrevibacter cuticularis DSM 11139, Methanospirillum stamsii DSM
26304 and Methanosarcina spelaei DSM 26047 were purchased from the Deutsche
Stammsammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Braunschweig,
Germany. Cultures were grown in closed batch in 50mL of defined media in 120mL serum
bottles (La-Pha-Pack, Langerwehe, Germany). Growth was monitored as OD (600 nm;
Analytik Jena, Specord 200 plus). Methanobrevibacter-cuticularis was grown in modified
Methanobrevibacter cuticularis medium DSMZ 734a (DSMZ 2014) omitting bovine rumen
fluid, yeast extract and Na-resazurin at 1.5 bar overpressure H,CO, (20 vol.-% CO2 in

H,) at 37°C. As soon as a change in OD was observed, a constant agitation at 90rpm

was applied. Methanospirillum stamsiiwas grown in modified Methanobacterium medium
DSMZ 119 (DSMZ 2017) omitting sludge fluid, yeast extract and Na-resazurin at 1 bar
overpressure H,CO, (20 vol.-% CO2 in Hy) at 29°C, under constant agitation at 90rpm.
Methanosarcina spelaei was grown in modified Methanosarcina barkeri medium DSMZ
120a (DSMZ 2014) omitting yeast extract and Na-resazurin at 1.5 bar overpressure H,CO»
(20 vol.-% CO2 in Hy) at 33°C, under constant agitation at 90rpm. All gases were obtained
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from Air Liquide GmbH, Schwechat, Austria. Nitrososphaera viennensis EN76 was grown
in continuous culture in a bioreactor as previously described00.

Cells were harvested via centrifugation at 21,000xg 4°C 1h (Thermo scientific, Sorvall
Lynx 4000 centrifuge), the supernatant discarded and the resulting pellet resuspended in
1ml of spent medium, followed by another round of centrifugation at 21,000xg 4°C for 1h
(Eppendorf, Centrifuge 5424R). Pellets were stored at -70°C. All archaeal histones were
extracted as described below.

Histone acid extraction

Starting material was a pellet of 50-100M cells (washed once with cold PBS) or a flash-
frozen tissue homogenate in liquid nitrogen using a ceramic mortar grinder. Cells were
washed first in 10ml of buffer 1 (10 mM TrisHCI pH 8, 10 mM MgCl,, 0.4M Sucrose). After
5min incubation, samples were centrifuged at 8.000g for 20min at 4°C and supernatant was
removed. The resulting pellet was resuspended in 1.5ml of Buffer 11 (10 mM TrisHCI pH 8,
10 mM MgCl,, 0.25M Sucrose, 1% Triton X-100, 1% Igepal Ca-630) and incubated 15min
on ice. In specific cases, cells at this stage were broken using a 2ml Dounce homogenizer
(with Pestle B) or with a 20G syringe. Then samples were centrifuged at 15.000g for 10min
at 4°C and supernatant was removed. The resulting pellet was then slowly resuspended

in 300uL of Buffer Il (10 mM TrisHCI pH 8, 2 mM MgCls,, 1.7M Sucrose, 1% Triton
X-100) and then resulting resuspended nuclei were layered on top of another 300uL of
Buffer 111. Sample was centrifuged at 20.000g for 1h at 4°C and supernatant was removed,
resulting in a nuclear pellet ready for acid histone extraction. All buffers were supplemented
with spermidine (1:1000), beta-mercaptoethanol (1:1000), protease inhibitors (1x cOmplete
cocktail Roche #11697498001, 1mM PMSF, 1:2000 Pepstatin), phosphatase inhibitors

(1x phoSTOP cocktail Roche #4906845001) and deacetylase inhibitors (10mM Sodium
butyrate).

For samples processed using a high-salt + HCI extraction protocol02:102  the pellet was
resuspended in 500pL of High Salt Extraction Buffer (20 mM TrisHCI pH 7.4, CaCl, 1M
and protease, phosphatase and deacetylase inhibitors, same as above). Sample was incubated
on ice for 30min and then pure HCI has added to a final 0.3N concentration (12.82uL

to the initial 500pL). Samples were incubated for at least 2h on a rotor at 4°C and then
centrifuged at 16.000g for 10min at 4°C to remove cellular/nuclear debris. The resulting
supernatant containing solubilized histones was transferred to a clean 1.5ml tube and
Trichloroacetic Acid (TCA) was added drop-wise to 25% final concentration (171uL TCA
to an approximate initial 513uL sample) and left overnight at 4°C to precipitate histones.
Samples were then centrifuged at 20.000g for 30min at 4°C and the supernatant removed.
The pellet was then washed twice with 500uL of cold acetone and then dried for 20min at
room temperature. Finally, clean histone pellets were resuspended in 30-50uL of ultrapure
water. Protein concentration in the sample was measured using BCA and extraction was
examined using an SDS-PAGE protein gel with Coomassie staining.

For samples processed using H,S04192, the protocol was exactly the same except that 400uL
0.4N H,SOy4 (freshly diluted) was used instead, with a similar incubation time of at least 2h
at 4°C.
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Histone chemical derivatization

Histones samples were quantified by the BCA method and 10 pg of each sample were
derivatized with propionic anhydride, digested with trypsin and derivatized again with
phenylisocyanate as previously described#?. Briefly, samples were dissolved in 9 uL of
H20 and 1 pL of triethyl ammonium bicarbonate was added to bring the pH to 8.5. The
propionic anhydride was prepared by adding 1 pL of propionic anhydride to 99 uL of

H20 and 1 pL of propionic anhydride solution was added immediately to the samples with
vortexing and incubation for 2 minutes. The reaction was quenched with 1 uL of 80mM
hydroxylamine and samples were incubated at room temperature for 20 minutes. Tryptic
digestion was performed for 3 h with 0.1 pg trypsin (Promega Sequencing Grade; Madison,
WI) per sample. A 1% v/v solution of phenyl isocyanate (PIC) in acetonitrile was freshly
prepared and 3 pl added to each sample (17 mM final concentration) and incubated for 60
min at 37 °C. Samples were acidified by adding 50 pL of 5% formic acid, vacuum dried and
desalted with C18 ultramicrospin columns (The Nest Group, Inc, Southborough, MA).

Liquid Chromatography-Tandem Mass Spectrometry Sample Acquisition

A 2-ug aliquot of the peptide mixture was analyzed using a LTQ-Orbitrap Fusion Lumos
mass spec-trometer (Thermo Fisher Scientific, San Jose, CA) coupled to an EASY-nLC
1000 (Thermo Fisher Scientific, San Jose, CA) with both collision induced dissociation
(CID) and high energy collision dissociation (HCD) fragmentation.

Peptides were loaded directly onto the analytical column and were separated by reversed-
phase chromatography using a 50-cm column with an inner diameter of 75 pm, packed
with 2 um C18 particles spectrometer (Thermo Scientific, San Jose, CA, USA) with a 90
min chromatographic gradient. The mass spectrometer was operated in positive ionization
mode using a data dependent acquisition method. The “Top Speed” acquisition algorithm
determined the number of selected precursor ions for fragmentation.

Mass-spectrometry Data Analysis

Acquired data were analyzed using the Proteome Discoverer software suite (v2.0, Thermo
Fisher Scientific), and the Mascot search engine (v2.6, Matrix Sciencel93) was used for
peptide identification using a double-search strategy. First, data were searched against each
organism protein database plus the most common contaminants considering Propionylation
on N-terminal, Propionylation on Lysines and Phenylisocyanate on A-terminal as variable
modifications. Then a new database was generated with the proteins identified in the

first search,, and a second search was done considering Propionylation on A+terminal,
Propionylation on Lysines, Phenylisocyanate on A-terminal, Dimethyl lysine, trimethyl
lysine, propionyl + methyl lysine, acetyl lysine, crotonyl lysine as variable modifications.
Precursor ion mass tolerance of 7 ppm at the MS1 level was used, and up to 5 missed
cleavages for trypsin were allowed. False discovery rate (FDR) in peptide identification was
set to a maximum of 5%. The identified peptides were filtered by mascot ion score higher
than 20 and only PTMs with a localization score ptmRS104 higher than 45 were considered.
The raw proteomics data have been deposited to the PRIDE1 repository with the dataset
identifier PXD031991.
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Analysis of hPTM conservation

Identification of canonical and variant histones—We classified histone protein
domains from a database of eukaryotic, prokaryotic and viral sequences (see details below)
according to their similarity to known canonical (H2A, H2B, H3, H4) and variant histones
(e.g., H2A.Z, macroH2A, cenH3 or H3.3), as well as other gene families with histone-like
protein folds (e.g., the transcription factors DR1, DRAP1, NFYB/C, POLE3/4, SOS, TAF,
or CHRAC). To that end, we used diamondto perform local alignments of each histone
domain against (/) a set of curated histone variants obtained from HistoneDB 2.0%8, and (/)
annotated each domain according to the best hit in the reference database, which allowed

us to classify histone fold-containing proteins as canonical histones (H2A, H2B, H3, H4) or
their main variants (H2A.Z, macroH2A and cenH3). This best-hit strategy performs well in
distinguishing canonical histones from each other, as well as each canonical histone from its
main variants (H3 from cenH3, and H2A from H2A.Z and macroH2A; Extended Data Fig.
1a).

Then, we built a graph of pairwise similarity between histones, with edges weighted by
the alignment bitscore (discarding edges with bitscore < 20). We created visualisations of
each connected component in this graph using the spring layout algorithm implemented
in the networkx 2.4 Python library (100 iterations, weighted by alignment bitscore)106,
We selected the four connected components in the graph that matched the four canonical
eukaryotic histones (H2A, H2B, H3, H4; discarding edges with bitscore < 20), retrieved
the protein sequences for each of them, aligned them using mafft (E-INS-i mode, 1,000
iterations)197, and built phylogenetic trees with /Q-TREE 2.1.0 (- fast mode)108,

Identification of hPTM homology—We retrieved the protein sequences of the canonical
histones identified in each of the 26 species and we used them for the proteomic analysis of
hPTMs, and aligned them using mafft (G-INS-i mode, up to 10,000 refinement iterations).
For this subset of species, histone class identity was cross-referenced with the HistoneDB
search tool. Then, we manually aligned the peptides mapping onto these proteins to identify
the position of each hPTM along a consensus alignment. In the case of H3, H4, and
macroH2A, the majority of alignment positions were conserved across most eukaryotes in
our dataset, and we used a consensus numbering scheme. In the case of H2A, H2A.Z, and
H2B, non-conserved insertions and deletions at the N-terminal tail precluded the use of a
paneukaryotic numbering scheme. Instead, we reported hPTM positions based on the human
homolog (if possible), or relative to taxonomically restricted conserved positions. In cases
where position-wise homology could not be established, we grouped multiple amino-acids
into stretches of unclear homology, which we report separately from conserved positions
(question mark symbols in Fig. 1). The complete list of hPTMs and their position-wise
coordinates relative to the consensus alignment is available in Supplementary Data 3.

Furthermore, we also reported the presence (in any position) of modifications in less-
conserved histone variants, as well as the linker histone H1.

In addition to the 19 used in our proteomics survey, we also included previously
published hPTM data from the following species (Supplementary Data 1c): the brown alga
Ectocarpus siliculosus®3, the diatom Phaeodactylum tricornutunt®, the ciliate Tetrahymena
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thermophila*6:110-112 the ascomycete Neurospora crassa-'3, Saccharomyces cerevisiae and
Schizosaccharomyces pombe*®, and the plant Arabidopsis thaliana*14-116. When available
in public repositories, we re-analysed these datasets using the strategy described above.
Finally, we also complemented our own proteomics data using previously published hPTM
data from Homo sapiens*8117-120 and Capsaspora owczarzaki*?.

Comparative genomics analysis of chromatin-associated proteins

Data retrieval—We identified homologs of gene families associated with eukaryotic
chromatin, using a database of predicted proteomes from a selection of eukaryotic species
from all major supergroups (7= 172 species; see Supplementary Data 1 for their taxonomic
classification and data sources), as well as archaeal and viral peptides available in the NCBI
nrpeptide collection (as of 25th of April, 2020) and bacterial peptides available in RefSeq
(release 99, 11th May, 2020). The database of viral sequences was complemented with
peptides from 501 genomes of nucleocytoplasmic large DNA viruses2l,

Gene family searches—We defined 61 gene classes associated with eukaryotic
chromatin, based on HMM models obtained from the Pfam database (release 33.0)122,

This list included canonical and linker histones (/7= 2 families), chromatin-specific lysine
acetylases (7= 5), deacetylases (/7= 2), methyltransferases (17 =2), demethylases (7=

2), chromatin readers (/7= 16), remodellers (n7= 1) and chaperones (n7=13), as well as
multiple families associated with the Polycomb complexes (r7= 18). The complete list of
gene families, including the associated HMM models, is available in Supplementary Data 4.

For each gene family, we retrieved all homologs from the eukaryotic, archaeal, bacterial and
viral databases using the #immsearch tool from the HMMER 3.3 toolkit'23 and the gathering
threshold defined in each Pfam HMM model. We recorded the taxonomic profile of each
homolog.

Orthology identification—We aimed to identify groups of orthologs within each of the
61 chromatin-associated gene families using targeted phylogenetic analyses. We followed
the following strategy for each of the 59 sets of eukaryotic genes. First, we partitioned

each set into one or more homology groups based on pairwise local sequence alignments
using diamond 0.9.36.137 (high sensitivity all-to-all search)124, followed by clustering of the
resulting pairwise alignments graph with MCL 14.137 (--abc mode)12°, using low inflation
values (see Supplementary Data 4) to favour inclusive groupings. Second, we performed
multiple sequence alignments of each homology group with mafft 7.471197 under the
E-INS-i mode (optimised for multiple conserved regions), running up to 10,000 refinement
iterations. Third, we trimmed the resulting multiple sequence alignments using c/jp-kit0.1
(kpic-gappy mode)128. Fourth, we built phylogenetic trees for each trimmed alignment using
1Q-TREE 2.1.0108 selecting the best-fitting evolutionary model using its Mode/Test module
(according to the Bayesian Information Criterion) and using 1,000 UFBS bootstrap supports
127 Each tree was run for up to 10,000 iterations until convergence was attained (at the
0.999 correlation coefficient threshold, and for at least 200 iterations).

Then, we parsed the species composition of each gene tree in order to identify groups
of orthologous proteins using the POSSVM pipelinel28, Specifically, we used the species
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overlap algorithm29 implemented in the £7E toolkit 3.1.1130, which identifies pairs of
orthologous genes in a phylogenetic tree by examining the species composition of each
subtree, and classifying internal nodes as paralogy nodes (if there is overlap in the species
composition between each of its two descendant subtrees) or orthology nodes (if there is no
overlap). Pairs of genes linked by an orthology node are then recorded as orthology pairs. In
our analysis, we used an overlap threshold=0 (i.e. any species composition overlap between
the two descendant subtrees is classified as a paralogy event). The resulting list of pairwise
orthology relationships between genes was clustered into groups of orthologs (orthogroups)
using MCL. We further annotated each orthogroup with a string denoting the gene symbols
of the human proteins therein (if any).

Overall, we classified 51,426 proteins from 61 gene classes (defined by protein structural
domains), divided into 242 gene trees and 1,713 gene families (orthogroups). The source
peptide sequences and gene trees used for these analyses are available in Supplementary
Data 7 and 8.

Ancestral reconstruction of gene content—We inferred the presence, gain and loss
of each orthogroup along the eukaryotic tree of life, using a phylogenetic birth-and-death
model!31 implemented in Counf32. This tool takes a numeric profile of gene family
presence/absence in extant species (172 in our dataset) and a phylogenetic tree defining

their evolutionary relationships, and infers the probabilities of gain and loss of each family at
each ancestral node along the tree.

First we trained the probabilistic model in Count. As a training set, we used a random
sample of 1,000 PFAM domains annotated in the 172 species of interest (restricting the
sampling to domains present in at least 5% of species). The final model consists of gain,
loss and transfer rates with two I" categories each, and a constant duplication rate (given
that we only recorded gene presence/absence, duplication events are not included in our
downstream analyses). This model was obtained in three sequential rounds of training,

S0 as to sequentially add zero, one and two I" categories to each evolutionary rate. Each
round consisted of up to 100 iterations, and stopped when the relative change in the model
log-likelihood fell by 0.1% in two consecutive rounds. The final evolutionary rates and the
Newick-formatted species tree used in this step are available in the Supplementary Data 1
and Extended Data Fig. 3a.

Second, we calculated the posterior probability of gain, loss and presence of each
orthogroup in our dataset with Count. The aggregated counts of gains and losses

of the various classes of chromatin-associated proteins (acetylases, deacetylases,
methyltransferases, demethylases, readers and remodellers) along the eukaryotic tree were
obtained by summing the probabilities of gain, presence or loss of all orthogroups of a given
class at each ancestral node. To investigate the evolutionary histories of specific orthogroups
at a given node in the tree, we applied a probability threshold of 0.9 (for presence) or 0.5 (to
identify the most probable gain and loss node). The Count model was not able to calculate
ancestral probabilities for a few orthogroups with widespread phylogenetic distributions,
due to violations of the birth-and-death model (25 out of 1,713 families). In order to be

able to report presence probabilities in the LECA for these orthogroups, we inferred their
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presence in this ancestor using the Wagner parsimony procedure implemented in Count with
a gain-to-loss penalty g= 5, and recorded their presence as binary values (0/1) accordingly.

Protein domain architecture analyses—We annotated the Pfam domains present in
each protein from the gene classes listed in Supplementary Data 4, using Pfamscan 1.6-3
and the Pfam 33.0 databasel22. We visualized the networks of protein domain co-occurrence
from the point of view of the core domain(s) that define each gene class, using the
networkx Python library (version 2.4)106. Specifically, we built a graph where each node
represented ‘accessory’ domains (i.e. domains that co-occur with the ‘core’ domain that
defines given gene class), node size reflected number of co-occurrences with the ‘core’
domain, and edges reflected co-occurrences between accessory domains. We identified
communities of frequently co-occurring accessory domains using the label propagation
algorithm implemented in networkx (communities submodule), which we used as a basis
to manually annotate groups of co-occurring domains of interest (Fig. 5¢). Network
visualizations were created using the NEATO spring layout algorithm from the Graphviz
2.40.1 Python library133,

In parallel, we also recorded the presence of Pfam domains within individual orthogroups,
and their taxonomic distribution.

Prokaryotic roots of the eukaryotic chromatin machinery—\We retrieved all
eukaryotic domains from gene class shared with prokaryotes (Histones, Acetyltransf_1,
GNAT _acetyltr 2, MOZ_SAS, Hist_deacetyl, SIR2, DOT1, SET, CupinJmjC, ING, MBT,
PWWP and SNF2_N), collapsing identical sequences at 100% similarity with CD-HIT
4.8.1134 and identified their closest homologs amongst the corresponding archaea and
bacteria protein domain sets, using diamond local alignments (high sensitivity search).
The archaeal and bacterial protein sets were also reduced with CD-H/IT (at 95% and

90% sequence similarity, respectively). Each set of sequences was then partitioned into
low-granularity homology clusters using the MCL-based strategy described above (inflation
/=1.2), and a phylogenetic tree was then constructed from each homology cluster with
1Q-TREE (as described above).

Then, we mapped each eukaryotic gene to its orthogroup (obtained from eukaryotic-

only analyses, see above) and used the distribution of phylogenetic distances from the
prokaryotic+eukaryotic gene trees to classify them according to their similarity to (/)
eukaryotic genes in other orthogroups, (/) archaeal homologs, or (//i) bacterial homologs.
Specifically, we used a majority-voting procedure in which we recorded the number of
sequences of eukaryotic, archaeal or bacterial origin amongst the ten nearest neighbors of
each gene (measuring intergenic distances as substitutions per site), and assigned the most
common taxonomic group as the ‘closest’ homolog of that gene (minimum 50% agreement).
This fraction is termed ‘Phylogenetic affinity score’ and reported in Supplementary Data
5. The pairwise distances were obtained from each gene tree using the cophenetic distance
method in the cophenetic.phylo utility of the ape 5.4 R library13,

Characterisation of fusions with transposon-associated domains—We retrieved
all classified genes from our eukaryotic dataset that contained transposon-associated Pfam
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domains (version 33.0), using a list compiled from®8:136 (complete list in Supplementary
Data 4), totaling 823 candidate fusions from 91 species (listed in Supplementary Data 6). We
annotated these genes to their most similar known TE element by aligning them against the
Dfam 3.3 database37 using the tb/astn program in BLAST 2.2.31138,

We validated each candidate fusion using the following criteria: (/) contiguity of the gene
model on the genome assembly, i.e., recording which genes were interrupted by poly-N
stretches (which might indicate an incorrect gene model); (/7) evidence of expression in at
least one sample from a range of publicly available transcriptomic experiments (from the
NCBI SRA repository); (/i) evidence of contiguous expression, i.e., whether an expressed
transcript had mapped reads along the entire region located between the ‘core’ and ‘TE-
associated’ domains; (iv) we also recorded the number of exons per gene; and (V) located
near any other candidate fusion gene in the genome.

The list of SRA experiments used for these validation steps is available in Supplementary
Data 1. This list includes 64 out of 91 species for which transcriptomics datasets are
publicly available, and covers 768 out of the 822 TE fusion candidates (93%). RNA-seq read
mapping was performed with bwa mem 0.7.17-r1188139 using the complete set of spliced
transcripts of each species as the reference database. We used bedtools 2.29.2140 to identify
poly- N stretches in the genome assembly (assembly contiguity criterion). We identified
regions of low coverage along the transcript sequence (expression contiguity criterion) using
the bedtools genomecov utility, requiring that the coverage along both domains involved in
each fusion and their intermediate regions be higher or equal to two reads.

Analysis of viral homologs—We investigated the homology of the viral chromatin-
associated genes (which included 19 out of 61 families present in our survey) using joint
phylogenetic analyses of protein domains from virus, prokaryotic and eukaryaotic genes. We
used the same method described above to investigate the prokaryotic roots of eukaryotic
gene classes: we aligned viral domains against a database of cellular homologs (high
sensitivity diamond search), followed by low-granularity MCL clustering (inflation /=
1.2) and phylogenetic tree building (/Q-TREE). Then, we used the same majority-voting
procedure described above to classify viral homologs according to their similarity to
eukaryotic, archaeal or bacterial gene families based on their distribution of phylogenetic
distances. For viral genes that were most similar to eukaryotic genes, we used the same
procedure to map them to their closest eukaryotic orthogroup.

The complete list of viral genes and their phylogenetic annotation is available in
Supplementary Data 6. Out of 2,163 viral genes in our dataset, 2,144 could be annotated as
similar to a particular cellular group using this procedure (99.1%), and the majority of these
genes had a high agreement in the annotations of their nearest neighbors (2,096 with =50%
agreement; 1,449 with =90% agreement).

In the case of viral histones, we built a separate phylogeny with a few modifications in our
protocol: (/) we used additional viral genes obtained from’? as a reference; (/i) we omitted
the CD-H/T reduction and MCL partitioning steps, and jointly analyzed the entire set of
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homologs instead; and (/7j) in the phylogenetic reconstruction step, we used the approximate
Bayes posterior probabilities!4! implemented in /Q-TREE.

Identification of archaeal N-terminal histone tails—We retrieved all archaeal
histone domains classified belonging to the HMfB-like connected component in Fig.

1b, and retained those that fulfilled the following criteria: (i) contained a complete
CBFD_NFYB_HMF domain according to the A#mmscan search (defined as an alignment
starting at least at the 10th position of the HMM model, and up to the 55th position;

the HMM model contains 65 positions); and (ii) the predicted tail (A-terminal to the

core domain boundaries defined by Ammscan) was at least 10 residues long. 84 genes
passed these filters, including three A-terminal containing histones previously identified by
Henneman et a.%°. A complete list is available in Supplementary Data 2. We manually
examined the sequences of archaeal tails and aligned four sets of similar histones with mafft

G-INS-i (Extended Data Fig. 1d). Alignments were plotted using the msa 1.24.0 library in
Ri%2,
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Extended Data Fig. 1. Histone classification and evolution.
a, Primary and secondary alignments of histone-fold containing proteins classified as

canonical H2A, H2B, H3 and H4, based on identity to reference sequences in HistoneDB*8.
Pie plots represent the number of alignments to HistoneDB-annotated sequences, for the
entire dataset (prokaryotic, eukaryotic and viral sequences, large pie plots in the inset) and
the eukaryotic subset (smaller plots in the inset). For those proteins that align to more
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than one canonical histone or major variant (macroH2A, H2A.Z or cenH3), the scatter

plots represent the relative identity between the primary (horizontal axis) and secondary
alignment(s) (vertical axis). b, Aggregated counts of histone gene pairs, classified according
to histone type and orientation. c, Presence of histone variants (left) and number of collinear
pairs of histone-encoding genes (right) per species, classified according to their histone
types and relative orientation (head-to-head, hh; head-to-tail, ht; and tail-to-tail, tt). Source
data available in Supplementary Data 2. Histone variant classification is based on the
highest-scoring HMM profile from HistoneDB. Asterisks colors in the macroH2A column
indicate species where histone-less Macro domains orthologous to the macroH2A genes

are found (see panel d). Lighter colors in the variant classification indicate ambiguously
classified histones (i.e. cases in which the highest-scoring HMM profile exhibited a low
bitscore, defined as a probability below 0.05 in the profile-wise distribution function

of scaled bitscores; or cases in which the first-to-second ratio between high scoring

profiles was below 1.01). d, Alignments of putatively conserved histone A-tails in archaea.
Conserved amino-acids are color-coded according to chemical properties. Dots next to
species names are color-coded according to taxonomy (same as Fig. 2¢). e, Phylogenetic
analysis of the Macro motif of macroH2A histones across eukaryotes, highlighting the
macroH2A ortholog group (green), and, within this group, Macro-containing genes lacking
histone domains (orange), and their protein domain architectures.
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Extended Data Fig. 2. Histone post-trandlational modifications.
a, Proteomics detection coverage (% of amino acids), number of hPTMs and number

of hPTMs per covered position, for the best-covered histone in each species in our
proteomics survey. b, Number of samples in which each histone-matching peptide with post-
translational modifications (peptide spectral matches defined by Proteome Discoverer) has
been identified, per species. For each species, we report the percentage of modified peptides
found in more than one replicate. ¢, Number of samples in which histone-matching modified
peptide has been identified, across all the samples from this study. The tree pie charts
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represent these distributions for all hPTMs, acetylations, and methylations. d, Evidence
of hPTM conservation in the major histone variants H2A.Z and macroH2A (conserved
positions only), as well as any position in the linker histones H1.
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associated gene families per eukaryotic genome/transcriptome. Numbers indicate exact

number of proteins.
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chaperones. In each heatmap, we indicate the fraction of genes within an orthogroup (rows)
that contain a specific protein domain (columns). Domains in bold are catalytic (black) or
reader (purple) functions. At the right of each heat-map, we summarize the presence/absence

profile of each orthogroup across eukaryotic lineages (as listed in Fig. 1a).
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Extended Data Fig. 5. Evolution of the hPTM reader toolkit.
a, Pie plot representing the number of genes classified as part of the catalytic (acetylases,

deacetylases, methyltransferases, demethylases, remodellers or chaperones) or reader
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families, or as both. The barplot at the right shows the most common reader domains

in genes classified with both reader and catalytic functions. b, Pie plot representing the
number of reader domain-encoding genes classified according to whether they contain one
type of reader domain (e.g., PHD) or more than one (e.g., PHD + PWWP). The barplot

at the right shows the most common combinations of reader domains among genes with
multiple reader domains. ¢, Summary of gene family gains per reader family, with example
cases highlighted in selected nodes. Node size is proportional to number of gains at 90%
probability.
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Extended Data Fig. 6. Transposon-chromatin gene fusions.
a, Number of candidate fusion genes classified by the level of gene model validation

evidence, based on contiguity of the gene model over the genome assembly (i.e. lack of
poly-N stretches in the genomic region between the TE- and chromatin-associated domains),
evidence of expression, and evidence of contiguous expression (see inset at the right). b,
Summary of candidate gene fusions within each chromatin-associated gene family, divided
by gene family. For each gene, we indicate their similarity to known TE families, presence
of TE-associated domains, the evidence of gene model validity, and information on their
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gene structure (whether they are monoexonic or are located in clusters with other fusion
genes). Source data available in Supplementary Data 6. ¢, Number of species with at

least one valid fusion, divided by gene family. d, Mapping positions of RNA-seq reads
supporting candidate gene-transposon fusions (selected examples from Fig. 5e). For each
fusion, we show reads spanning the region along the spliced transcript that fully covers the
transposon-associated domains (highlighted in green), the chromatin-associated domains,
and the inter-domain region. Uninterrupted stretches of mapped positions between domains
indicate the validity of a domain co-occurrence. For clarity purposes, reads mapping entirely
within a single domain have been excluded from this visualization.
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Extended Data Fig. 7. Chromatin proteinsin viruses.
a-c, Selected gene trees highlighting examples of eukaryotic- and prokaryotic-like viral
homologs. d, Number of viral genes of each chromatin-associated gene family, classified
according to their closest neighbours from cellular clades in gene tree analyses based on
phylogenetic affinity scores (see Methods). Within each gene family, viral sequences are
classified according to their PFAM domain architecture — the most common architecture
being single-domain in most gene families except for remodellers and BIR readers. e, /d.,
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but classifying viral genes according to their phylogenetic affinity to eukaryotic orthology
groups. Source data available in Supplementary Data 6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Diversity of post-translational modificationsin eukaryotic canonical and variant

histones.

a, Eukaryotic taxon sampling used in this study. Colored dots indicate the number of
species used in the comparative histone proteomics reconstruction, with solid dots indicating
new species added in this analysis. Numbers in brackets indicate the number of genomes/
transcriptomes used in the comparative genomics analyses. Dashed lines indicate uncertain
phylogenetic relationships. Complete list of sampled species in Supplementary Data 1.
Silhouettes adapted from http://phylopic.org/. b, Networks of pairwise protein similarity
between histone protein domains in eukaryotes, archaea and viruses. Each node represents
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one histone domain, colored according to their best alignment in the HistoneDB database
(see Methods). Edges represent local alignments (bitscore = 20). ¢, Schematic representation
of the hPTM proteomics strategy employed in this study. d, Conservation of hPTMs in
eukaryotic histones. hPTM coordinates are reported according to the amino-acid position

in human orthologs (if conserved). In H2A and H2B, question marks indicate the presence
of hPTMs in stretches of lysine residues of uncertain homology. In species with previously
reported hPTMs, we further indicate which variants were also identified in our reanalysis.
Only positions with hPTMs conserved in more than one species are reported (full table

and consensus alignments available in Supplementary Data 3). e, Maximum likelihood
phylogenetic trees of the connected components in panel b, corresponding to eukaryotic
histones (H3, H4, H2A, H2B). Canonical histones included in panel d and variant histones
detected are highlighted in red. hPTMs detected in non-canonical histones are indicated.
Bottom, distributions of pairwise phylogenetic distances between all proteins in each gene
tree. Violin plots above each distribution represent the distribution of distances between
reference histones present in the HistoneDB database and histones with proteomic evidence
included in our study, for each of the main canonical (H3, H4, H2A, and H2B) and variant
histones (H2A.Z and macroH2A). Dots in the violin plot distributions represent the median.
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Figure 2. Archaeal histone diversity and post-translational modifications.
a, Distribution of histones (fraction of taxa in each lineage) and histone tails (presence/

absence) across Archaea phyla. b, Summary of proteomics evidence of archaeal histones,
including the presence of modifications, tails, coverage, fraction of lysines identified,

and isoelectric points. Human Histone H3 and H4 are included for reference. The
alignments at the bottom depict the position of lysine modifications in the globular part

of Methanospirillum stamsii and Methanobrevibacter cuticularis HMTB histones (modified
residues in bold). c, Archaeal HMfB histones with A-terminal tails (at least 10 aa before

a complete globular domain), sorted by frequency of lysine residues in the tail and color-
coded according to taxonomy (same as panel A). Amino-acid sequences shown for selected
examples. The dotted line indicates the median frequency of lysines in canonical eukaryotic
H3 and H4 histone tails. Source data available in Supplementary Data 2. d, Mass spectra of
three modified archaeal peptides, representing the relative abundance of fragments at various
mass-to-charge ratios (m/z). Spectra were annotated using IPSA. b and y ions and their
losses of H,0 are marked in green and purple, respectively; precursor ions are marked in
dark grey. Unassigned peaks are marked in light grey. Some labels have been omitted to
facilitate readability.
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Figure 3. Taxonomic distribution of chromatin-associated gene classes.
a, Summary of the seven classes of genes with chromatin-related activity covered in

our survey: histone-specific hPTM writers (acetylases and methyltransferases), erasers
(deacetylases and demethylases), readers, remodellers, and chaperones. b, Percentage

of surveyed taxa containing homologs from each chromatin-associated gene class, for
eukaryotes (top), archaea, bacteria, and viruses (bottom). Species-level tables are available
in Extended Data Fig. 3. ¢, Number of eukaryotic genes classified in each of the chromatin-
associated modification enzymes, readers, remodellers, and chaperones. d, Overlap between
the taxon-level phylogenetic distribution of histones and chromatin-associated domains in

Nat Ecol Evol. Author manuscript; available in PMC 2022 October 09.

?
} &
+

phora
lacozoa

Cni
Bilateria

Cteno
Pl

=z

o
7]
|

Remodellers

é“:’;«wo;,ag"oggoé‘,o_ ot & &

N

=3 ®

B L R e R L AN

A N ]

CFELLI TEE T T ERdL LI BEEl BLbad B

o3
3

oL [ Pt & et
BE-E--BR~~Bg-----
=

EES--E-HEEEET- BETTEESS - B
=

BT w0 W w o u w o uon oo

gNooo

n = 24866
n=5330
n=2348
n=4769
n=10771
n=164

n = 185579

R 4
L
Sesssosn COTLTOTTGICIOTOTOD
BoLEE2 e >>> >0 8= 82088805058 5s
COCENOOE; S BT S R or el 0 E 530
o0 @ o> 08U o Q0ES
ROTESE o 2TSC0052 02835 85n
EQSTXZ G5 =co- o §OS8h cFOm
g5 < SE EOES =22iip OO
v 3 $55 ES £ $8 S5 2 ©
= O S5 292 65 &

£ &3 3s 8

£ 82 2 2

3 IS< o

2 =



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Grau-Bové et al.

Page 44

archaea and four bacterial phyla, measured using the Jaccard index. e, Number of genes
encoding writer, eraser, reader and remodeller domains, per species.
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Figure 4. Origin and evolution of chromatin-associated gene families.
a, Summary of phylogenetic affinities of the eukaryotic homologs of gene classes that are

also present in prokaryotes. For each gene family, we evaluate whether it is phylogenetically
closer to a majority (=50%) of eukaryotic sequences from a different orthogroup (indicating
intra-eukaryotic diversification), or to sequences from Bacteria or Archaea. b, Left, gene tree
of eukaryotic and prokaryotic Sirtuin deacetylases, showcasing an example of a eukaryotic
family that diversified within eukaryotes (SIRT6) and another one with close relatives in
Asgard archaea (SIRT7). Right, gene tree of KAT14 acetylase, a eukaryotic orthogroup with

Nat Ecol Evol. Author manuscript; available in PMC 2022 October 09.

000000 000e
000000 0000

unclear
onigin

-2

Homo sapiens

Sycon ciliatum

Capsaspora owczarzaki
Creolimax fragrantissima
Corallochytrium limacisporum
Saccharomyces cerevisiae
Schizosaccharomyces pombe
leurospora crassa
Spizellomyces punctatus
-amonas trahens
Acanthamoeba castellanii
Dictyostelium discoideum

Arabidopsis thaliana B &-©
Physcomitrella patens Bl &®
Chlamydomonas reinhardtii Bl &-©

Guillardia theta

Emiliania huxleyi
Thalassiosira pseudonana
Phaeodactylum tricornutum
Ectocarpus siliculosus
Phytophthora infestans
Tetrahymena thermophila
rglefawiella natans M ©&®©

laegleria gruberi M ©-©

Fabomonas tropica M &-©
Gefionella okelleyi M &
pre-duplication

‘homolog



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Grau-Bové et al.

Page 46

bacterial origins. Statistical supports (UF bootstrap) are shown at selected internal nodes

of the highlighted clades. ¢, Evolutionary reconstruction of hPTM writer and eraser gene
families, remodellers, and histone chaperones along the eukaryotic phylogeny, including
the number of genes present in the last eukaryotic common ancestor (LECA). Barplots
indicate the number of orthologs of each gene family present at the LECA (at 90% posterior
probability; see Methods) and whether the presence of a given orthogroup at LECA is
supported by its conservation in various early-branching eukaryotic lineages (Amorphea,
Discoba, Diaphoretickes and others). The list of ancestral gene families below each plot is
non-exhaustive. Two ancestral gene counts are provided: all families at presence probability
above 90%, and, in brackets, the subset of these that is present in at least two of the main
eukaryotic early-branching lineages (Amorphea, Diaphoretickes, and Discoba). Source data
in Supplementary Data 5. d-e, Reconstructed evolutionary origins of the different subunits
of the Polycomb repressive complexes (PRC2 and PRC1) and Trithorax-group complexes
(KMT1 to 5). f-h, Side-by-side comparison of the presence of individual hPTM marks and
various subunits of the Polycomb and Trithorax complexes, as well as other hPTM writers,
responsible for their deposition.
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Figure 5. Evolution of chromatin readers and capture of chromatin proteins by transposable

elementsand viruses.

a, Evolutionary reconstruction of reader gene families along the eukaryotic phylogeny,
highlighting the number of gains along the eukaryotic phylogeny (at 90% posterior
probability). The Euler diagram at the top shows the overlap between presence of chromatin-
associated catalytic domains and readers. The barplot at the left indicates the number of
orthologs of each gene family present at the LECA and whether their presence is supported
by its conservation in various early-branching eukaryotic lineages (Amorphea, Discoba,
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Diaphoretickes, and others). Pie plots at the right summarize the number of orthogroups
from each gene family gained within selected lineages: Metazoa, Holomycota, Viridiplantae
and SAR+Haptophyta. b, Number of reader or catalytic orthogroups gained at each node

in the species tree, for selected species. Source data in Supplementary Data 5. ¢, Networks
of protein domain co-occurrence for Chromo and PHD readers. Each node represents a
protein domain that co-occurs with Chromo or PHD domains, and node size denotes the
number of co-occurrences with either Chromo or PHD. Edges represent co-occurrences
between domains. Groups of frequently co-occurring protein domains have been manually
annotated and color-coded, which has revealed sub-sets of retrotransposon and DNA
transposon-associated domains. d, Number of chromatin-related eukaryotic genes fused
with transposons grouped by gene family (left), including the fraction that are classified

as valid gene models based on expression and assembly data (centre); and the number

of species where each type of fusion is found (right). The number of fusion events are
colored according to their similarity with known DNA transposons (red) or retrotransposons
(orange) from the Dfam database (see Methods). (*) The ‘Chromo’ category excludes genes
containing other chromatin-associated protein domains such as SNF2_N (listed separately
as ‘Chromo+SNF2_N’, which includes remodellers with the domain of unknown function
DUF1087, which is also common in DNA transposons). e, Selected examples of transposon
fusion domains classified by orthogroup, including their archetypical protein domain
architecture, homology to transposon class, their phylogenetic distribution, and number

of fusion genes. Only orthogroups with at least one valid gene model are listed. Source

data available in Supplementary Data 6. f, Example tree of Chromo readers, highlighting
genes with fused TE-associated domains and their consensus domain architectures. g,
Fraction of viral genomes containing homologs from each chromatin gene family, for
nucleocytoplasmic giant DNA virus families (top) and other taxa containing histone domains
(Nudiviridae, Polydnaviridae; bottom). h, Phylogenetic analysis of histone domains, with

a focus on viral homologs. Statistical supports (approximate Bayes posterior probabilities)
are shown for the deepest node of each canonical eukaryotic or archaeal histone clade. The
inset table summarizes the presence of doublet histone genes per linage. i, Number of viral
homologs in each chromatin-associated gene family, classified according to their closest
cellular homologs (eukaryotes, bacteria or archaea) in phylogenetic analyses (see Methods).
Source data available in Supplementary Data 6.
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Figure 6. Chromatin evolution and eukaryogenesis.
a, Summary of events in chromatin evolution prior to, during and after the origin of

eukaryotes. b, Number of chromatin-related gene families and hPTM marks inferred to have
been present at the LECA. Ancestral gene counts are indicated at >90% probability. For
gene counts, numbers within bars indicate the subset of families present in at least two of
the most deeply-sampled early-branching eukaryotic lineages (Amoropha, Diaphoretickes,
and Discoba). For hPTMs, the ancestral counts have been inferred using Dollo parsimony
assuming a Diaphoratickes — Amorphea split at the root of eukaryotes, and humbers within
bars indicate the number of hPTMs whose ancestral presence is supported by more than
one species at both sides of the root. ¢, hPTMs inferred to be present in the last eukaryotic
common ancestor (LECA) based on Dollo parsimony. Only amino-acid positions conserved
in all eukaryotes in our dataset are shown. Asterisks indicate modifications whose presence
at the LECA is supported by just one species at either side of the root. The inferred LECA
presence of known writing/erasing enzymes associated to these hPTM is indicated.
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