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Analysis of phase noise effects 
in a coupled Mach–Zehnder 
interferometer for a much 
stabilized free‑space optical link
Byoung S. Ham

Recently, new physics for unconditional security in a classical key distribution (USCKD) has been 
proposed and demonstrated in a frame of a double Mach–Zehnder interferometer (MZI) as a 
proof of principle, where the unconditional security is rooted in MZI channel superposition. Due 
to environmental phase noise caused by temperature variations, atmospheric turbulences, and 
mechanical vibrations, free-space optical links have been severely challenged for both classical and 
quantum communications. Here, the double MZI scheme of USCKD is analyzed for greatly subdued 
environment-caused phase noise via double unitary transformation, resulting in potential applications 
of free-space optical links, where the free-space optical link has been a major research area from 
fundamental physics of atomic clock and quantum key distribution to potential applications of 
geodesy, navigation, and MIMO technologies in mobile communications systems.

In quantum key distribution (QKD) technologies1–15, unconditional security is provided by the no-cloning theo-
rem of quantum mechanics using canonical variables, resulting from randomness via the Heisenberg uncertainty 
principle16. Randomness is the fundamental basis of unconditional security according to information theory17. 
In practice, however, quantum loopholes such as imperfect detectors and lossy quantum channels are major 
obstacles, resulting in conditional security as in classical technologies of algorithm-based protocols9–15. In addi-
tion to quantum loopholes, development of deterministic single photons or entangled photon-pair generators is 
far behind commercial implementations. Moreover, the deployment of long-distance quantum key distributions 
seems to not be possible due simply to the non existence of quantum repeaters18. In addition, the QKD key rate 
is extremely low compared with classical counterparts, and QKDs are not compatible with any classical systems 
in the real world such as fiber backbone networks and wireless mobile networks. Thus, implementations of 
QKD for practical applications may not be plausible in the near future. In other words, unconditionally secured 
information communications in the real world such as in nationwide on-line banking via quantum internet19 
are not possible with current QKD systems.

Since the recent investigation of quantumness regarding anticorrelation and photon bunching on a beam 
splitter (BS)20–27, a completely different physics for nonclassicality has been discussed28–31 and experimentally 
demonstrated32,33 for a coherence version of photonic de Broglie waves (CBW) and the unconditional security 
of classical key distributions (USCKD), where USCKD and CBW share the same physics as heads and tails of a 
coin31. This new finding of coherence quantumness is macroscopic based on bright coherent light with quantum 
superposition of two Mach–Zehnder interferometers via a specific coupling method. So far, quantum informa-
tion has been limited to the microscopic world composed of a few atoms or photons, relying on the particle 
nature of duality34. According to the new understanding of quantumness on a BS, photon bunching or anticor-
relation, however, is based on the wave nature of photons, resulting in coherence quantum information, where 
such nonclassical features of anticorrelation cannot be obtained classically. For example, the physics of CBW lies 
in the controllable higher-order quantum superposition among independent Mach–Zehnder interferometers 
(MZIs)27,32, where the coupling method plays a key role. Like a coupled two-mode pendulum model in classical 
physics35, the quantumness in CBW has also been investigated using a tensor product of independent phase bases 
in coupled MZIs, where the phase bases satisfy the orthonormal conditions of a Hilbert space31.

The heart of unconditional security in both QKD and USCKD is in the randomness of eavesdropping for the 
measurements of distributed keys. In QKD, the randomness is in Heisenberg’s uncertainty principle of conjugate 
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variables, where each variable set is composed of two orthogonal bases and the no-cloning theorem provides the 
bottom line of no copying. On the other hand, the eavesdropping randomness of orthogonal bases in USCKD 
is sought from the path superposition of MZI, where the realization of randomness is provided by key distribu-
tion determinacy between two remote parties via double unitary transformations28,33. Importantly, USCKD 
has nothing to do with no-cloning theorem of QKD based on single photons or entangled photon pairs, where 
the key carrier of USCKD is conventional laser light such as in fiber-optic communications system. Regarding 
USCKD, however, the two-channel layout of transmission lines should be vulnerable to environment-caused 
phase noises induced by temperature variations, mechanical vibrations, and atmospheric turbulences. It is well 
known that an active phase control is necessary for the applications based on MZI36–39. Although state-of-the-art 
laser locking technologies are well implemented for such applications, the active control is still challenging and 
limits the maximum performance of the system. Here, we investigate greatly subdued phase noise characteristics 
of USCKD in the double Mach–Zehnder interferometer, where the phase relaxed characteristics can be applied 
for various optical links of wireless (free-space) communications systems for farther transmission distance, 
otherwise limited by a few kilometers.

Results
Figure 1 shows a schematic of the USCKD, where the environment-caused phase noises incurred in transmission 
channels of MZI are perfectly and automatically compensated via a round-trip transmission scheme. In Fig. 1(a), 
the shared transmission channels of MZI between two remoted parties, Alice and Bob, are not quantum but clas-
sical, where Bob controls the phase shifter ϕ and detectors D3 and D4, while Alice controls the phase shifter ψ and 
detectors D1 and D2. Here, ‘classical’ means that an eavesdropper can copy the light carrier in channels without 
revealing the eavesdropper’s existence to both Alice and Bob, as allowed in classical cryptographic systems. The 
ζj represents environment-caused phase noise in each transmission channel, where ζ1  = ζ2 due to channel inde-
pendency. The phase ψ is for the light returned by Alice, where ψ is invisible to the outbound lights ‘3’ and ‘4’.

According to USCKD30, Bob prepares a key with a random phase basis, ϕ ∈ {0,π} , where the phase bases are 
orthonormal to each other in the MZI system. Alice confirms Bob’s prepared key with her phase basis choice, 
ψ ∈ {0,π} . Here, Alice’s confirmation depends on a protocol, whether the confirmation can be limited to the 
same bases or all bases (see the Supplementary Information of ref.30). If the bases are the same each other, the 
double unitary transformation results in an identity relation, otherwise an inversion relation for different basis 
combinations30. This two-channel key distribution process of USCKD is perfectly deterministic due to MZI 
directionality: If Bob’s basis choice is for ϕ = π , Alice’s detector D1 must click; If Bob’s choice is ϕ = 0 and 
Alice’s choice is ψ = 0 , Bob’s detector D4 clicks. The unconditional security is rooted in the superposition-
caused measurement randomness in the shared MZI channels30. A sophisticated Eve, of course, can use the same 
measurement tool as Bob’s or Alice’s. However, the information extraction chance by Eve is 50% on average due 
to the indistinguishability in the superposed channels of MZI, resulting in measurement randomness. To avoid 
classical attacks such as memory-based attacks, an authentication or network initialization process is required30.

Using matrix representations, the following analytic derivations are obtained for Fig. 1:
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Figure 1.   A schematic of USCKD. (a) An original schematic of USCKD. (b) An unfolded schematic of (a). LD: 
laser diode, OI: optical isolator, BS: nonpolarizing beam splitter, D: detector, M: mirror. ζj : environmental phase 
noise. The numbers indicate corresponding electric fields.
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Thus, the output intensities of Iα and Iβ for a fixed ϕ are time dependent, whose average is bounded by 
the classical limit of I0/2 . This means that the control of environmental phase fluctuations is critical in MZI 
interferometry36–39.

For the returned light to Bob’s side by Alice in Fig. 1, the matrix representations are as follows (see Section 
A of the Supplementary Materials):

where [MZI]2 = [BS][ψ][ζ ][BS] , [ψ] =
[

1 0

0 eiψ

]

 , 
[

ζαβ
]

=
[

eiζα 0

0 eiζβ

]

 , ζ′ = ζ′2 − ζ′1 , ζ ′′ = ζα − ζβ , and 

ψ ′ = ψ − ζ ′ . Here 
[

ζαβ
]

 is the environment-caused phase noise occurred in the coupling MZI between two main 
MZIs of [MZI]1 and [MZI]2 , and ζ′ is the phase noise difference between two channels in [MZI]2 . Although ζ′ is 
different from ζ in general, they can be treated to be equal in a short traveling distance or slowly varying noise. 
In this case, the transit time between the outbound and inbound light fields should be much shorter than that 
of atmospheric turbulence-time causing a π phase shift. Based on the atmospheric turbulence rate is ~ kHz, the 
transmission distance satisfying ζ ∼ ζ′ condition should be a few tens of km40. Here, the relative noise variation 
ζ and ζ ′ is expected to be much slower than the individual channel noise ζj and ζ ′j .

(i) For ζ ′′ = 0 and ζ = ζ′,
For ζ ′′ = 0 , Eq. (4) is represented as:

Thus, the output intensities for Eq. (5) are as follows:

As a result, Fig. 1 satisfies the identity and inversion relations of the original protocol of USCKD with no 
influence of environmental phase noises if ζ ′′ = 0 and ζ = ζ′ for a short distance. This noise-free result, hower, 
may be difficult to be applied for conventional single channel-based communication systems, because the condi-
tion of ζ = ζ′ does not mean that each channel is noise free but the relative noise between MZIs does. Here, the 
relative noise between two transmission channels such as ‘3’ and ‘4’ can be much weaker compared with each 
channel noise (see “Discussion”).

(ii) For ζ ′′ �= 0 and ζ = ζ′,
If the intermediate coupling MZI is exposed to environmental phase noises freely, then the output fields of 

Eq. (4) are affected by both ζ′′ and ζ . The related numerical calculations are shown in Fig. 2 as both functions 
of ζ ′′ and ζ for ϕ = ψ (see the Section B in the Supplementary Information for ϕ  = ψ ). Here, the phase noise 
of ζ ′′ and ζ represents random noise range. The phase noise difference between the channel MZIs is set to be 
equal, i.e., ζ = ζ′ , even though ζ  = 0 and ζ ′ �= 0 , satisfying slowly varying noise or a short transmission distance.

For the numerical calculations in Fig. 2, the output field intensities are calculated for both randomly vary-
ing ζ ′′ and ζ . In the upper panels, the output intensities of IA and IB result in random fluctuations between 0 
and 1 in the unit of the input field intensity I0 due to the random phase noise between 0 and 2π . To analyze the 
results, output intensities averaged for all ζ ′′ ( ζ ) values at each random phase noise of ζ ( ζ ′′ ) are represented in 
the lower panels, where the analytical results of Eqs. (6) and (7) are shown by the dotted lines (see the lower left 
panel). The output fields IA and IB are effective for the invariance characteristics to the random channel noises of 
ζ1 and ζ2 if ζ ′′ = 0 and ζ = ζ′ with more than 50% visibility. Starting from this reference value, the average value 
of the output intensity IA ( IB ) gradually reduces (increases) from 1 (0) to 0.75 (0.25) as the random phase noise 
range of ζ ′′ increases to π . If the random phase variation range of ζ ′′ increases further toward 2π , each average 
output intensity fluctuates up and down in a small range across 0.75 and 0.25, respectively.

The lower right panel shows ten repeated data for a maximum random phase range of ζ ′′ = 2π , where each 
intensity is clearly and completely separated even under the random phase noises of both ζ ′′ and ζ . Because both 
intensity would vary between 0 and 1, the lowest (highest) average value of IA ( IB ) should be I0/2 in the average. 
As a result, the average value of the output intensities for all possible ζ ′′ are expected to be a half of each maxima, 
resulting in 3I0/4 ( I0/4 ) for IA ( IB ). Thus, USCKD is robust for the key distribution even under full scale of phase 
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noise if ζ = ζ′ , where the detection bound for IA ( IB ) can be set lower (higher) than for the key distribution. This 
is the first significance in the environment-caused noise immune characteristic of USCKD.

(iii) For ζ ′′ �= 0 & ζ  = ζ′,
For a general scheme of USCKD with ζ  = ζ′ between outbound (‘3’ and ‘4’) and inbound (‘7’ and ‘8’) lights, 

respectively, Eq. (4) is numerically calculated in Fig. 3. For this, the control MZI noise varies linearly, while the 
transmission channel noise difference at each MZI varies randomly. The upper panels of Fig. 3 show output 
intensities fluctuating in a full range for �ζ ≡

∣

∣ζ − ζ′
∣

∣ = 2π as expected.
In the middle panels of Fig. 3, the relative transmission channel noise range is reduced to �ζ = 0.2π . Unlike 

the upper panels, output intensity fluctuations are greatly reduced, whose visibility is bigger than 40% even for 
ζ ′′ = 2π . Especially for the phase-locked case with ζ ′′ ∼ 0 , individual output intensity fluctuations are greatly 
suppressed. As shown in the dotted curve in the lower left panel, the average output intensities are also greatly 
stabilized to be nearly immune to the noise, regardless of ζ ′′ . As �ζ increases, the output intensity fluctuation also 
increases and finally reaches at the maximum when �ζ = 2π (see the blue and red solid curves in the middle).

The lower right panel of Fig. 3 shows the average output field intensities over ζ ′′ with respect to the transmis-
sion channel noise difference �ζ . In general, the intermediate MZI is easy to control, while the transmission 
channel is not. The present USCKD scheme of double MZI channels makes the system robust to the environment-
caused phase noise if �ζ ≪ ζ, ζ ′ (see the dotted lines). Even without active phase control necessary to all optical 
links41–45, thus, the double MZI scheme of USCKD can support channel noise-immune communication protocol, 
where the upper bound of transmission distance is determined by the relative phase noise �ζ between two MZIs 
within the transit time. Because the atmospheric turbulence is much smaller and slower than the individual 
channel noise ζj ∼ ζ ′j  , this is the second significance of USCKD for the phase noise reduction.

Figure 4 shows experimental data and its analysis. The left panel of Fig. 4 is experimental results related with 
the lower panels of Fig. 3, where both ζ ′′ and ζ affect the output fields under a slow phase noise variation. The 
fairly noise-subdued USCKD has been reported in ref. 33 for the same setup without phase control, where the 
experimental setup is simply placed in a quiet, calm, closed room. In the left panel of Fig. 4, the output fields are 
average 10 times internally by a Tektronix digital oscilloscope. Under typical lab conditions, the output fields 
slowly fluctuate and cross over the half line (see the dotted circle). This slight cross-over becomes severe as �ζ 
increases by atmospheric turbulence.

In the right panel of Fig. 4, the slight crossover observed in the experiments is analyzed with different �ζ over 
the random ζ− caused intensity values for a specific noise range of ζ ′′ . For this, ζ ′′ linearly varies from 0 to 2π . 
As analyzed in Eqs. (4)–(7), the output intensities are nearly immune to phase noise if ζ ′′ = 0 , as is numerically 
confirmed at both ends. For ζ ′′ �= 0 , the random phase noise results in increased noise effect, where this intensity 
noise increases as �ζ increases as represented by colored curves. As shown in the magenta with blue curve for the 
same �ζ = π/20 , higher averaging results in less fluctuation as expected. Thus, the crossover in the experiment 
is well explained by both �ζ and ζ ′′ . Because ζ ′′ can be set to be nearly zero with an active phase control, the �ζ 

Figure 2.   Numerical calculations of Eq. (4) for ζ ′′ �= 0 and ϕ = ψ = 0 . At each trial random phase is applied, 
where the r range of ζ ′′ varies for a fixed range of ζ . Upper panel: Individual output intensities for random phase 
variations of ζ ′′(2π) and ζ(2π) . Lower panel (left): Intensity average over ζ ′′ , whose random phase variation 
is 0(dotted); π

4
(cyan); π

2
(magenta); 3π

4
(green);π(blue); 5π

4
(red); 3π

2
(black/yellow); 7π

4
(green); 2π(red ). 

Lower panel (right): 10 averaged intensities for ζ ′′ = 2π . �ζ =
∣

∣ζ − ζ′
∣

∣ = 0.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1900  | https://doi.org/10.1038/s41598-021-81522-y

www.nature.com/scientificreports/

controllability is much more relaxed (see the well separated bundles at ζ ′′ = 0 ). For a short transmission distance, 
the USCKD is promising for phase noise-immune free-space communications due to much less variation in the 
difference phase �ζ between two MZIs rather than individual phase noise difference ζ and ζ ′.

Figure 3.   Numerical calculations for the output fields as a function of ζ ′′ for ζ  = ζ′ . (Upper panel) �ζ = 2π . 
(Middle panel) �ζ = 0.2π . (lower panel) dotted curves: �ζ = 0.2π , solid curves: �ζ = 2π . �ζ ≡

∣

∣ζ − ζ′
∣

∣.

Figure 4.   Experimental demonstrations of Eq. (4) for ζ ′′ �= 0 . (Left) Experimental results for the average of 
n = 10 (see “Methods”). (Right) Numerical analysis for random phase noise variation of ζ ′′ with averaging for 
�ζ = π/30 (black), π/20 (magenta/blue), and π/10 (green). Average n = 500 (black and blue); n = 50 (cyan and 
magenta); n = 5 (green).
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Discussion
Unlike the one-way MZI system of Eqs. (1)–(3)38,39, Eq. (4) is for the round-trip MZI system of USCKD, repre-
senting the environmental phase-noise effect in Fig. 1. As analyzed in Eqs. (5)–(7), the transmission channels 
of the shared MZI are inherently sensitive to environmental noise such as atmospheric turbulences. Because 
intermediate coupling MZI can be controlled to be ζ ′′ = 0 by the state-of-the-art laser locking technologies, 
the output intensity noise fluctuations of the USCKD become fairly subdued if the environmental phase noise 
for the transmission MZI is controlled less than π/10 . This less environmental phase noise effect to the present 
USCKD system gives a great benefit for free-space communications, otherwise atmospheric turbulence is the 
critical obstacle for optical links in both quantum41–43 and classical44,45 communications.

Detailed studies for an optimum transmission distance by the proposed noise-immune USCKD have not been 
done yet. However, it is the common interest in the area of optical links for geodesy, navigation, etc. Recently 
1 km distance QKD through MZI channels have been demonstrated using active phase locking system39. This is 
a typical phase control for ζ or ζ ′ in Eq. (4) as usual. The relative phase control between inbound and outbound 
MZIs are a much easier task because it is a matter of �ζ =

∣

∣ζ − ζ ′
∣

∣ , in which �ζ is a function of the first-order 
derivative in ζ and ζ ′ : d(�ζ)

dt = dϕ1
dt − dϕ2

dt  . If two MZI channels are deployed in a space very near each other, 
then dϕ1dt ∼ dϕ2

dt  , resulting in �ζ ∼ 0 . Based on the data from the optical link, the atmospheric turbulence has 
linear relation between stability and accumulation time44. Considering a successful demonstrations of a few tens 
of km optical link, the present method of USCKD can be applied for the same optical link with much farther 
distance due to �ζ ∼ 0.

Conclusion
We analyzed, discussed, and experimentally demonstrated for the environmental phase noise effect on USCKD 
protocol, where the phase noise control is critical to practical usage especially for free-space communications. The 
noise effect on USCKD has been analyzed by noise parameters, where the intermediate coupling MZI can be well 
controlled by using the state-of-the-art laser locking technologies. Based on this phase locking, the transmission 
channel noise control plays a major role for the system performance, where the output fields fluctuation is well 
subdued if the transmission channel noise difference between inbound and outbound channels is controlled 
less than π/10 . Because the difference phase noise between MZIs is much more stable than individual channel 
noises, the round-trip MZI transmission scheme of USCKD gives a great benefit to the practical applications 
of free-space optical links. Although perfect noise immune USCKD cannot be reached with zero phase noise 
in all MZIs of USCKD, a short transmission distance for the key distribution may allow phase noise-immune 
characteristics even without tight active phase locking. Thus, the present studies may open the door to a new 
realm of secured free-space information communications.

Methods
Numerical calculations: In Figs. 2, 3, 4, home-made Matlab programs are used for Eq. (4) and numerically cal-
culated, where the random phase noise is obtained from the rand(1) commend. In Figs. 2, 3, 4, various phase 
noise range for ζ ′′ and ζ was controlled by multiplying a certain number to the output of rand(1).

Experiments: In Fig. 4, the wavelength of the input light was 606 nm from Toptica TA-SHG pro. The opti-
cal power of the input light was ~ 1 mW. After splitting by the first beam splitter in Fig. 1, each channel was 
controlled by each AOM driven by synchronized rf generators (PTS 160/250; Tektronix AFG3102), resulting in 
the same initial phase (see ref. 29 for details). The data was captured in the screen of an oscilloscope (Tektronix 
DPO 5204B) via avalanche photodiodes (Hamamatsu C12703). The experimental layout is for Fig. 1(b), where 
the transmission length of each MZI is ~ 70 cm, and independent (random) phase noise occurs in both MZIs, 
satisfying non-zero phase noise.
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